Bourgain–Delbaen L_∞-spaces, the Scalar-plus-Compact property and Invariant Subspaces

Spiros A. Argyros and Richard G. Haydon

Department of Mathematics, National Technical University of Athens
Mathematical Institute, University of Oxford

International Congress of Mathematicians, Rio de Janiero, August 2018
Introduction

What we now call the “Bourgain–Delbaen construction” is a general method of constructing Banach spaces of the class L_∞, inspired by a remarkable paper published in *Acta Math.* (1980).

By combining this technique with the machinery of hereditarily indecomposable constructions, as developed by Gowers, Maurey and Argyros, the speakers were able to exhibit in 2011 a separable Banach space X_K on which every bounded linear operator has the form $\lambda I + K$ with λ a scalar and K a compact operator. The existence of such a space had been known as the Scalar-plus-Compact Problem. By the Aronszajn–Smith Theorem, the space X_K also has the Invariant Subspace Property: that is to say every bounded linear operator on X_K has a proper, non-trivial, closed invariant subspace. It is the first space known to have this property (though, of course, whether Hilbert space does is a famous open problem).
What we now call the “Bourgain–Delbaen construction” is a general method of constructing Banach spaces of the class \mathcal{L}_∞, inspired by a remarkable paper published in *Acta Math.* (1980).

By combining this technique with the machinery of hereditarily indecomposable constructions, as developed by Gowers, Maurey and Argyros, the speakers were able to exhibit in 2011 a separable Banach space \mathcal{X}_K on which every bounded linear operator has the form $\lambda I + K$ with λ a scalar and K a compact operator. The existence of such a space had been known as the Scalar-plus-Compact Problem.
What we now call the “Bourgain–Delbaen construction” is a general method of constructing Banach spaces of the class \mathcal{L}_∞, inspired by a remarkable paper published in Acta Math. (1980).

By combining this technique with the machinery of hereditarily indecomposable constructions, as developed by Gowers, Maurey and Argyros, the speakers were able to exhibit in 2011 a separable Banach space \mathcal{X}_K on which every bounded linear operator has the form $\lambda I + K$ with λ a scalar and K a compact operator. The existence of such a space had been known as the Scalar-plus-Compact Problem.

By the Aronszajn–Smith Theorem, the space \mathcal{X}_K also has the Invariant Subspace Property: that is to say every bounded linear operator on \mathcal{X}_K has a proper, non-trivial, closed invariant subspace. It is the first space known to have this property.
What we now call the “Bourgain–Delbaen construction” is a general method of constructing Banach spaces of the class L_∞, inspired by a remarkable paper published in *Acta Math.* (1980).

By combining this technique with the machinery of hereditarily indecomposable constructions, as developed by Gowers, Maurey and Argyros, the speakers were able to exhibit in 2011 a separable Banach space \mathcal{X}_K on which every bounded linear operator has the form $\lambda I + K$ with λ a scalar and K a compact operator. The existence of such a space had been known as the Scalar-plus-Compact Problem.

By the Aronszajn–Smith Theorem, the space \mathcal{X}_K also has the Invariant Subspace Property: that is to say every bounded linear operator on \mathcal{X}_K has a proper, non-trivial, closed invariant subspace. It is the first space known to have this property (though, of course, whether Hilbert space does is a famous open problem).
In the last seven years, the BD method and variants of it have been used to construct a wide range of other examples: other workers involved include I. Gasparis, A. Manoussakis, M. Papadiamantis, A. Pelczar-Barwacz, P. Motakis, D. Puglisi, Th. Raikoftsalis, M. Świętek, M. Tarbard, A. Tolias, D. Zissimopoulou. We shall not have time to look in detail at all their contributions.
In the last seven years, the BD method and variants of it have been used to construct a wide range of other examples: other workers involved include I. Gasparis, A. Manoussakis, M. Papadiamantis, A. Pelczar-Barwacz, P. Motakis, D. Puglisi, Th. Raikoftsalis, M. Świętek, M. Tarbard, A. Tolias, D. Zissimopoulou. We shall not have time to look in detail at all their contributions.

The BD construction has also been useful in establishing new positive results (that is to say “not just counterexamples”), notably the embedding theorem of Freeman–Odell–Schlumprecht, and more recently in finding new proofs of some important theorems of Zippin. Again, time constraints will prevent us from looking at these developments in as much detail as we should wish.
The plan for the rest of the talk is as follows:

- L_∞-spaces and the general BD-construction
- Standard BD-spaces
- The FOS embedding theorem
- Tsirelson spaces and “few-operators” constructions
- The space \mathfrak{x}_K with very few operators
- The Invariant Subspace Property
The plan for the rest of the talk is as follows:

- L_∞-spaces and the general BD-construction
 - Standard BD-spaces
 - The FOS embedding theorem
 - Tsirelson spaces and “few-operators” constructions
 - The space \mathcal{X}_K with very few operators
 - The Invariant Subspace Property
The plan for the rest of the talk is as follows:

- \mathcal{L}_∞-spaces and the general BD-construction
- Standard BD-spaces
 - The FOS embedding theorem
 - Tsirelson spaces and “few-operators” constructions
 - The space \mathcal{X}_K with very few operators
 - The Invariant Subspace Property
The plan for the rest of the talk is as follows:

- L_∞-spaces and the general BD-construction
- Standard BD-spaces
- The FOS embedding theorem
- Tsirelson spaces and “few-operators” constructions
- The space x_K with very few operators
- The Invariant Subspace Property
The plan for the rest of the talk is as follows:

- \mathcal{L}_∞-spaces and the general BD-construction
- Standard BD-spaces
- The FOS embedding theorem
- Tsirelson spaces and “few-operators” constructions
 - The space \mathfrak{x}_K with very few operators
 - The Invariant Subspace Property
The plan for the rest of the talk is as follows:

- L_∞-spaces and the general BD-construction
- Standard BD-spaces
- The FOS embedding theorem
- Tsirelson spaces and “few-operators” constructions
- The space X_K with very few operators
- The Invariant Subspace Property
The plan for the rest of the talk is as follows:

- \mathcal{L}_∞-spaces and the general BD-construction
- Standard BD-spaces
- The FOS embedding theorem
- Tsirelson spaces and “few-operators” constructions
- The space \mathfrak{x}_K with very few operators
- The Invariant Subspace Property
A Banach space is called a L_∞-space if its finite-dimensional structure looks like that of c_0 (or a $C(K)$-space). (Lindenstrauss and Pełczyński 1968)
A Banach space is called a L_∞-space if its finite-dimensional structure looks like that of c_0 (or a $C(K)$-space). (Lindenstrauss and Pełczyński 1968)

More precisely, a Banach space X is a L_∞-space if there is a constant M such that, for every finite-dimensional subspace E of X, there is a finite-dimensional subspace F with $E \subseteq F \subseteq X$ that is M-isomorphic to a finite-dimensional ℓ_∞-space.
A Banach space is called a L_∞-space if its finite-dimensional structure looks like that of c_0 (or a $C(K)$-space). (Lindenstrauss and Pełczyński 1968)

More precisely, a Banach space X is a L_∞-space if there is a constant M such that, for every finite-dimensional subspace E of X, there is a finite-dimensional subspace F with $E \subseteq F \subseteq X$ that is M-isomorphic to a finite-dimensional ℓ_∞-space.

So a separable space X is L_∞,M iff there is an increasing sequence of finite-dimensional subspaces $E_1 \subseteq E_2 \subseteq \cdots$ such that $\bigcup_{n \in \mathbb{N}} E_n$ is dense in X and E_n is M-isomorphic to $\ell_\infty^{\dim E_n}$ for each n.
A Banach space is called a L_∞-space if its finite-dimensional structure looks like that of c_0 (or a $C(K)$-space). (Lindenstrauss and Pełczyński 1968)

More precisely, a Banach space X is a L_∞-space if there is a constant M such that, for every finite-dimensional subspace E of X, there is a finite-dimensional subspace F with $E \subseteq F \subseteq X$ that is M-isomorphic to a finite-dimensional ℓ_∞-space.

So a separable space X is $L_{\infty,M}$ iff there is an increasing sequence of finite-dimensional subspaces $E_1 \subseteq E_2 \subseteq \cdots$ such that $\bigcup_{n \in \mathbb{N}} E_n$ is dense in X and E_n is M-isomorphic to $\ell_{\infty}^{\dim E_n}$ for each n.

We are going to investigate a particular way to construct L_∞-spaces, based on successive linear extensions.
We write \mathbb{R}^Γ for the vector space of all real-valued functions on a set Γ, and when $F \subseteq \Gamma$ we identify \mathbb{R}^F with the subspace of \mathbb{R}^Γ consisting of functions that vanish off the subset F.

We write \mathbb{R}^Γ for the subspace of \mathbb{R}^Γ consisting of functions of finite support. With the above convention, $\mathbb{R}^\Gamma = \bigcup_{F \subseteq \Gamma, \text{finite}} \mathbb{R}^F$. There is a natural duality between the spaces \mathbb{R}^Γ and \mathbb{R}^Γ^{\ast}, given by $\langle f, x \rangle = \sum_{\gamma \in \Gamma} f(\gamma) x(\gamma)$, and generally we shall think of elements of \mathbb{R}^Γ as vectors, while elements of \mathbb{R}^Γ^{\ast} are seen as functionals.

For clarity (we hope!) functionals will be given names adorned with a star, so that the typical element of \mathbb{R}^Γ^{\ast} will be denoted f^{\ast}, rather than f as above. In particular, the function that takes the value 1 at γ, while vanishing elsewhere, will be denoted e_γ if we think of it as the usual unit vector, and e^{\ast}_γ if we think of it as the evaluation functional $x \mapsto x(\gamma)$.

Spiros A. Argyros and Richard G. Haydon

Bourgain–Delbaen \mathcal{L}_∞-spaces
We write \mathbb{R}^Γ for the vector space of all real-valued functions on a set Γ, and when $F \subset \Gamma$ we identify \mathbb{R}^F with the subspace of \mathbb{R}^Γ consisting of functions that vanish off the subset F.

We write $\mathbb{R}^{(\Gamma)}$ for the subspace of \mathbb{R}^Γ consisting of functions of \textit{finite support}. With the above convention, $\mathbb{R}^{(\Gamma)} = \bigcup_{F \subset \Gamma, \text{finite}} \mathbb{R}^F$.
A little notation

We write \mathbb{R}^Γ for the vector space of all real-valued functions on a set Γ, and when $F \subset \Gamma$ we identify \mathbb{R}^F with the subspace of \mathbb{R}^Γ consisting of functions that vanish off the subset F.

We write $\mathbb{R}^{(\Gamma)}$ for the subspace of \mathbb{R}^Γ consisting of functions of finite support. With the above convention, $\mathbb{R}^{(\Gamma)} = \bigcup_{F \subset \Gamma, F \text{ finite}} \mathbb{R}^F$.

There is a natural duality between the spaces \mathbb{R}^Γ and $\mathbb{R}^{(\Gamma)}$, given by $\langle f, x \rangle = \sum_{\gamma \in \Gamma} f(\gamma)x(\gamma)$, and generally we shall think of elements of \mathbb{R}^Γ as vectors, while elements of $\mathbb{R}^{(\Gamma)}$ are seen as functionals.
We write \mathbb{R}^Γ for the vector space of all real-valued functions on a set Γ, and when $F \subset \Gamma$ we identify \mathbb{R}^F with the subspace of \mathbb{R}^Γ consisting of functions that vanish off the subset F.

We write $\mathbb{R}^{(\Gamma)}$ for the subspace of \mathbb{R}^Γ consisting of functions of *finite support*. With the above convention, $\mathbb{R}^{(\Gamma)} = \bigcup_{F \subset \Gamma, F \text{ finite}} \mathbb{R}^F$.

There is a natural duality between the spaces \mathbb{R}^Γ and $\mathbb{R}^{(\Gamma)}$, given by $\langle f, x \rangle = \sum_{\gamma \in \Gamma} f(\gamma)x(\gamma)$, and generally we shall think of elements of \mathbb{R}^Γ as *vectors*, while elements of $\mathbb{R}^{(\Gamma)}$ are seen as *functionals*.

For clarity (we hope!) functionals will be given names adorned with a star, so that the typical element of $\mathbb{R}^{(\Gamma)}$ will be denoted f^*, rather than f as above.
We write \mathbb{R}^Γ for the vector space of all real-valued functions on a set Γ, and when $F \subset \Gamma$ we identify \mathbb{R}^F with the subspace of \mathbb{R}^Γ consisting of functions that vanish off the subset F.

We write $\mathbb{R}^{(\Gamma)}$ for the subspace of \mathbb{R}^Γ consisting of functions of finite support. With the above convention, $\mathbb{R}^{(\Gamma)} = \bigcup_{F \subset \Gamma, F \text{ finite}} \mathbb{R}^F$.

There is a natural duality between the spaces \mathbb{R}^Γ and $\mathbb{R}^{(\Gamma)}$, given by $\langle f, x \rangle = \sum_{\gamma \in \Gamma} f(\gamma)x(\gamma)$, and generally we shall think of elements of \mathbb{R}^Γ as vectors, while elements of $\mathbb{R}^{(\Gamma)}$ are seen as functionals.

For clarity (we hope!) functionals will be given names adorned with a star, so that the typical element of $\mathbb{R}^{(\Gamma)}$ will be denoted f^*, rather than f as above.

In particular, the function that takes the value 1 at γ, while vanishing elsewhere, will be denoted e_γ if we think of it as the usual unit vector, and e_γ^* if we think of it as the evaluation functional $x \mapsto x(\gamma)$.
Let \((\Gamma_n)_{n \in \mathbb{N}}\) be an increasing sequence of finite sets with union \(\Gamma = \bigcup_{n \in \mathbb{N}} \Gamma_n\), and introduce the difference sets \(\Delta_1 = \Gamma_1\), \(\Delta_{n+1} = \Gamma_{n+1} \setminus \Gamma_n\). Suppose that, for each \(n\) and each \(\gamma \in \Delta_{n+1}\), we specify some \(c^*_{\gamma} \in \mathbb{R}^{\Gamma_n}\). For completeness, set \(c^*_{\gamma} = 0\) when \(\gamma \in \Gamma_1\).
Let \((\Gamma_n)_{n\in\mathbb{N}}\) be an increasing sequence of finite sets with union \(\Gamma = \bigcup_{n\in\mathbb{N}} \Gamma_n\), and introduce the difference sets \(\Delta_1 = \Gamma_1\), \(\Delta_{n+1} = \Gamma_{n+1} \setminus \Gamma_n\). Suppose that, for each \(n\) and each \(\gamma \in \Delta_{n+1}\), we specify some \(c^*_\gamma \in \mathbb{R}^{\Gamma_n}\). For completeness, set \(c^*_\gamma = 0\) when \(\gamma \in \Gamma_1\).

We can define, for each \(n\), a linear extension mapping \(i_{n+1,n} : \mathbb{R}^{\Gamma_n} \to \mathbb{R}^{\Gamma_{n+1}}\), by

\[
i_{n+1,n}u(\gamma) = \begin{cases}
 u(\gamma) & \text{if } \gamma \in \Gamma_n \\
 \langle c^*_\gamma, u \rangle & \text{if } \gamma \in \Delta_{n+1}.
\end{cases}
\]
Let \((\Gamma_n)_{n \in \mathbb{N}}\) be an increasing sequence of finite sets with union \(\Gamma = \bigcup_{n \in \mathbb{N}} \Gamma_n\), and introduce the difference sets \(\Delta_1 = \Gamma_1\), \(\Delta_{n+1} = \Gamma_{n+1} \setminus \Gamma_n\). Suppose that, for each \(n\) and each \(\gamma \in \Delta_{n+1}\), we specify some \(c^*_\gamma \in \mathbb{R}^{\Gamma_n}\). For completeness, set \(c^*_\gamma = 0\) when \(\gamma \in \Gamma_1\).

We can define, for each \(n\), a linear extension mapping \(i_{n+1,n} : \mathbb{R}^{\Gamma_n} \to \mathbb{R}^{\Gamma_{n+1}}\), by

\[
i_{n+1,n} u(\gamma) = \begin{cases} u(\gamma) & \text{if } \gamma \in \Gamma_n \\ \langle c^*_\gamma, u \rangle & \text{if } \gamma \in \Delta_{n+1}. \end{cases}
\]

By forming compositions \(i_{m,m-1} \circ i_{m-1,m-2} \circ \cdots \circ i_{n+1,n}\) and letting \(m\) increase, we obtain, for each \(n\), a linear extension mapping \(i_n : \mathbb{R}^{\Gamma_n} \to \mathbb{R}^{\Gamma}\). Writing \(r_n\) for the restriction mapping \(\mathbb{R}^{\Gamma} \to \mathbb{R}^{\Gamma_n}\), we have the extension condition \(r_n i_n r_n = r_n\) and the compatibility condition \(i_m r_m i_n = i_n\) for \(n < m\).
Successive extension mappings (easy linear algebra)

Let \((\Gamma_n)_{n \in \mathbb{N}}\) be an increasing sequence of finite sets with union \(\Gamma = \bigcup_{n \in \mathbb{N}} \Gamma_n\), and introduce the difference sets \(\Delta_1 = \Gamma_1\), \(\Delta_{n+1} = \Gamma_{n+1} \setminus \Gamma_n\). Suppose that, for each \(n\) and each \(\gamma \in \Delta_{n+1}\), we specify some \(c^*_\gamma \in \mathbb{R}^{\Gamma_n}\). For completeness, set \(c^*_\gamma = 0\) when \(\gamma \in \Gamma_1\).

We can define, for each \(n\), a linear extension mapping \(i_{n+1,n} : \mathbb{R}^{\Gamma_n} \to \mathbb{R}^{\Gamma_{n+1}}\), by

\[
i_{n+1,n}u(\gamma) = \begin{cases}
 u(\gamma) & \text{if } \gamma \in \Gamma_n \\
 \langle c^*_\gamma, u \rangle & \text{if } \gamma \in \Delta_{n+1}.
\end{cases}
\]

By forming compositions \(i_{m,m-1} \circ i_{m-1,m-2} \circ \cdots \circ i_{n+1,n}\) and letting \(m\) increase, we obtain, for each \(n\), a linear extension mapping \(i_n : \mathbb{R}^{\Gamma_n} \to \mathbb{R}^\Gamma\). Writing \(r_n\) for the restriction mapping \(\mathbb{R}^\Gamma \to \mathbb{R}^{\Gamma_n}\), we have the extension condition \(r_n i_n r_n = r_n\) and the compatibility condition \(i_m r_m i_n = i_n\) for \(n < m\).

The images \(F_n = i_n[\mathbb{R}^{\Gamma_n}]\) form an increasing sequence of finite-dimensional subspaces of \(\mathbb{R}^\Gamma\). For each \(n\), \(P_n = i_n r_n\) is a projection on \(\mathbb{R}^\Gamma\) with image \(F_n\).
Continuing from the last slide, we introduce vectors d_γ and functionals d^*_γ defined as follows

\[
d_\gamma = i_n e_\gamma \quad \text{when } \gamma \in \Delta_n
\]
\[
d^*_\gamma = e^*_\gamma - c^*_\gamma
\]

Observation

1. $(d^*_\gamma)_{\gamma \in \Gamma}$ is an algebraic basis of $\mathbb{R}^{(\Gamma)}$.
2. $(d_\gamma)_{\gamma \in \Gamma}$ is the unique system in \mathbb{R}^{Γ} that is biorthogonal to $(d^*_\gamma)_{\gamma \in \Gamma}$, and is an algebraic basis of $F = \bigcup_n F_n$.
3. The projection $P_n = i_n r_n : \mathbb{R}^{\Gamma} \to F_n$ is given by $P_n x = \sum_{\gamma \in \Gamma_n} \langle d^*_\gamma, x \rangle d_\gamma$.
4. The dual projection P^*_n takes $\mathbb{R}^{(\Gamma)}$ onto \mathbb{R}^{Γ_n} and is given by $P^*_n f^* = \sum_{\gamma \in \Gamma_n} \langle f^*, d_\gamma \rangle d^*_\gamma$.

Spiros A. Argyros and Richard G. Haydon

Bourgain–Delbaen \mathcal{L}_∞-spaces
Suppose that in the preceding discussion the extension operators \(i_n \) turn out to take values in \(\ell_\infty(\Gamma) \) with a uniform bound \(\|i_n\| \leq M \) for the norm of \(i_n \) as an operator from \(\ell_\infty(\Gamma_n) \) to \(\ell_\infty(\Gamma) \).
Suppose that in the preceding discussion the extension operators \(i_n \) turn out to take values in \(\ell_\infty(\Gamma) \) with a uniform bound \(\|i_n\| \leq M \) for the norm of \(i_n \) as an operator from \(\ell_\infty(\Gamma_n) \) to \(\ell_\infty(\Gamma) \). A lot of good things happen.
Suppose that in the preceding discussion the extension operators i_n turn out to take values in $l_\infty(\Gamma)$ with a uniform bound $\|i_n\| \leq M$ for the norm of i_n as an operator from $l_\infty(\Gamma_n)$ to $l_\infty(\Gamma)$. A lot of good things happen.

- For each n, F_n is M-isomorphic to $l_\infty(\Gamma_n)$, and hence the subspace X of $l_\infty(\Gamma)$, defined as $X = \bigcup_{n \in \mathbb{N}} F_n$, is $L_{\infty,M}$.
- The functionals $d_\gamma^* = e_\gamma^* - c_\gamma^*$ form a Schauder basis of $l_1(\Gamma)$.
- The biorthogonal vectors $d_\gamma \in l_\infty(\Gamma)$ form a Schauder basis of X.
- The projections $P_n : l_\infty(\Gamma) \to F_n$ and $P_n^* : l_1(\Gamma) \to l_1(\Gamma_n)$ have norm at most M.
Suppose that in the preceding discussion the extension operators \(i_n\) turn out to take values in \(\ell_\infty(\Gamma)\) with a uniform bound \(\|i_n\| \leq M\) for the norm of \(i_n\) as an operator from \(\ell_\infty(\Gamma_n)\) to \(\ell_\infty(\Gamma)\). A lot of good things happen.

- For each \(n\), \(F_n\) is \(M\)-isomorphic to \(\ell_\infty(\Gamma_n)\), and hence the subspace \(X\) of \(\ell_\infty(\Gamma)\), defined as \(X = \bigcup_{n \in \mathbb{N}} F_n\), is \(\mathcal{L}_\infty, M\).
- The functionals \(d_\gamma^* = e_\gamma^* - c_\gamma^*\) form a Schauder basis of \(\ell_1(\Gamma)\).
- The biorthogonal vectors \(d_\gamma \in \ell_\infty(\Gamma)\) form a Schauder basis of \(X\).
- The projections \(P_n : \ell_\infty(\Gamma) \to F_n\) and \(P_n^* : \ell_1(\Gamma) \to \ell_1(\Gamma_n)\) have norm at most \(M\).
Suppose that in the preceding discussion the extension operators i_n turn out to take values in $\ell_\infty(\Gamma)$ with a uniform bound $\|i_n\| \leq M$ for the norm of i_n as an operator from $\ell_\infty(\Gamma_n)$ to $\ell_\infty(\Gamma)$. A lot of good things happen.

- For each n, F_n is M-isomorphic to $\ell_\infty(\Gamma_n)$, and hence the subspace X of $\ell_\infty(\Gamma)$, defined as $X = \bigcup_{n \in \mathbb{N}} F_n$, is $\mathcal{L}_{\infty,M}$.
- The functionals $d^*_\gamma = e^*_\gamma - c^*_\gamma$ form a Schauder basis of $\ell_1(\Gamma)$.
- The biorthogonal vectors $d_\gamma \in \ell_\infty(\Gamma)$ form a Schauder basis of X.
- The projections $P_n : \ell_\infty(\Gamma) \to F_n$ and $P^*_n : \ell_1(\Gamma) \to \ell_1(\Gamma_n)$ have norm at most M.

Spiros A. Argyros and Richard G. Haydon

Bourgain–Delbaen \mathcal{L}_∞-spaces
Suppose that in the preceding discussion the extension operators i_n turn out to take values in $\ell_\infty(\Gamma)$ with a uniform bound $\|i_n\| \leq M$ for the norm of i_n as an operator from $\ell_\infty(\Gamma_n)$ to $\ell_\infty(\Gamma)$. A lot of good things happen.

- For each n, F_n is M-isomorphic to $\ell_\infty(\Gamma_n)$, and hence the subspace X of $\ell_\infty(\Gamma)$, defined as $X = \bigcup_{n \in \mathbb{N}} F_n$, is $\mathcal{L}_{\infty,M}$.
- The functionals $d_\gamma^* = e_\gamma^* - c_\gamma^*$ form a Schauder basis of $\ell_1(\Gamma)$.
- The biorthogonal vectors $d_\gamma \in \ell_\infty(\Gamma)$ form a Schauder basis of X.
- The projections $P_n : \ell_\infty(\Gamma) \to F_n$ and $P_n^* : \ell_1(\Gamma) \to \ell_1(\Gamma_n)$ have norm at most M.

The problems of boundedness and duality

What we have just described is the General BD Construction and the resulting space X is what we call a (general) BD-space. The set Γ, equipped with the compatible sequence of extension mappings (i_n), or equivalently with the family of functionals (c_γ^*), is what we call a BD-set.
What we have just described is the General BD Construction and the resulting space X is what we call a (general) BD-space. The set Γ, equipped with the compatible sequence of extension mappings (i_n), or equivalently with the family of functionals (c_γ^*), is what we call a BD-set.

Although the use of extension operators might seem to limit the scope of constructions of this kind, Argyros, Gasparis and Motakis recently showed that every separable \mathcal{L}_∞-space (and, in particular, every isomorphic predual of ℓ_1) is isomorphic to a BD-space.
The problems of boundedness and duality

What we have just described is the General BD Construction and the resulting space X is what we call a (general) BD-space. The set Γ, equipped with the compatible sequence of extension mappings (i_n), or equivalently with the family of functionals (c^*_γ), is what we call a BD-set.

Although the use of extension operators might seem to limit the scope of constructions of this kind, Argyros, Gasparis and Motakis recently showed that every separable \mathcal{L}_∞-space (and, in particular, every isomorphic predual of ℓ_1) is isomorphic to a BD-space.

What is missing at this level of generality is a useful condition on the functionals c^*_γ that would guarantee uniform boundedness of the extensions i_n. It would also be nice to have a criterion for the canonically embedded isomorphic copy of $\ell_1(\Gamma)$ to make up the whole of X^*.

Spiros A. Argyros and Richard G. Haydon

Bourgain–Delbaen \mathcal{L}_∞-spaces
Plan

- L_∞-spaces and the general BD-construction
- **Standard BD-spaces**
 - The FOS embedding theorem
 - Tsirelson spaces and “few-operators” constructions
 - The space x_K with very few operators
 - The Invariant Subspace Property
The original paper of Bourgain and Delbaen gave a special way to define functionals c^*_γ that guarantees the uniform boundedness of the extension operators i_n. We turn this into a definition.
Standard BD-sets

The original paper of Bourgain and Delbaen gave a special way to define functionals c^*_γ that guarantees the uniform boundedness of the extension operators i_n. We turn this into a definition.

We say that Γ is a **Standard BD-set** with weight β if, for all n and all $\gamma \in \Delta_{n+1}$, the functional c^*_γ has one of the forms

$$c^*_\gamma = \beta(I - P^*_s)b^*$$

with $0 \leq s \leq n$ and $b^* \in \text{ball } \ell_1(\Gamma_n \setminus \Gamma_s)$, or

$$c^*_\gamma = e^*_\xi + \beta(I - P^*_s)b^*$$

with $1 \leq s \leq n$, $\xi \in \Gamma_s$ and $b^* \in \text{ball } \ell_1(\Gamma_n \setminus \Gamma_s)$.
A crucial but easy estimate essentially due to B and D

Let Γ be a standard BD set of weight β. Then the extension operators i_n are uniformly norm bounded by $M = (1 - 2\beta)^{-1}$ and $X(\Gamma)$ is a $L_{\infty,M}$-space.
A crucial but easy estimate essentially due to B and D

Let Γ be a standard BD set of weight β. Then the extension operators i_n are uniformly norm bounded by $M = (1 - 2\beta)^{-1}$ and $X(\Gamma)$ is a \mathcal{L}_∞, M-space.

We then call $X(\Gamma)$ a standard BD-space.
Recall that c_γ^* is to be either $\beta(l - P_s^*)b^*$ or $e_\xi^* + \beta(l - P_s^*)b^*$. We call ξ (when it exists) the *base* of γ, b^* the *top* and s the *cut*.
Standard terminology for standard BD-spaces

Recall that c_γ^* is to be either $\beta(I - P_s^*)b^*$ or $e_\xi^* + \beta(I - P_s^*)b^*$. We call ξ (when it exists) the base of γ, b^* the top and s the cut.

So to define a standard BD-structure on a set Γ we need first to express it as an increasing union of finite subsets Γ_n and then to define functions

$$
\text{base} : \Gamma \to \Gamma \cup \{\text{undefined}\}, \quad \text{top} : \Gamma \to \text{ball } \ell_1(\Gamma), \quad \text{cut} : \Gamma \to \mathbb{N}
$$

satisfying the obvious constraints.
Recall that c'_γ is to be either $\beta(I - P_s^*)b^*$ or $e_\xi^* + \beta(I - P_s^*)b^*$. We call ξ (when it exists) the base of γ, b^* the top and s the cut.

So to define a standard BD-structure on a set Γ we need first to express it as an increasing union of finite subsets Γ_n and then to define functions

$$\text{base} : \Gamma \to \Gamma \cup \{\text{undefined}\}, \quad \text{top} : \Gamma \to \text{ball } \ell_1(\Gamma), \quad \text{cut} : \Gamma \to \mathbb{N}$$

satisfying the obvious constraints.

We still have freedom to specify the weight β and it should be emphasized that different choices of β can lead to Banach spaces of very different behaviour.
Recall that c^*_γ is to be either $\beta(I - P_s^*)b^*$ or $e^*_\xi + \beta(I - P_s^*)b^*$. We call ξ (when it exists) the base of γ, b^* the top and s the cut.

So to define a standard BD-structure on a set Γ we need first to express it as an increasing union of finite subsets Γ_n and then to define functions

$$
\text{base} : \Gamma \to \Gamma \cup \{\text{undefined}\}, \quad \text{top} : \Gamma \to \text{ball } \ell_1(\Gamma), \quad \text{cut} : \Gamma \to \mathbb{N}
$$

satisfying the obvious constraints.

We still have freedom to specify the weight β and it should be emphasized that different choices of β can lead to Banach spaces of very different behaviour. There is even a degenerate case that is more useful than it might appear: we can set $\beta = 0$.
A standard BD-set Γ has a \textit{tree-structure} in which the immediate successors of ξ are the elements γ with base $\gamma = \xi$. This is intimately related to duality issues.
A standard BD-set Γ has a *tree-structure* in which the immediate successors of ξ are the elements γ with base $\gamma = \xi$. This is intimately related to duality issues.

Theorem

Let Γ be a standard BD-set. Then the dual $X(\Gamma)^*$ is naturally identifiable with $\ell_1(\Gamma)$ if and only if there is no infinite sequence (ξ_n) in Γ with $\xi_n = \text{base } \xi_{n+1}$ for all n, that is to say, if and only if the tree structure on Γ is well-founded.
A standard BD-set Γ has a \textit{tree-structure} in which the immediate successors of ξ are the elements γ with base $\gamma = \xi$. This is intimately related to duality issues.

Theorem

Let Γ be a standard BD-set. Then the dual $X(\Gamma)^*$ is naturally identifiable with $\ell_1(\Gamma)$ if and only if there is no infinite sequence (ξ_n) in Γ with $\xi_n = \text{base } \xi_{n+1}$ for all n, that is to say, if and only if the tree structure on Γ is well-founded.

When Γ is well-founded, it has a countable \textit{ordinal index} that becomes important when we look at the finer structure of $X(\Gamma)$.
Plan

• \mathcal{L}_∞-spaces and the general BD-construction
• Standard BD-spaces
• The FOS embedding theorem
• Tsirelson spaces and “few-operators” constructions
• The space \mathcal{X}_K with very few operators
• The Invariant Subspace Property
It is an elementary fact that every separable Banach space is a quotient of ℓ_1. The surprising theorem of FOS is that when Y^* is a separable dual space then the quotient operator can itself be taken to be the dual of an embedding $Y \to X$ where X is an isomorphic predual of ℓ_1.
The embedding theorem of Freeman, Odell and Schlumprecht

It is an elementary fact that every separable Banach space is a quotient of ℓ_1. The surprising theorem of FOS is that when Y^* is a separable dual space then the quotient operator can itself be taken to be the dual of an embedding $Y \to X$ where X is an isomorphic predual of ℓ_1.

Theorem [FOS (2011)]

Let Y be a Banach space with separable dual Y^*. Then, for each $0 < \epsilon < \frac{1}{2}$, there exists a well-founded special BD-set Γ and a $(1 + \epsilon)$-isomorphic embedding $Y \to X(\Gamma)$.
It is an elementary fact that every separable Banach space is a quotient of ℓ_1. The surprising theorem of FOS is that when Y^* is a separable dual space then the quotient operator can itself be taken to be the dual of an embedding $Y \to X$ where X is an isomorphic predual of ℓ_1.

Theorem [FOS (2011)]

Let Y be a Banach space with separable dual Y^*. Then, for each $0 < \epsilon < \frac{1}{2}$, there exists a well-founded special BD-set Γ and a $(1 + \epsilon)$-isomorphic embedding $Y \to X(\Gamma)$.

One approach to proving this theorem involves a careful construction of a certain ϵ-net Γ in ball Y^*, which we then equip with a standard BD structure in such that the natural map $J : Y \to \ell_\infty(\Gamma); (Jy)(\gamma) = \gamma(y)$ takes values in $X(\Gamma)$.
Plan

- L_∞-spaces and the general BD-construction
- Standard BD-spaces
- The FOS embedding theorem
- Tsirelson spaces and “few-operators” constructions
 - The space X_K with very few operators
 - The Invariant Subspace Property
In 1974, Tsirelson constructed his famous space T that contains no isomorphic copy of c_0, nor of any ℓ_p.
In 1974, Tsirelson constructed his famous space T that contains no isomorphic copy of c_0, nor of any ℓ_p.

He defined a norm on $\mathbb{R}(\mathbb{N})$ by

$$\|x\|_T = \sup_{f^* \in W} |\langle f^*, x \rangle|,$$

where the *norming set* $W \subset \mathbb{R}(\mathbb{N})$ is taken to be the smallest convex set such that $\pm e_n^* \in W$ for all n, and
In 1974, Tsirelson constructed his famous space T that contains no isomorphic copy of c_0, nor of any ℓ_p.

He defined a norm on $\mathbb{R}(\mathbb{N})$ by

\[\|x\|_T = \sup_{f^* \in W} |\langle f^*, x \rangle|, \]

where the norming set $W \subset \mathbb{R}(\mathbb{N})$ is taken to be the smallest convex set such that $\pm e_n^* \in W$ for all n, and

\[\frac{1}{2}(f_1^* + f_2^* + \cdots + f_n^*) \in W \quad \text{whenever} \quad f_1^*, \ldots, f_n^* \in W, \]
\[\max \sup f_k^* < \min \sup f_{k+1}^* \quad (1 \leq k < n) \]
\[\text{and} \quad n \leq \min \sup f_1^*. \]

The space T is the completion of $\mathbb{R}(\mathbb{N})$ for this norm.
We can obviously generalize Tsirelson’s construction by replacing the constant $\frac{1}{2}$ with an arbitrary positive weight $\beta < 1$, and less obviously by replacing the condition $n \leq \min \supp f^*$ with $\{\min \supp f^*, \ldots, \min \supp f^n\} \in M$, for a suitable (regular) family M of finite subsets of \mathbb{N}. We can even allow a sequence $(\beta_i)_{i \in \mathbb{N}}$ of distinct weights, with associated regular families M_i, obtaining a Mixed Tsirelson space.

Schlumprecht’s arbitrarily distortable space S (1991) is a space of this type, and its discovery was a necessary step towards the celebrated counterexamples of Gowers (1993-4) and the Gowers–Maurey theory of hereditarily indecomposable (HI) Banach spaces.
We can obviously generalize Tsirelson’s construction by replacing the constant $\frac{1}{2}$ with an arbitrary positive weight $\beta < 1$, and less obviously by replacing the condition $n \leq \min \text{supp} f_1^*$ with

$$\{\min \text{supp} f_1^*, \ldots, \min \text{supp} f_n^*\} \in \mathcal{M},$$

for a suitable (regular) family \mathcal{M} of finite subsets of \mathbb{N}.
We can obviously generalize Tsirelson’s construction by replacing the constant $\frac{1}{2}$ with an arbitrary positive weight $\beta < 1$, and less obviously by replacing the condition $n \leq \min \text{supp } f^*_1$ with

$$\{\min \text{supp } f^*_1, \ldots, \min \text{supp } f^*_n\} \in \mathcal{M},$$

for a suitable (regular) family \mathcal{M} of finite subsets of \mathbb{N}.

We can even allow a sequence $(\beta_i)_{i \in \mathbb{N}}$ of distinct weights, with associated regular families \mathcal{M}_i, obtaining a Mixed Tsirelson space.
We can obviously generalize Tsirelson’s construction by replacing the constant $\frac{1}{2}$ with an arbitrary positive weight $\beta < 1$, and less obviously by replacing the condition $n \leq \min \supp f_1^*$ with

$$\{\min \supp f_1^*, \ldots, \min \supp f_n^*\} \in \mathcal{M},$$

for a suitable (regular) family \mathcal{M} of finite subsets of \mathbb{N}.

We can even allow a sequence $(\beta_i)_{i \in \mathbb{N}}$ of distinct weights, with associated regular families \mathcal{M}_i, obtaining a Mixed Tsirelson space.

Schlumprecht’s arbitrarily distortable space S (1991) is a space of this type, and its discovery was a necessary step towards the celebrated counterexamples of Gowers (1993-4) and the Gowers–Maurey theory of hereditarily indecomposable (HI) Banach spaces.
The general definition of a mixed Tsirelson space is due to Argyros and Deliyanni (1992) and its flexibility has been essential for further developments over the last 20 years.
The general definition of a mixed Tsirelson space is due to Argyros and Deliyanni (1992) and its flexibility has been essential for further developments over the last 20 years.

Typically, we take a sequence of weights \(\beta_i \) tending rapidly to 0, for instance \(\beta_i = 2^{-2^i} \), and a rapidly increasing sequence of regular families \(M_i \). The resulting space is denoted \(T[(\beta_i, M_i)_{i \in \mathbb{N}}] \) which we abbreviate to \(T_{\text{mixed}} \).
The general definition of a mixed Tsirelson space is due to Argyros and Deliyanni (1992) and its flexibility has been essential for further developments over the last 20 years.

Typically, we take a sequence of weights β_i tending rapidly to 0, for instance $\beta_i = 2^{-2^i}$, and a rapidly increasing sequence of regular families \mathcal{M}_i. The resulting space is denoted $T[(\beta_i, \mathcal{M}_i)_{i \in \mathbb{N}}]$ which we abbreviate to T_{mixed}.

It is an important fact about the original Tsirelson space T that every normalized block sequence of vectors in T is equivalent to a subsequence of the unit vector basis (e_n) in T.
The general definition of a mixed Tsirelson space is due to Argyros and Deliyanni (1992) and its flexibility has been essential for further developments over the last 20 years.

Typically, we take a sequence of weights β_i tending rapidly to 0, for instance $\beta_i = 2^{-2^i}$, and a rapidly increasing sequence of regular families M_i. The resulting space is denoted $T[\{(\beta_i, M_i)_{i \in \mathbb{N}}\}]$ which we abbreviate to T_{mixed}.

It is an important fact about the original Tsirelson space T that every normalized block sequence of vectors in T is equivalent to a subsequence of the unit vector basis (e_n) in T.

This is not the case for mixed Tsirelson spaces, though typically there is a class of special sequences (called RIS) for which T_{mixed}-upper estimates hold. This class is rich in the sense that every infinite-dimensional subspace contains a RIS.
A Banach space X is said to have \textit{few operators} if every bounded linear operator T on X has the form $\lambda I + S$, with S strictly singular (i.e. there is no infinite dimensional subspace on which S is an isomorphism).
A Banach space X is said to have few operators if every bounded linear operator T on X has the form $\lambda I + S$, with S strictly singular (i.e. there is no infinite dimensional subspace on which S is an isomorphism).

A typical construction of a space with few operators would start with the ingredients $(\beta_i, M_i)_{i \in \mathbb{N}}$ of a mixed Tsirelson space, but add additional restrictions on the functionals f_k^* that are allowed in the creation of new elements

$$\beta_i(f_1^* + f_2^* + \cdots + f_n^*)$$

of the norming set W.

Using a coding method that goes back to Maurey and Rosenthal (1977) this can be done in such a way that for every operator T on the resulting Banach space X there is a scalar λ such that $\|Tx_n - \lambda x_n\| \to 0$ for every RIS (x_n). Since every infinite-dimensional subspace contains a RIS, $T - \lambda I$ is strictly singular.
A Banach space X is said to have **few operators** if every bounded linear operator T on X has the form $\lambda I + S$, with S strictly singular (i.e. there is no infinite dimensional subspace on which S is an isomorphism).

A typical construction of a space with few operators would start with the ingredients $(\beta_i, M_i)_{i \in \mathbb{N}}$ of a mixed Tsirelson space, but add additional restrictions on the functionals f_k^* that are allowed in the creation of new elements

$$\beta_i(f_1^* + f_2^* + \cdots + f_n^*)$$

of the norming set W.

Using a coding method that goes back to Maurey and Rosenthal (1977) this can be done in such a way that for every operator T on the resulting Banach space X there is a scalar λ such that $\|Tx_n - \lambda x_n\| \to 0$ for every RIS (x_n).

Spiros A. Argyros and Richard G. Haydon

Bourgain–Delbaen L_∞-spaces
A Banach space X is said to have few operators if every bounded linear operator T on X has the form $\lambda I + S$, with S strictly singular (i.e. there is no infinite dimensional subspace on which S is an isomorphism).

A typical construction of a space with few operators would start with the ingredients $(\beta_i, M_i)_{i \in \mathbb{N}}$ of a mixed Tsirelson space, but add additional restrictions on the functionals f_k^* that are allowed in the creation of new elements

$$\beta_i(f_1^* + f_2^* + \cdots + f_n^*)$$

of the norming set W.

Using a coding method that goes back to Maurey and Rosenthal (1977) this can be done in such a way that for every operator T on the resulting Banach space X there is a scalar λ such that $\| Tx_n - \lambda x_n \| \to 0$ for every RIS (x_n). Since every infinite-dimensional subspace contains a RIS, $T - \lambda I$ is strictly singular.
We say that a Banach space has very few operators (or that X has the Scalar plus Compact Property) if every T can be written $T = \lambda I + K$ with K compact.

Androulakis and Schlumprecht (2001) showed that the Gowers–Maurey space does not have very few operators by constructing an operator that is strictly singular and non-compact; the same seems to be true of other spaces constructed by mixed-Tsirelson techniques alone.

Our quest for a space with very few operators is going to bring us back to the BD-construction, and the first step will be to connect standard BD-spaces to Tsirelson norms.
We say that a Banach space has very few operators (or that X has the Scalar plus Compact Property) if every T can be written $T = \lambda I + K$ with K compact.

Androulakis and Schlumprecht (2001) showed that the Gowers–Maurey space does not have very few operators by constructing an operator that is strictly singular and non-compact; the same seems to be true of other spaces constructed by mixed-Tsirelson techniques alone.
We say that a Banach space has very few operators (or that X has the Scalar plus Compact Property) if every T can be written $T = \lambda I + K$ with K compact.

Androulakis and Schlumprecht (2001) showed that the Gowers–Maurey space does not have very few operators by constructing an operator that is strictly singular and non-compact; the same seems to be true of other spaces constructed by mixed-Tsirelson techniques alone.

Our quest for a space with very few operators is going to bring us back to the BD-construction, and the first step will be to connect standard BD-spaces to Tsirelson norms.
Plan

- L_∞-spaces and the general BD-construction
- Standard BD-spaces
- The FOS embedding theorem
- Tsirelson spaces and “few-operators” constructions
- The space x_K with very few operators
- The Invariant Subspace Property
Let Γ be a well-founded standard BD set of weight β and let γ be an element of Γ. Recall that $c_\gamma^* = e_\xi^* + \beta(I - P_s^*)b^*$ if $\xi = \text{base } \gamma$ is defined.
The evaluation analysis

Let Γ be a well-founded standard BD set of weight β and let γ be an element of Γ. Recall that $c^*_\gamma = e^*_\xi + \beta (I - P_s^*)b^*$ if $\xi = \text{base } \gamma$ is defined.

Since $d^*_\gamma = e^*_\gamma - c^*_\gamma$ we can rewrite this as

$$e^*_\gamma = e^*_\xi + \beta (I - P_s^*)b^* + d^*_\gamma.$$
Let Γ be a well-founded standard BD set of weight β and let γ be an element of Γ. Recall that $c_\gamma^* = e_\xi^* + \beta(l - P_s^*)b^*$ if $\xi = \text{base } \gamma$ is defined.

Since $d_\gamma^* = e_\gamma^* - c_\gamma^*$ we can rewrite this as

$$e_\gamma^* = e_\xi^* + \beta(l - P_s^*)b^* + d_\gamma^*.$$

We can do the same with e_ξ^*, and continue until (as we must) we reach an element with no base. What we end up with is the following:
Let Γ be a well-founded standard BD set of weight β and let γ be an element of Γ. Recall that $c_\gamma^* = e_\xi^* + \beta(I - P_s^*)b^*$ if $\xi = \text{base } \gamma$ is defined.

Since $d_\gamma^* = e_\gamma^* - c_\gamma^*$ we can rewrite this as

$$e_\gamma^* = e_\xi^* + \beta(I - P_s^*)b^* + d_\gamma^*.$$

We can do the same with e_ξ^*, and continue until (as we must) we reach an element with no base. What we end up with is the following:

$$e_\gamma^* = \sum_{j=1}^{a} (\beta(I - P_{s_j}^*)b_j^* + d_{\xi_j}^*)$$

where $\xi_a = \gamma$ and $\xi_j = \text{base } \xi_{j+1}$ for $j < a$. We call this identity the Evaluation Analysis of γ.
Let Γ be a well-founded standard BD set of weight β and let γ be an element of Γ. Recall that $c^*_\gamma = e^*_\xi + \beta (I - P^*_s) b^*$ if $\xi = \text{base } \gamma$ is defined.

Since $d^*_\gamma = e^*_\gamma - c^*_\gamma$ we can rewrite this as

$$e^*_\gamma = e^*_\xi + \beta (I - P^*_s) b^* + d^*_\gamma.$$

We can do the same with e^*_ξ, and continue until (as we must) we reach an element with no base. What we end up with is the following:

$$e^*_\gamma = \sum_{j=1}^{a} (\beta (I - P^*_s) b^*_j + d^*_{\xi_j})$$

where $\xi_a = \gamma$ and $\xi_j = \text{base } \xi_{j+1}$ for $j < a$. We call this identity the Evaluation Analysis of γ. Its importance is that it expresses the evaluation e^*_γ in terms that are well adapted to the basis (d^*_{ξ}) of $\ell_1(\Gamma) = X(\Gamma)^*$.

Spiros A. Argyros and Richard G. Haydon

Bourgain–Delbaen \mathcal{L}_∞-spaces
A basic inequality

In the evaluation analysis

\[e_\gamma^* = \sum_{j=1}^{a} (\beta(I - P_{s_j}^*)b_j^* + d_{\xi_j}^*) \]

we call \(a \) the \textit{age} of \(\gamma \), and \(\{s_1, \ldots, s_a\} \) its \textit{history}.\]
In the evaluation analysis

\[e_\gamma^* = \sum_{j=1}^{a} (\beta (I - P_{s_j}^*) b_j^* + d_{\xi_j}^*) \]

we call \(a \) the *age* of \(\gamma \), and \(\{s_1, \ldots, s_a\} \) its *history*.

The presence of the sum \(\beta \sum_{j=1}^{a} ((I - P_{s_j}^*) b_j^* \) obviously puts us in mind of Tsirelson norms, and with effort we can prove the following.
A basic inequality

In the evaluation analysis

\[e^*_{\gamma} = \sum_{j=1}^{a} (\beta(I - P^*_j)b^*_j + d^*_\xi_j) \]

we call \(a \) the *age* of \(\gamma \), and \(\{s_1, \ldots, s_a\} \) its *history*.

The presence of the sum \(\beta \sum_{j=1}^{a} ((I - P^*_j)b^*_j \) obviously puts us in mind of Tsirelson norms, and with effort we can prove the following.

First Basic Inequality

Let \(\Gamma \) be a well-founded, standard BD-set of weight \(\beta \). Let \(\mathcal{M} \) be a regular family that contains all histories of elements of \(\Gamma \). Then arbitrary normalized block sequences in \(X(\Gamma) \) admit \(T(\beta, \mathcal{M}) \)-upper estimates.
A basic inequality

In the evaluation analysis

$$e_\gamma^* = \sum_{j=1}^{a} (\beta (I - P_{s_j}^*) b_j^* + d_{\xi_j}^*)$$

we call a the *age* of γ, and $\{s_1, \ldots, s_a\}$ its *history*.

The presence of the sum $\beta \sum_{j=1}^{a} ((I - P_{s_j}^*) b_j^*$ obviously puts us in mind of Tsirelson norms, and with effort we can prove the following.

First Basic Inequality

Let Γ be a well-founded, standard BD-set of weight β. Let \mathcal{M} be a regular family that contains all histories of elements of Γ. Then arbitrary normalized block sequences in $X(\Gamma)$ admit $T(\beta, \mathcal{M})$-upper estimates.

I have cheated slightly: sometimes \mathcal{M} needs to be *slightly* bigger than this.
The next step is to generalize our notion of standard BD-space to allow different elements to have different weights, drawn from a suitable sequence \((\beta_i)\) but subject to the condition weight \(\gamma = \text{weight base } \gamma\) when this makes sense.

We then take \(M_i\) to be a regular family that contains the histories of all \(\gamma\) of weight \(\beta_i\). We get a \(T\) mixed-upper estimate for a suitably defined class of sequences in \(X(\Gamma)\) (as always, referred to as RIS).

At this point, we do not seem to have advanced much from where we were before, since our upper estimates still apply only to some special sorts of sequences. But the local \(\ell_\infty\)-structure comes to the rescue, enabling us to prove a crucial lemma.

Crucial Lemma

Let \(\Gamma\) be a well-founded standard BD-space with mixed weights, let \(Z\) be any Banach space and let \(S: X(\Gamma) \to Z\) be a bounded linear operator. If \(\|S x_n\| \to 0\) for every RIS then \(\|S x_n\| \to 0\) for every bounded, weakly null sequence, and hence \(S\) is compact.
BD-sets with mixed weights

The next step is to generalize our notion of standard BD-space to allow different elements to have different weights, drawn from a suitable sequence \((\beta_i)\) but subject to the condition weight \(\gamma = \text{weight base } \gamma\) when this makes sense.

We then take \(\mathcal{M}_i\) to be a regular family that contains the histories of all \(\gamma\) of weight \(\beta_i\). We get a \(T_{\text{mixed}}\)-upper estimate for a suitably defined class of sequences in \(X(\Gamma)\) (as always, referred to as RIS).

At this point, we do not seem to have advanced much from where we were before, since our upper estimates still apply only to some special sorts of sequences. But the local \(\ell_\infty\)-structure comes to the rescue, enabling us to prove a crucial lemma:

Crucial Lemma

Let \(\Gamma\) be a well-founded standard BD-space with mixed weights, let \(Z\) be any Banach space and let \(S: X(\Gamma) \to Z\) be a bounded linear operator. If \(\|Sx_n\| \to 0\) for every RIS then \(\|Sx_n\| \to 0\) for every bounded, weakly null sequence, and hence \(S\) is compact.
The next step is to generalize our notion of standard BD-space to allow different elements to have different weights, drawn from a suitable sequence \((\beta_i)\) but subject to the condition weight \(\gamma = \text{weight base } \gamma\) when this makes sense.

We then take \(\mathcal{M}_i\) to be a regular family that contains the histories of all \(\gamma\) of weight \(\beta_i\). We get a \(T_{\text{mixed}}\)-upper estimate for a suitably defined class of sequences in \(X(\Gamma)\) (as always, referred to as RIS).

At this point, we do not seem to have advanced much from where we were before, since our upper estimates still apply only to some special sorts of sequences.
The next step is to generalize our notion of standard BD-space to allow different elements to have different weights, drawn from a suitable sequence \((\beta_i)\) but subject to the condition weight \(\gamma = \text{weight base } \gamma\) when this makes sense.

We then take \(\mathcal{M}_i\) to be a regular family that contains the histories of all \(\gamma\) of weight \(\beta_i\). We get a \(T_{\text{mixed}}\)-upper estimate for a suitably defined class of sequences in \(X(\Gamma)\) (as always, referred to as RIS).

At this point, we do not seem to have advanced much from where we were before, since our upper estimates still apply only to some special sorts of sequences. But the local \(\ell_\infty\)-structure comes to the rescue, enabling us to prove a crucial lemma.
BD-sets with mixed weights

The next step is to generalize our notion of standard BD-space to allow different elements to have different weights, drawn from a suitable sequence \((\beta_i)\) but subject to the condition weight \(\gamma = \text{weight base} \gamma\) when this makes sense.

We then take \(\mathcal{M}_i\) to be a regular family that contains the histories of all \(\gamma\) of weight \(\beta_i\). We get a \(T_{\text{mixed}}\)-upper estimate for a suitably defined class of sequences in \(X(\Gamma)\) (as always, referred to as RIS).

At this point, we do not seem to have advanced much from where we were before, since our upper estimates still apply only to some special sorts of sequences. But the local \(\ell_\infty\)-structure comes to the rescue, enabling us to prove a crucial lemma.

Crucial Lemma

Let \(\Gamma\) be a well-founded standard BD-space with mixed weights, let \(Z\) be any Banach space and let \(S : X(\Gamma) \to Z\) be a bounded linear operator. If \(\|Sx_n\| \to 0\) for every RIS then \(\|Sx_n\| \to 0\) for every bounded, weakly null sequence, and hence \(S\) is compact.
To construct \mathcal{X}_K, we fix in advance a suitable fast-decreasing sequence of weights β_i and a fast-increasing sequence of regular families \mathcal{M}_i. We then use recursion to build a standard BD-set Γ^K with mixed weights, making sure as we add elements of Δ_{n+1} at stage $n+1$ that the history of any element of weight β_i is in the family \mathcal{M}_i, but also using a coding to restrict the choice of top γ when γ has weight β_i with i odd.
To construct \mathcal{X}_K, we fix in advance a suitable fast-decreasing sequence of weights β_i and a fast-increasing sequence of regular families \mathcal{M}_i. We then use recursion to build a standard BD-set Γ^K with mixed weights, making sure as we add elements of Δ_{n+1} at stage $n + 1$ that the history of any element of weight β_i is in the family \mathcal{M}_i, but also using a coding to restrict the choice of top γ when γ has weight β_i with i odd.

In a way that is not too different from earlier mixed-Tsirelson constructions, we show that the space $\mathcal{X}_K = X(\Gamma^K)$ is HI and that for every operator T on \mathcal{X}_K there is a scalar λ such that $\|(T - \lambda I)x_n\| \to 0$ for every RIS.
To construct \mathcal{X}_K, we fix in advance a suitable fast-decreasing sequence of weights β_i and a fast-increasing sequence of regular families \mathcal{M}_i. We then use recursion to build a standard BD-set Γ^K with mixed weights, making sure as we add elements of Δ_{n+1} at stage $n + 1$ that the history of any element of weight β_i is in the family \mathcal{M}_i, but also using a coding to restrict the choice of top γ when γ has weight β_i with i odd.

In a way that is not too different from earlier mixed-Tsirelson constructions, we show that the space $\mathcal{X}_K = X(\Gamma^K)$ is HI and that for every operator T on \mathcal{X}_K there is a scalar λ such that $\|(T - \lambda I)x_n\| \to 0$ for every RIS. So by the crucial lemma we get our main result.

Theorem

The space \mathcal{X}_K has the Scalar-plus-Compact Property.
The original motivation for the construction of the space X_K was to find a hereditarily indecomposable space with dual isomorphic to ℓ_1. The scalar-plus-compact property came as a (very agreeable!) surprise. It seemed natural to ask whether an isomorphic predual of ℓ_1 with few operators automatically has very few. Tarbard answered this question in a striking way.

Theorem [Tarbard (2012)]

For each natural number d there is a well-founded BD-set Γ_d and a strictly singular operator S on $X(\Gamma_d)$ such that $S_d + 1 = 0$ every bounded linear operator T on $X(\Gamma_d)$ is uniquely expressible as $T = \lambda_0 I + d \sum_{r=1}^{d} \lambda_r S_r + K$, with $\lambda_0, \ldots, \lambda_d$ scalars and K compact.
The original motivation for the construction of the space \mathcal{X}_K was to find a hereditarily indecomposable space with dual isomorphic to ℓ_1. The scalar-plus-compact property came as a (very agreeable!) surprise.
Tarbard’s spaces

The original motivation for the construction of the space \mathcal{X}_K was to find a hereditarily indecomposable space with dual isomorphic to ℓ_1. The scalar-plus-compact property came as a (very agreeable!) surprise.

It seemed natural to ask whether an isomorphic predual of ℓ_1 with few operators automatically has very few.
The original motivation for the construction of the space X_K was to find a hereditarily indecomposable space with dual isomorphic to ℓ_1. The scalar-plus-compact property came as a (very agreeable!) surprise.

It seemed natural to ask whether an isomorphic predual of ℓ_1 with few operators automatically has very few. Tarbard answered this question in a striking way.

Theorem [Tarbard (2012)]

For each natural number d there is a well-founded BD-set Γ^d and a strictly singular operator S on $X(\Gamma^d)$ such that

- $S^{d+1} = 0$
- every bounded linear operator T on $X(\Gamma^d)$ is uniquely expressible as

$$T = \lambda_0 I + \sum_{r=1}^{d} \lambda_r S^r + K,$$
We finish this part of the talk with two results that give partial answers to the question: “For which Banach spaces Y does there exist an isomorphic embedding of Y into a space with very few operators?”. It turns out that the answer is affirmative for some spaces that are in themselves not at all pathological.

Let Y be a separable super-reflexive Banach space. Then Y embeds in a space $X(\Gamma)$ with very few operators.

We note that this result applies in particular when Y is a separable Hilbert space.

We conjecture that for spaces Y with separable dual, the only obstruction to embeddability in a space with very few operators is the existence of a subspace of Y isomorphic to c_0. While we have some improvements of the above theorem, we cannot prove this “best possible” result.
We finish this part of the talk with two results that give partial answers to the question: “For which Banach spaces Y does there exist an isomorphic embedding of Y into a space with very few operators?”. It turns out that the answer is affirmative for some spaces that are in themselves not at all pathological.

Let Y be a separable super-reflexive Banach space. Then Y embeds in a space $X(\Gamma)$ with very few operators.
We finish this part of the talk with two results that give partial answers to the question: “For which Banach spaces Y does there exist an isomorphic embedding of Y into a space with very few operators?”. It turns out that the answer is affirmative for some spaces that are in themselves not at all pathological.

Let Y be a separable super-reflexive Banach space. Then Y embeds in a space $X(\Gamma)$ with very few operators.

We note that this result applies in particular when Y is a separable Hilbert space.
We finish this part of the talk with two results that give partial answers to the question: “For which Banach spaces \(Y \) does there exist an isomorphic embedding of \(Y \) into a space with very few operators?”. It turns out that the answer is affirmative for some spaces that are in themselves not at all pathological.

Let \(Y \) be a separable super-reflexive Banach space. Then \(Y \) embeds in a space \(X(\Gamma) \) with very few operators.

We note that this result applies in particular when \(Y \) is a separable Hilbert space. We conjecture that for spaces \(Y \) with separable dual, the only obstruction to embeddability in a space with very few operators is the existence of a subspace of \(Y \) isomorphic to \(c_0 \). While we have some improvements of the above theorem, we cannot prove this “best possible” result.
We have not so far said anything about BD-spaces with non-separable dual, or about standard BD-sets that are not well-founded.
We have not so far said anything about BD-spaces with non-separable dual, or about standard BD-sets that are not well-founded. Let us just say that there is a theory of such things and give the following result as a sample of what is possible.
We have not so far said anything about BD-spaces with non-separable dual, or about standard BD-sets that are not well-founded. Let us just say that there is a theory of such things and give the following result as a sample of what is possible.

Theorem [S.A.–R.H.–Th. Raikoftsalis]

There is a standard BD-set Γ (not well-founded!) such that $X(\Gamma)$ contains ℓ_1 and has very few operators.
Plan

- L_∞-spaces and the general BD-construction
- Standard BD-spaces
- The FOS embedding theorem
- Tsirelson spaces and “few-operators” constructions
- The space \mathcal{X}_K with very few operators
- The Invariant Subspace Property
The Invariant Subspace Problem

Definition

Let X be a Banach space and T a bounded linear operator on X. The operator T admits a non-trivial invariant subspace if there exists a closed subspace Y of X with $Y \neq \{0\}$, $Y \neq X$ such that $T[Y] \hookrightarrow Y$.

Spiros A. Argyros and Richard G. Haydon

Bourgain–Delbaen L_∞-spaces
The Invariant Subspace Problem

Problem

Let X be an infinite dimensional separable Banach space and $T : X \rightarrow X$ a bounded linear operator. Does T admit a non trivial closed invariant subspace?

- The above problem remains open in the case of the separable Hilbert space. However there are many results concerning certain classes of operators and Banach spaces.
The Invariant Subspace Problem

Problem

Let X be an infinite dimensional separable Banach space and $T : X \rightarrow X$ a bounded linear operator. Does T admit a non trivial closed invariant subspace?

- The above problem remains open in the case of the separable Hilbert space. However there are many results concerning certain classes of operators and Banach spaces.
The Invariant Subspace Problem

Problem

Let X be an infinite dimensional separable Banach space and $T : X \to X$ a bounded linear operator. Does T admit a non trivial closed invariant subspace?

- The above problem remains open in the case of the separable Hilbert space. However there are many results concerning certain classes of operators and Banach spaces.
Positive results

- In 1954 M. Aronszajn and K. T. Smith proved that every compact operator defined on an infinite dimensional Banach space admits a non trivial closed invariant subspace.

- In 1973 V. I. Lomonosov generalized the above result, by showing that in a complex Banach space X, every bounded linear operator $T \neq \lambda I$, for $\lambda \in \mathbb{C}$, which commutes with a non zero compact operator, admits a non trivial closed hyperinvariant subspace.

- N. D. Hooker (1981) and G. Sirotkin (2005) presented a version of the above theorem for real Banach spaces. In particular, an operator T defined on a real infinite dimensional Banach space, which satisfies the assumptions of Lomonosov’s Theorem, admits a non trivial closed hyperinvariant subspace if and only if $(\alpha I - T)^2 + \beta^2 I \neq 0$, for every $\alpha, \beta \in \mathbb{R}$, with $\beta \neq 0$.
Positive results

In 1954 M. Aronszajn and K. T. Smith proved that every compact operator defined on an infinite dimensional Banach space admits a non trivial closed invariant subspace.

In 1973 V. I. Lomonosov generalized the above result, by showing that in a complex Banach space X, every bounded linear operator $T \neq \lambda I$, for $\lambda \in \mathbb{C}$, which commutes with a non zero compact operator, admits a non trivial closed hyperinvariant subspace.

N. D. Hooker (1981) and G. Sirotkin (2005) presented a version of the above theorem for real Banach spaces. In particular, an operator T defined on a real infinite dimensional Banach space, which satisfies the assumptions of Lomonosov’s Theorem, admits a non trivial closed hyperinvariant subspace if and only if $(\alpha I - T)^2 + \beta^2 I \neq 0$, for every $\alpha, \beta \in \mathbb{R}$, with $\beta \neq 0$.
In 1954 M. Aronszajn and K. T. Smith proved that every compact operator defined on an infinite dimensional Banach space admits a non trivial closed invariant subspace.

In 1973 V. I. Lomonosov generalized the above result, by showing that in a complex Banach space \(X \), every bounded linear operator \(T \neq \lambda I \), for \(\lambda \in \mathbb{C} \), which commutes with a non zero compact operator, admits a non trivial closed hyperinvariant subspace.

N. D. Hooker (1981) and G. Sirotkin (2005) presented a version of the above theorem for real Banach spaces. In particular, an operator \(T \) defined on a real infinite dimensional Banach space, which satisfies the assumptions of Lomonosov’s Theorem, admits a non trivial closed hyperinvariant subspace if and only if \((\alpha I - T)^2 + \beta^2 I \neq 0 \), for every \(\alpha, \beta \in \mathbb{R} \), with \(\beta \neq 0 \).
Positive results

In 1954 M. Aronszajn and K. T. Smith proved that every compact operator defined on an infinite dimensional Banach space admits a non trivial closed invariant subspace.

In 1973 V. I. Lomonosov generalized the above result, by showing that in a complex Banach space X, every bounded linear operator $T \neq \lambda I$, for $\lambda \in \mathbb{C}$, which commutes with a non zero compact operator, admits a non trivial closed hyperinvariant subspace.

N. D. Hooker (1981) and G. Sirotkin (2005) presented a version of the above theorem for real Banach spaces. In particular, an operator T defined on a real infinite dimensional Banach space, which satisfies the assumptions of Lomonosov’s Theorem, admits a non trivial closed hyperinvariant subspace if and only if $(\alpha I - T)^2 + \beta^2 I \neq 0$, for every $\alpha, \beta \in \mathbb{R}$, with $\beta \neq 0$.
P. Enflo and C. J. Read, in papers published in 1987 and 1984 respectively, present the first examples of operators on non reflexive, non classical Banach spaces, not admitting a non trivial closed invariant subspace.

Also, C. J. Read proved that any separable Banach space containing either c_0 or complemented ℓ_1, admits an operator without a non trivial closed invariant subspace.

Since c_0 is separably injective, c_0 is a complemented subspace of X. The assumption that ℓ_1 is a complemented subspace is necessary by our result with Raikoftsalis, mentioned earlier.

Moreover, in 1999 C. J. Read presents an example of a strictly singular operator on a non reflexive Banach space, which does not admit a non trivial closed invariant subspace.
P. Enflo and C. J. Read, in papers published in 1987 and 1984 respectively, present the first examples of operators on non reflexive, non classical Banach spaces, not admitting a non trivial closed invariant subspace.

Also, C. J. Read proved that any separable Banach space containing either c_0 or complemented ℓ_1, admits an operator without a non trivial closed invariant subspace.

Since c_0 is separably injective, c_0 is a complemented subspace of X. The assumption that ℓ_1 is a complemented subspace is necessary by our result with Raikoftsalis, mentioned earlier.

Moreover, in 1999 C. J. Read presents an example of a strictly singular operator on a non reflexive Banach space, which does not admit a non trivial closed invariant subspace.
P. Enflo and C. J. Read, in papers published in 1987 and 1984 respectively, present the first examples of operators on non reflexive, non classical Banach spaces, not admitting a non trivial closed invariant subspace.

Also, C. J. Read proved that any separable Banach space containing either c_0 or complemented ℓ_1, admits an operator without a non trivial closed invariant subspace.

Since c_0 is separably injective, c_0 is a complemented subspace of X. The assumption that ℓ_1 is a complemented subspace is necessary by our result with Raikoftsalis, mentioned earlier.

Moreover, in 1999 C. J. Read presents an example of a strictly singular operator on a non reflexive Banach space, which does not admit a non trivial closed invariant subspace.
Negative results

P. Enflo and C. J. Read, in papers published in 1987 and 1984 respectively, present the first examples of operators on non reflexive, non classical Banach spaces, not admitting a non trivial closed invariant subspace.

Also, C. J. Read proved that any separable Banach space containing either c_0 or complemented ℓ_1, admits an operator without a non trivial closed invariant subspace.

Since c_0 is separably injective, c_0 is a complemented subspace of X. The assumption that ℓ_1 is a complemented subspace is necessary by our result with Raikoftsalis, mentioned earlier.

Moreover, in 1999 C. J. Read presents an example of a strictly singular operator on a non reflexive Banach space, which does not admit a non trivial closed invariant subspace.
P. Enflo and C. J. Read, in papers published in 1987 and 1984 respectively, present the first examples of operators on non reflexive, non classical Banach spaces, not admitting a non trivial closed invariant subspace.

Also, C. J. Read proved that any separable Banach space containing either c_0 or complemented ℓ_1, admits an operator without a non trivial closed invariant subspace.

Since c_0 is separably injective, c_0 is a complemented subspace of X. The assumption that ℓ_1 is a complemented subspace is necessary by our result with Raikoftsalis, mentioned earlier.

Moreover, in 1999 C. J. Read presents an example of a strictly singular operator on a non reflexive Banach space, which does not admit a non trivial closed invariant subspace.
A Banach space X is said to have the Invariant Subspace Property (ISP), if every bounded linear operator on X admits a non trivial closed invariant subspace. A Banach space satisfies the hereditary ISP if every closed subspace of it satisfies ISP.

Any Banach space with the scalar-plus-compact property, satisfies the Invariant Subspace Property.

The first example of a Banach space satisfying ISP is the L_∞ space in the joint work with R. Haydon, mentioned before. However, it is not known if the space satisfies the hereditary ISP.
A Banach space X is said to have the **Invariant Subspace Property (ISP)**, if every bounded linear operator on X admits a non trivial closed invariant subspace. A Banach space satisfies the **hereditary ISP** if every closed subspace of it satisfies ISP.

Any Banach space with the scalar-plus-compact property, satisfies the Invariant Subspace Property.

The first example of a Banach space satisfying ISP is the \mathcal{L}_∞ space in the joint work with R. Haydon, mentioned before. However, it is not known if the space satisfies the hereditary ISP.
A Banach space X is said to have the **Invariant Subspace Property (ISP)**, if every bounded linear operator on X admits a non trivial closed invariant subspace. A Banach space satisfies the **hereditary ISP** if every closed subspace of it satisfies ISP.

Any Banach space with the scalar-plus-compact property, satisfies the Invariant Subspace Property.

The first example of a Banach space satisfying ISP is the \mathcal{L}_∞ space in the joint work with R. Haydon, mentioned before. However, it is not known if the space satisfies the hereditary ISP.
A Banach space X is said to have the Invariant Subspace Property (ISP), if every bounded linear operator on X admits a non trivial closed invariant subspace. A Banach space satisfies the hereditary ISP if every closed subspace of it satisfies ISP.

Any Banach space with the scalar-plus-compact property, satisfies the Invariant Subspace Property.

The first example of a Banach space satisfying ISP is the \mathcal{L}_∞ space in the joint work with R. Haydon, mentioned before. However, it is not known if the space satisfies the hereditary ISP.
The scalar-plus-compact problem for reflexive spaces remains open. Moreover, there is no known example of a bounded linear operator acting on a reflexive Banach space with no non trivial closed invariant subspace.

In the case of reflexive spaces every operator is weakly compact. We know from the classical Aronszajn - Smith theorem that compact operators admit non-trivial invariant subspaces. The question is if the weak compactness ensures the same property for weakly compact operators.
The scalar-plus-compact problem for reflexive spaces remains open. Moreover, there is no known example of a bounded linear operator acting on a reflexive Banach space with no non trivial closed invariant subspace.

In the case of reflexive spaces every operator is weakly compact. We know from the classical Aronszajn - Smith theorem that compact operators admit non-trivial invariant subspaces. The question is if the weak compactness ensures the same property for weakly compact operators.
The scalar-plus-compact problem for reflexive spaces remains open. Moreover, there is no known example of a bounded linear operator acting on a reflexive Banach space with no non trivial closed invariant subspace.

In the case of reflexive spaces every operator is weakly compact. We know from the classical Aronszajn - Smith theorem that compact operators admit non-trivial invariant subspaces. The question is if the weak compactness ensures the same property for weakly compact operators.
Recently, in a joint work with Pavlos Motakis, we have constructed a reflexive Banach space with ISP. Furthermore, this is the first example of a Banach space, with hereditary ISP.
More precisely, a reflexive HI Banach space \mathcal{X}_{ISP} is constructed satisfying the following.

(i) For every Y closed subspace of \mathcal{X}_{ISP}, every $T \in \mathcal{L}(Y)$ is of the form $T = \lambda I + S$, with S strictly singular.

(ii) For every Y and S, $T : Y \to Y$ strictly singular operators, the composition ST is a compact one.

(iii) For every infinite dimensional subspace Y of \mathcal{X}_{ISP}, the space $S(Y)$ is non-separable.
More precisely, a reflexive HI Banach space \(X_{\text{ISP}} \) is constructed satisfying the following.

(i) For every \(Y \) closed subspace of \(X_{\text{ISP}} \), every \(T \in \mathcal{L}(Y) \) is of the form \(T = \lambda I + S \), with \(S \) strictly singular.

(ii) For every \(Y \) and \(S, T : Y \to Y \) strictly singular operators, the composition \(ST \) is a compact one.

(iii) For every infinite dimensional subspace \(Y \) of \(X_{\text{ISP}} \), the space \(S(Y) \) is non-separable.
A reflexive space with ISP

More precisely, a reflexive HI Banach space \(\mathcal{X}_{\text{ISP}} \) is constructed satisfying the following.

(i) For every \(Y \) closed subspace of \(\mathcal{X}_{\text{ISP}} \), every \(T \in \mathcal{L}(Y) \) is of the form \(T = \lambda I + S \), with \(S \) strictly singular.

(ii) For every \(Y \) and \(S, T : Y \to Y \) strictly singular operators, the composition \(ST \) is a compact one.

(iii) For every infinite dimensional subspace \(Y \) of \(\mathcal{X}_{\text{ISP}} \), the space \(S(Y) \) is non-separable.
More precisely, a reflexive HI Banach space \mathcal{X}_{ISP} is constructed satisfying the following.

(i) For every Y closed subspace of \mathcal{X}_{ISP}, every $T \in \mathcal{L}(Y)$ is of the form $T = \lambda I + S$, with S strictly singular.

(ii) For every Y and S, $T : Y \to Y$ strictly singular operators, the composition ST is a compact one.

(iii) For every infinite dimensional subspace Y of \mathcal{X}_{ISP}, the space $S(Y)$ is non-separable.
More precisely, a reflexive HI Banach space \mathcal{X}_{ISP} is constructed satisfying the following.

(i) For every Y closed subspace of \mathcal{X}_{ISP}, every $T \in \mathcal{L}(Y)$ is of the form $T = \lambda I + S$, with S strictly singular.

(ii) For every Y and S, $T : Y \to Y$ strictly singular operators, the composition ST is a compact one.

(iii) For every infinite dimensional subspace Y of \mathcal{X}_{ISP}, the space $S(Y)$ is non-separable.
Every Banach space satisfying (i) and (ii), also satisfies the hereditary ISP.

Indeed, for every non zero strictly singular S, either $S^2 = 0$ and $\ker S$ is a non trivial closed hyperinvariant subspace for S, or S commutes with S^2, which is non zero compact. In the latter case Lomonosov-Sirotkin Theorem yields that S admits a non trivial closed hyperinvariant subspace.

The Calkin Algebra $\mathcal{C}(\mathcal{X}_{ISP}) := \mathcal{L}(\mathcal{X}_{ISP})/\mathcal{K}(\mathcal{X}_{ISP})$ is non-separable and for $S, T \in S(\mathcal{X}_{ISP})$, $[T][S] = 0$. This yields that $\mathcal{C}(\mathcal{X}_{ISP})$ admits at least two non equivalent complete multiplicative norms (Skillicorn).
Every Banach space satisfying (i) and (ii), also satisfies the hereditary ISP.

Indeed, for every non zero strictly singular S, either $S^2 = 0$ and $\ker S$ is a non trivial closed hyperinvariant subspace for S, or S commutes with S^2, which is non zero compact. In the latter case Lomonosov-Sirotkin Theorem yields that S admits a non trivial closed hyperinvariant subspace.

The Calkin Algebra $\mathcal{C}(\mathcal{X}_{ISP}) := \mathcal{L}(\mathcal{X}_{ISP}) / \mathcal{K}(\mathcal{X}_{ISP})$ is non-separable and for $S, T \in S(\mathcal{X}_{ISP})$, $[T][S] = 0$. This yields that $\mathcal{C}(\mathcal{X}_{ISP})$ admits at least two non equivalent complete multiplicative norms (Skillicorn).
Every Banach space satisfying (i) and (ii), also satisfies the hereditary ISP.

Indeed, for every non zero strictly singular S, either $S^2 = 0$ and $\ker S$ is a non trivial closed hyperinvariant subspace for S, or S commutes with S^2, which is non zero compact. In the latter case Lomonosov-Sirotkin Theorem yields that S admits a non trivial closed hyperinvariant subspace.

The Calkin Algebra $\mathcal{C}(\mathcal{X}_{ISP}) := \mathcal{L}(\mathcal{X}_{ISP})/\mathcal{K}(\mathcal{X}_{ISP})$ is non-separable and for $S, T \in S(\mathcal{X}_{ISP})$, $[T][S] = 0$. This yields that $\mathcal{C}(\mathcal{X}_{ISP})$ admits at least two non equivalent complete multiplicative norms (Skillicorn).
Let \(\{x_k\}_k \) be a Schauder basic sequence in a Banach space.

(i) We say that \(\{x_k\}_k \) generates \(c_0 \) as a spreading model, if there exists a constant \(C > 0 \), such that for any \(n \leq k_1 < \cdots < k_n \) natural numbers, the following holds

\[
\| \sum_{i=1}^{n} x_{k_i} \| \leq C
\]

(ii) We say that \(\{x_k\}_k \) generates \(\ell_1 \) as a spreading model, if there exists a constant \(c > 0 \), such that for any \(n \leq k_1 < \cdots < k_n \) natural numbers and \(\lambda_1, \ldots, \lambda_n \) real numbers, the following holds

\[
\| \sum_{i=1}^{n} \lambda_i x_{k_i} \| \geq c \sum_{i=1}^{n} |\lambda_i|
\]
Let \(\{x_k\}_k \) be a Schauder basic sequence in a Banach space.

(i) We say that \(\{x_k\}_k \) generates \(c_0 \) as a spreading model, if there exists a constant \(C > 0 \), such that for any \(n \leq k_1 < \cdots < k_n \) natural numbers, the following holds

\[
\left\| \sum_{i=1}^{n} x_{k_i} \right\| \leq C
\]

(ii) We say that \(\{x_k\}_k \) generates \(\ell_1 \) as a spreading model, if there exists a constant \(c > 0 \), such that for any \(n \leq k_1 < \cdots < k_n \) natural numbers and \(\lambda_1, \ldots, \lambda_n \) real numbers, the following holds

\[
\left\| \sum_{i=1}^{n} \lambda_i x_{k_i} \right\| \geq c \sum_{i=1}^{n} |\lambda_i|
\]
Let \(\{x_k\}_k \) be a Schauder basic sequence in a Banach space.

(i) We say that \(\{x_k\}_k \) generates \(c_0 \) as a spreading model, if there exists a constant \(C > 0 \), such that for any \(n \leq k_1 < \cdots < k_n \) natural numbers, the following holds

\[
\left\| \sum_{i=1}^{n} x_{k_{i}} \right\| \leq C
\]

(ii) We say that \(\{x_k\}_k \) generates \(\ell_1 \) as a spreading model, if there exists a constant \(c > 0 \), such that for any \(n \leq k_1 < \cdots < k_n \) natural numbers and \(\lambda_1, \ldots, \lambda_n \) real numbers, the following holds

\[
\left\| \sum_{i=1}^{n} \lambda_{i}x_{k_{i}} \right\| \geq c \sum_{i=1}^{n} |\lambda_{i}|
\]
Let \(\{x_k\}_k \) be a Schauder basic sequence in a Banach space.

(i) We say that \(\{x_k\}_k \) generates \(c_0 \) as a spreading model, if there exists a constant \(C > 0 \), such that for any \(n \leq k_1 < \cdots < k_n \) natural numbers, the following holds

\[
\left\| \sum_{i=1}^{n} x_{k_i} \right\| \leq C
\]

(ii) We say that \(\{x_k\}_k \) generates \(\ell_1 \) as a spreading model, if there exists a constant \(c > 0 \), such that for any \(n \leq k_1 < \cdots < k_n \) natural numbers and \(\lambda_1, \ldots, \lambda_n \) real numbers, the following holds

\[
\left\| \sum_{i=1}^{n} \lambda_i x_{k_i} \right\| \geq c \sum_{i=1}^{n} |\lambda_i|
\]
Let \(\{x_k\}_k \) be a Schauder basic sequence in a Banach space.

(i) We say that \(\{x_k\}_k \) generates \(c_0 \) as a spreading model, if there exists a constant \(C > 0 \), such that for any \(n \leq k_1 < \cdots < k_n \) natural numbers, the following holds

\[
\left\| \sum_{i=1}^{n} x_{k_i} \right\| \leq C
\]

(ii) We say that \(\{x_k\}_k \) generates \(\ell_1 \) as a spreading model, if there exists a constant \(c > 0 \), such that for any \(n \leq k_1 < \cdots < k_n \) natural numbers and \(\lambda_1, \ldots, \lambda_n \) real numbers, the following holds

\[
\left\| \sum_{i=1}^{n} \lambda_i x_{k_i} \right\| \geq c \sum_{i=1}^{n} |\lambda_i|
\]
An important property of \mathcal{X}_{ISP}

Proposition

Every seminormalized block sequence in \mathcal{X}_{ISP}, has a subsequence generating either ℓ_1 or c_0 as a spreading model.
The above proposition allows us to classify the weakly null sequences of X_{ISP} as follows.

(i) The sequences of rank 0, i.e. the norm null sequences.

(ii) The sequences of rank 1, i.e. the sequences generating a c_0 spreading model.

(iii) The sequences of rank 2, i.e. the sequences generating an ℓ_1 spreading model.
The above proposition allows us to classify the weakly null sequences of \mathcal{X}_{ISP} as follows.

(i) The sequences of rank 0, i.e. the norm null sequences.
(ii) The sequences of rank 1, i.e. the sequences generating a c_0 spreading model.
(iii) The sequences of rank 2, i.e. the sequences generating an ℓ_1 spreading model.
The above proposition allows us to classify the weakly null sequences of \mathcal{X}_{ISP} as follows.

(i) The sequences of rank 0, i.e. the norm null sequences.

(ii) The sequences of rank 1, i.e. the sequences generating a c_0 spreading model.

(iii) The sequences of rank 2, i.e. the sequences generating an ℓ_1 spreading model.
The above proposition allows us to classify the weakly null sequences of \mathfrak{X}_{ISP} as follows.

(i) The sequences of rank 0, i.e. the norm null sequences.

(ii) The sequences of rank 1, i.e. the sequences generating a c_0 spreading model.

(iii) The sequences of rank 2, i.e. the sequences generating an ℓ_1 spreading model.
The above proposition allows us to classify the weakly null sequences of \mathcal{X}_{ISP} as follows.

(i) The sequences of rank 0, i.e. the norm null sequences.

(ii) The sequences of rank 1, i.e. the sequences generating a c_0 spreading model.

(iii) The sequences of rank 2, i.e. the sequences generating an ℓ_1 spreading model.
Proposition

Let Y be a closed and infinite dimensional subspace of \mathcal{X}_{ISP}, $S : Y \rightarrow Y$ a strictly singular operator and $\{x_k\}_k$ a seminormalized weakly null sequence in Y. Then $\{Sx_k\}_k$ is of rank strictly less than $\{x_k\}_k$.

The above proposition yields the following.
Proposition

Let Y be a closed and infinite dimensional subspace of \mathcal{X}_{ISP}, $S : Y \to Y$ a strictly singular operator and $\{x_k\}_k$ a seminormalized weakly null sequence in Y. Then $\{Sx_k\}_k$ is of rank strictly less than $\{x_k\}_k$.

- The above proposition yields the following.
Corollary

Let Y be a closed and infinite dimensional subspace of \mathcal{X}_{ISP} and $S, T : Y \to Y$ strictly singular operators. Then the composition ST is a compact operator. Indeed, observe the following

(i) $T[B_Y]$ does not contain sequences of rank 2.
(ii) $ST[B_Y]$ does not contain sequences of rank 1 or 2, hence it is relatively compact.
Corollary

Let Y be a closed and infinite dimensional subspace of X_{ISP} and $S, T : Y \to Y$ strictly singular operators. Then the composition ST is a compact operator.

Indeed, observe the following

(i) $T[B_Y]$ does not contain sequences of rank 2.
(ii) $ST[B_Y]$ does not contain sequences of rank 1 or 2, hence it is relatively compact.
Corollary

Let Y be a closed and infinite dimensional subspace of \mathcal{X}_{ISP} and $S, T : Y \to Y$ strictly singular operators. Then the composition ST is a compact operator.

Indeed, observe the following

(i) $T[B_Y]$ does not contain sequences of rank 2.

(ii) $ST[B_Y]$ does not contain sequences of rank 1 or 2, hence it is relatively compact.
Corollary

Let Y be a closed and infinite dimensional subspace of X_{ISP} and $S, T : Y \to Y$ strictly singular operators. Then the composition ST is a compact operator.

Indeed, observe the following

(i) $T[B_Y]$ does not contain sequences of rank 2.

(ii) $ST[B_Y]$ does not contain sequences of rank 1 or 2, hence it is relatively compact.