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Introduction
Classical Hardy–Littlewood inequalities

Generalized Bohnenblust–Hille inequality
Final comments

References

The very beginning...

Let K = R or C.

Littlewood’s 4/3 inequality (1930):

For all bilinear forms T : `n∞ × `n∞ → K and every positive integer n, n∑
i ,j=1

|T (ei , ej)|
4
3

 3
4

≤
√

2 ‖T‖ .

Moreover, the power 4/3 is optimal.
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One year later...

H. F. Bohnenblust and E. Hille (Annals, 1931):

There exists a sequence of positive scalars
(
Bmult
K,m

)∞
m=1
≥ 1 such that

 n∑
i1,...,im=1

∣∣∣T (ei1 , . . . , eim)
∣∣∣ 2m
m+1

m+1
2m

≤ Bmult
K,m ‖T‖

for all m-linear forms T : `n∞×· · ·×`n∞ → K and every positive integer n. The exponent
2m
m+1 is optimal.
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Applications

These inequalities (the BH and its polynomial version) have been proven to be very
useful and powerful in analysis, analytic number theory and physics. For instance:

1 - To estimate the abscissae of convergence of Dirichlet series. This was the initial goal
of Bohnenblust and Hille.

2 - To estimate the Bohr radius of the n-dimensional polydisk. F. Bayart (Univ. Blaise
Pascal), D. Pellegrino and J. Seoane (Univ. Complutense de Madrid) obtained a final
answer to this problem in 2014 (Advances in Mathematics, 2014), solving a challenging
problem that many researchers have been struggling for several years.

3 - In Quantum Information Theory. Montanaro, 2012 in J. Math. Physics.
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Estimates for the complex BH constants along the history

H. F. Bohnenblust and E. Hille (Annals, 1931):

Bmult
C,m ≤ m

m+1
2m

(√
2
)m−1

A.M. Davie (J. London Math. Soc., 1973):

Bmult
C,m ≤

(√
2
)m−1

H. Queffélec (J. Analyse, 1995):

Bmult
C,m ≤

(
2√
π

)m−1

5 / 18



Introduction
Classical Hardy–Littlewood inequalities

Generalized Bohnenblust–Hille inequality
Final comments

References

Estimates for the complex BH constants along the history

H. F. Bohnenblust and E. Hille (Annals, 1931):

Bmult
C,m ≤ m

m+1
2m

(√
2
)m−1

A.M. Davie (J. London Math. Soc., 1973):

Bmult
C,m ≤

(√
2
)m−1
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H. Queffélec (J. Analyse, 1995):

Bmult
C,m ≤

(
2√
π

)m−1

5 / 18



Introduction
Classical Hardy–Littlewood inequalities

Generalized Bohnenblust–Hille inequality
Final comments

References

Estimates for the complex BH constants along the history

H. F. Bohnenblust and E. Hille (Annals, 1931):

Bmult
C,m ≤ m

m+1
2m

(√
2
)m−1

A.M. Davie (J. London Math. Soc., 1973):

Bmult
C,m ≤

(√
2
)m−1
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Estimates for the complex BH constants along the history

D. Nuñez, D. Pellegrino, D. Serrano and J. Seoane (J. Functional Analysis, 2013):

Very complicated recursive formula... But in any case:

Bmult
C,m ≤ (m − 1)0.31
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Best known estimates

The best known (upper) formulas for the case of real and complex scalars, up to now,
are:
F. Bayart, D. Pellegrino, J. Seoane (Advances in Mathematics, 2014):

Bmult
C,m ≤

m∏
j=2

Γ

(
2− 1

j

) j
2−2j

,

Bmult
R,m ≤

m∏
j=2

2
1

2j−2 for 2 ≤ m ≤ 13,

Bmult
R,m ≤ 2

446381
55440

−m
2

m∏
j=14

Γ
(

3
2 −

1
j

)
√
π


j

2−2j

for m ≥ 14.
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Complex multilinear BH: estimates for the constants

Optimal 2014 2013 1995 1978 1931

Bmult
C,3 ? 1.2184 1.24 1.27 2 4.17

Bmult
C,4 ? 1.2889 1.32 1.44 2.83 6.73

Bmult
C,5 ? 1.3474 1.42 1.62 4 10.51

Bmult
C,6 ? 1.3978 1.47 1.83 5.66 16.09

Bmult
C,7 ? 1.4422 1.53 2.06 8 24.33

Bmult
C,8 ? 1.4821 1.58 2.33 11.32 36.45

Bmult
C,9 ? 1.5183 1.63 2.63 16 54.24

Bmult
C,10 ? 1.5515 1.68 2.96 22.63 80.29

Bmult
C,100 ? 2.5118 4.55 1.56 · 105 7.9 · 1014 8.14 · 1015

8 / 18
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Classical Hardy–Littlewood inequalities

For p := (p1, ..., pm) ∈ [1,+∞]m, let
∣∣∣ 1
p

∣∣∣ := 1
p1

+ · · ·+ 1
pm

.

Theorem (G. Hardy, J.E. Littlewood, T. Praciano-Pereira, 1934/1981)

For 0 ≤
∣∣∣ 1
p

∣∣∣ ≤ 1
2

there exist a constant Cmult
K,m,p ≥ 1 such that, for all positive integers n and all continuous

m-linear forms T : `np1
× · · · × `npm → K,

 n∑
j1,...,jm=1

∣∣T (ej1 , ..., ejm )
∣∣ 2m

m+1−2
∣∣∣ 1
p

∣∣∣


m+1−2
∣∣∣ 1
p

∣∣∣
2m

≤ Cmult
K,m,p ‖T‖ .

The exponent 2m

m+1−2
∣∣∣ 1
p

∣∣∣ is optimal.
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Hardy–Littlewood (1934), Praciano-Pereira (1981):

Cmult
R,m,p ≤

(√
2
)m−1

;

Cmult
C,m,p ≤

(
2√
π

)m−1

;

G.A.–Pellegrino–Silva (JFA, 2014):

Cmult
C,m,p ≤

(
2√
π

)2m(m−1)
∣∣∣ 1
p

∣∣∣ (
Bmult
C,m

)1−2
∣∣∣ 1
p

∣∣∣
.
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Theorem (G.A., Pellegrino 2017)

Let m ≥ 3 be a positive integer and 2m(m − 1)2 < p ≤ ∞. Then

Cmult
C,m,p ≤

m∏
j=2

Γ
(

2− 1
j

) j
2−2j

.

To prove these new estimates we had to

improve the best known estimates for the generalized Bohnenblust–Hille inequality

+

interpolations (clever usage of Hölder inequality for mixed sums).
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Main tool: improvement of the generalized Bohnenblust–Hille inequality

Generalized Bohnenblust–Hille inequality: if (q1, . . . , qm) ∈ [1, 2]m are so that

1
q1

+ · · ·+ 1
qm

= m+1
2 ,

then there is Bmult
K,m,(q1,...,qm) ≥ 1 such that

 n∑
j1=1

. . .

(
n∑

jm=1
|T (ej1 , ..., ejm)|qm

) qm−1
qm

. . .


1
q1

≤ Bmult
K,m,(q1,...,qm)‖T‖

for all m-linear forms T : `n∞ × · · · × `n∞ → K, and all positive integers n.

12 / 18
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Albuquerque–Bayart–Pellegrino–Seoane (2014): For 1 ≤ q1 ≤ · · · ≤ qm ≤ 2,

Bmult
C,m,(q1,...,qm) ≤

(
m∏
j=1

Γ
(

2− 1
j

) j
2−2j

)2m
(

1
qm
− 1

2

)

×

m−1∏
k=1

(
Γ
(

3k+1
2k+2

)(−k−1
2k )(m−k) k∏

j=1
Γ
(

2− 1
j

) j
2−2j

)2k
(

1
qk
− 1

qk+1

) .

Another particular cases: J.R. Campos, W. Cavalcante, V.V Fávaro, D. Núñez-
Alarcón, D. Pellegrino, and D.M. Serrano-Rodŕıguez.

13 / 18
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Theorem (G.A., Pellegrino 2017)

Let m ≥ 2 be a positive integer and q1, ..., qm ∈ [1, 2]. If 1
q1

+ · · ·+ 1
qm

= m+1
2 and

max qi <
2m2−4m+2
m2−m−1

, then

Bmult
C,m,(q1,...,qm) ≤

m∏
j=2

Γ
(

2− 1
j

) j
2−2j

.

14 / 18
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Final comments

Our approach to establish all the results presented here makes decisive use of

interpolations (clever usage of Hölder inequality for mixed sums).

As a possible predicament, this is the most efficient tool known up-to-now to produce
upper estimates for the Bohnenblust–Hille and Hardy–Littlewood constant, BUT (and
it makes everything more interesting)

this method is probably not suited to reach the sharp estimates...

... and new techniques must be invented so that one day we can get the definitive
solution to these problems.
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interpolations (clever usage of Hölder inequality for mixed sums).

As a possible predicament, this is the most efficient tool known up-to-now to produce
upper estimates for the Bohnenblust–Hille and Hardy–Littlewood constant, BUT (and
it makes everything more interesting)

this method is probably not suited to reach the sharp estimates...

... and new techniques must be invented so that one day we can get the definitive
solution to these problems.
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Conjecture

The optimal constants in the Bohnenblust–Hille inequality are universally bounded,
irrespectively of the value of m. In the real case, the best constants should be precisely

Bmult
R,m = 21− 1

m .
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Theorem (Hölder’s interpolative inequality for multiple exponents)

Let m, n,N be positive integers and r, q(1), . . . , q(N) ∈ [1,∞)m and θ1, . . . , θN ∈ [0, 1] be such that
θ1 + · · ·+ θN = 1 and

1
rj

= θ1
qj (1)

+ · · ·+ θN
qj (N)

, for all j = 1, . . . ,m.

Then, for all scalar matrix a = (ai)i we have

 n∑
i1=1

. . .( n∑
im=1
|ai|rm

) rm−1
rm

. . .


r1
r2


1
r1

≤
N∏

k=1


 n∑

i1=1

. . .( n∑
im=1
|ai|qm(k)

) qm−1(k)

qm(k)

. . .


q1(k)
q2(k)


1

q1(k)


θk

.

18 / 18


	Introduction
	Classical Hardy–Littlewood inequalities
	Generalized Bohnenblust–Hille inequality
	Final comments
	References

