Constant Nonlocal Mean Curvature Surfaces

Mouhamed Moustapha Fall

01-09 August, 2018

1 arxiv link: https://arxiv.org/abs/1804.04100
Soap films

Catenoid (Leonhard Euler, 1760)

Helicoid (Jean-Baptiste Marie Meusnier de La Place, 1776)

Scherk surface (Heinrich Scherk, 1834)
Soap films

Catenoid (Leonhard Euler, 1760)

Helicoid (Jean-Baptiste Marie Meusnier de La Place, 1776).

Scherk surface (Heinrich Scherk, 1834)

Costa’s surface (Celso José da Costa, 1982)
Soap films

Catenoid (Leonhard Euler, 1760)

Helicoid (Jean-Baptiste Marie Meusnier de La Place, 1776).

Scherk surface (Heinrich Scherk, 1834)

Costa’s surface (Celso José da Costa, 1982)

Tools?
Soap films

Catenoid (Leonhard Euler, 1760)

Helicoid (Jean-Baptiste Marie Meusnier de La Place, 1776).

Scherk surface (Heinrich Scherk, 1834)

Costa’s surface (Celso José da Costa, 1982)

Tools?

- Wire
- Soap
- Water
- Container, etc.
Soap films

Catenoid (Leonhard Euler, 1760)

Helicoid (Jean-Baptiste Marie Meusnier de la Place, 1776)

Scherk surface (Heinrich Scherk, 1834)

Costa’s surface (Celso José da Costa, 1982)

Tools?

- Wire
- Soap
- Water
- Container, etc.
- Differential Equations
- Geometric measure theory
- Complex Analysis
- Differential Geometry, etc.
Area minimizing

They minimize the area functional,

These surfaces are called minimal surfaces,

They are solutions to the Plateau's problem: “to show the existence of a minimal surface with a given boundary”
Area minimizing

- They minimize the area functional,
They minimize the area functional,

These surfaces are called minimal surfaces,
Area minimizing

- They minimize the area functional,

- These surfaces are called minimal surfaces,

- They are solutions to the Plateau's problem:
 "to show the existence of a minimal surface with a given boundary"
Area minimizing

- They minimize the area functional,

- These surfaces are called minimal surfaces,

- They are solutions to the Plateau’s problem:
 "to show the existence of a minimal surface with a given boundary"
First variation of area

\[
\frac{\partial}{\partial t} \bigg|_{t=0} H_{\Sigma} - 1\left(\partial \Sigma_t\right) = \int_{\partial \Sigma} H_{\Sigma}(x) V \cdot V(x) \, d\sigma(x).
\]

The function \(H_{\Sigma} : \Sigma \to \mathbb{R} \) is called the Mean Curvature of the interface \(\partial E \).

1. Minimal hypersurfaces are critical points of the area functional thus \(H_{\Sigma}(x) = 0 \) for all \(x \in \Sigma \).
2. Constant Mean Curvature hypersurfaces are critical points of the area functional under volume constraint \(|\text{Int}(\Sigma_t)| = \text{Const} \).
First variation of area

Let Σ be an orientable smooth surface with normal \mathcal{N}. Let $\Sigma_t = \{x + t\mathcal{N}(x), x \in \Sigma\}$. The function $H_{\Sigma}: \Sigma \to \mathbb{R}$ is called the Mean Curvature of the interface ∂E.

1. Minimal hypersurfaces are critical points of the area functional thus $H_{\Sigma}(x) = 0$ for all $x \in \Sigma$.
2. Constant Mean Curvature hypersurfaces are critical points of the area functional under volume constraint $|\text{Int}(\Sigma_t)| = \text{Const}$.
First variation of area

Let Σ be an orientable smooth surface with normal V. Let $\Sigma_t = \{x + tV(x), x \in \Sigma\}$.

First variation of area :

$$\left. \frac{\partial}{\partial t} \right|_{t=0} H^{N-1}(\partial \Sigma_t) = \int_{\partial \Sigma} H_{\Sigma}(x) \cdot V(x) \, d\sigma(x).$$
First variation of area

Let Σ be an orientable smooth surface with normal \mathbf{V}. Let $\Sigma_t = \{x + t\mathbf{V}(x), x \in \Sigma\}$.

First variation of area:

$$\frac{\partial}{\partial t} \bigg|_{t=0} \mathcal{H}^{N-1}(\partial \Sigma_t) = \int_{\partial \Sigma} H_{\Sigma}(x) \mathbf{V} \cdot \mathbf{V}(x) \, d\sigma(x).$$

The function $H_{\Sigma}: \Sigma \to \mathbb{R}$ is called the Mean Curvature of the interface ∂E.
First variation of area

Let Σ be an orientable smooth surface with normal \mathcal{V}. Let $\Sigma_t = \{x + t\mathcal{V}(x), x \in \Sigma\}$.

First variation of area:

$$\frac{\partial}{\partial t} \bigg|_{t=0} \mathcal{H}^{N-1}(\partial \Sigma_t) = \int_{\partial \Sigma} H_{\Sigma}(x) \mathcal{V} \cdot \mathcal{V}(x) \, d\sigma(x).$$

The function $H_{\Sigma} : \Sigma \to \mathbb{R}$ is called the Mean Curvature of the interface ∂E.

1. Minimal hypersurfaces are critical points of the area functional thus

$$H_{\Sigma}(x) = 0 \quad \text{for all } x \in \Sigma.$$
First variation of area

Let Σ be an orientable smooth surface with normal \mathbf{V}. Let $\Sigma_t = \{x + t\mathbf{V}(x), x \in \Sigma\}$.

First variation of area:

\[
\frac{\partial}{\partial t} \bigg|_{t=0} \mathcal{H}^{N-1}(\partial \Sigma_t) = \int_{\partial \Sigma} H_\Sigma(x) \mathbf{V} \cdot \mathbf{V}(x) \, d\sigma(x).
\]

The function $H_\Sigma : \Sigma \to \mathbb{R}$ is called the Mean Curvature of the interface ∂E.

1. **Minimal hypersurfaces** are critical points of the area functional thus

 \[H_\Sigma(x) = 0 \quad \text{for all } x \in \Sigma \]

2. **Constant Mean Curvature hypersurfaces** are critical points of the area functional under volume constraint $|\text{Int}(\Sigma_t)| = \text{Const}$.
Fractional area functional

\[\int_{E} \int_{\mathbb{R}^N} \frac{1}{|x - y|^{N + \alpha}} \, dx \, dy. \]

Localized Fractional Perimeter of a set \(E \) in a set \(\Omega \)

\[\int_{\mathbb{R}^2} \frac{1}{|1_{E}(x) - 1_{E}(y)|^{2\alpha}} \, dx \, dy. \]

Fractional Plateau’s problem (Caffarelli, Roquejoffre, Savin (2010)):

Fix a set \(E_0 \subset \mathbb{R}^N \), look for a minimizer of

\[\inf \{ P_{\alpha, \Omega}(E) : E = E_0 \text{ on } \mathbb{R}^N \setminus \Omega \}. \]

Remark: As \(\alpha \to 1 \), fractional area \(P_{\alpha, \Omega}(E) \to H^{N - 1}(\partial E \cap \Omega) \) the area functional.

Davila, Caffarelli-Valdinoci, Ambrosio-De Philippis-Martinazzi.
Fractional area functional

- Fractional Perimeter of a bounded set

\[P_\alpha(E) = (1-\alpha) \int_E \int_{\mathbb{R}^N \setminus E} \frac{1}{|x-y|^{N+\alpha}} \, dx \, dy \]
Fractional area functional

- **Fractional Perimeter of a bounded set**

\[P_\alpha(E) = (1 - \alpha) \int_E \int_{\mathbb{R}^N \setminus E} \frac{1}{|x - y|^{N+\alpha}} \, dxdy = \frac{1 - \alpha}{2} \int_{\mathbb{R}^{2N}} \frac{|1_E(x) - 1_E(y)|^2}{|x - y|^{N+\alpha}} \, dxdy. \]
Fractional area functional

- Fractional Perimeter of a bounded set

\[P_\alpha(E) = (1 - \alpha) \int_E \int_{\mathbb{R}^N \setminus E} \frac{1}{|x - y|^{N+\alpha}} \, dxdy = \frac{1 - \alpha}{2} \int_{\mathbb{R}^{2N}} \frac{|1_E(x) - 1_E(y)|^2}{|x - y|^{N+\alpha}} dxdy. \]

Fractional area functional

- **Fractional Perimeter of a bounded set**
 \[P_\alpha(E) = (1-\alpha) \int_E \int_{\mathbb{R}^N \setminus E} \frac{1}{|x-y|^{N+\alpha}} \, dx \, dy = \frac{1-\alpha}{2} \int_{\mathbb{R}^{2N}} \frac{|1_E(x) - 1_E(y)|^2}{|x-y|^{N+\alpha}} \, dx \, dy. \]

- **Localized Fractional Perimeter of a set \(E \) in a set \(\Omega \)**
 \[P_{\alpha,\Omega}(E) = \frac{1-\alpha}{2} \int_{\mathbb{R}^{2N} \setminus (\mathbb{R}^N \setminus \Omega)^2} \frac{|1_E(x) - 1_E(y)|^2}{|x-y|^{N+\alpha}} \, dx \, dy. \]
Fractional area functional

- **Fractional Perimeter of a bounded set**

\[
P_{\alpha}(E) = (1-\alpha) \int_{E} \int_{\mathbb{R}^N \setminus E} \frac{1}{|x-y|^{N+\alpha}} \, dx \, dy = \frac{1-\alpha}{2} \int_{\mathbb{R}^{2N}} \frac{|1_E(x) - 1_E(y)|^2}{|x-y|^{N+\alpha}} \, dx \, dy.
\]

- **Localized Fractional Perimeter of a set \(E \) in a set \(\Omega \)**

\[
P_{\alpha,\Omega}(E) = \frac{1-\alpha}{2} \int_{\mathbb{R}^{2N} \setminus (\mathbb{R}^N \setminus \Omega)^2} \frac{|1_E(x) - 1_E(y)|^2}{|x-y|^{N+\alpha}} \, dx \, dy.
\]

- **Fractional Plateau’s problem (Caffarelli, Roquejoffre, Savin (2010))**:

Davila, Caffarelli-Valdinoci, Ambrosio-De Philippis-Martinazzi.
Fractional area functional

- **Fractional Perimeter of a bounded set**

\[P_\alpha(E) = (1-\alpha) \int_E \int_{\mathbb{R}^N \setminus E} \frac{1}{|x-y|^{N+\alpha}} \, dxdy = \frac{1-\alpha}{2} \int_{\mathbb{R}^{2N}} \frac{|1_E(x) - 1_E(y)|^2}{|x-y|^{N+\alpha}} dxdy. \]

- **Localized Fractional Perimeter of a set \(E \) in a set \(\Omega \)**

\[P_{\alpha,\Omega}(E) = \frac{1-\alpha}{2} \int_{\mathbb{R}^{2N} \setminus (\mathbb{R}^N \setminus \Omega)^2} \frac{|1_E(x) - 1_E(y)|^2}{|x-y|^{N+\alpha}} dxdy. \]

- **Fractional Plateau’s problem (Caffarelli, Roquejoffre, Savin (2010))**: Fix a set \(E_0 \subset \mathbb{R}^N \), look for a minimizer of

\[\inf \left\{ P_{\alpha,\Omega}(E) : E = E_0 \text{ on } \mathbb{R}^N \setminus \Omega \right\}. \]
Fractional area functional

- **Fractional Perimeter of a bounded set**

 \[P_\alpha(E) = (1-\alpha) \int_E \int_{\mathbb{R}^N \setminus E} \frac{1}{|x-y|^{N+\alpha}} \, dx \, dy = \frac{1-\alpha}{2} \int_{\mathbb{R}^{2N}} \frac{|1_E(x) - 1_E(y)|^2}{|x-y|^{N+\alpha}} \, dx \, dy. \]

- **Localized Fractional Perimeter of a set \(E \) in a set \(\Omega \)**

 \[P_\alpha,\Omega(E) = \frac{1-\alpha}{2} \int_{\mathbb{R}^{2N} \setminus (\mathbb{R}^N \setminus \Omega)^2} \frac{|1_E(x) - 1_E(y)|^2}{|x-y|^{N+\alpha}} \, dx \, dy. \]

- **Fractional Plateau’s problem (Caffarelli, Roquejoffre, Savin (2010))**: Fix a set \(E_0 \subset \mathbb{R}^N \), look for a minimizer of

 \[\inf \left\{ P_\alpha,\Omega(E) : E = E_0 \text{ on } \mathbb{R}^N \setminus \Omega \right\}. \]

 Remark: As \(\alpha \nearrow 1 \), fractional area \(P_\alpha,\Omega(E) \to \mathcal{H}^{N-1}(\partial E \cap \Omega) \) the area functional.
Fractional area functional

- **Fractional Perimeter of a bounded set**

\[
P_\alpha(E) = (1 - \alpha) \int_E \int_{\mathbb{R}^N \setminus E} \frac{1}{|x - y|^{N+\alpha}} \, dx \, dy = \frac{1 - \alpha}{2} \int_{\mathbb{R}^{2N}} \frac{|1_E(x) - 1_E(y)|^2}{|x - y|^{N+\alpha}} \, dx \, dy.
\]

- **Localized Fractional Perimeter of a set \(E \) in a set \(\Omega \)**

\[
P_{\alpha,\Omega}(E) = \frac{1 - \alpha}{2} \int_{\mathbb{R}^{2N} \setminus (\mathbb{R}^N \setminus \Omega)^2} \frac{|1_E(x) - 1_E(y)|^2}{|x - y|^{N+\alpha}} \, dx \, dy.
\]

- **Fractional Plateau’s problem (Caffarelli, Roquejoffre, Savin (2010))**: Fix a set \(E_0 \subset \mathbb{R}^N \), look for a minimizer of

\[
\inf \left\{ P_{\alpha,\Omega}(E) : E = E_0 \text{ on } \mathbb{R}^N \setminus \Omega \right\}.
\]

Remark: As \(\alpha \to 1 \), fractional area \(P_{\alpha,\Omega}(E) \to \mathcal{H}^{N-1}(\partial E \cap \Omega) \) the area functional.

Davilá, Caffarelli-Valdinoci, Ambrosio-De Phillipis-Martinazzi.
First variation of fractional area

Consider a smooth set E and its local deformation $E_t = \{ x + tV(x), x \in E \}$. The function $H_\alpha \partial E : \partial E \to \mathbb{R}$ is called the nonlocal (or fractional) mean curvature.
First variation of fractional area

Consider a smooth set \(E \) and its local deformation \(E_t = \{x + tV(x), \ x \in E\} \).
First variation of fractional area

Consider a smooth set E and its local deformation $E_t = \{x + tV(x), \ x \in E\}$.

First variation of fractional area:

\[
\frac{\partial}{\partial t} \bigg|_{t=0} P_{\alpha,\Omega}(E_t) = \int_{\partial E \cap \Omega} H_{\partial E}^\alpha(x) \cdot V(x) \, d\sigma(x).
\]
First variation of fractional area

Consider a smooth set E and its local deformation $E_t = \{x + tV(x), \ x \in E\}$.

First variation of fractional area:

\[
\left. \frac{\partial}{\partial t} \right|_{t=0} P_{\alpha,\Omega}(E_t) = \int_{\partial E \cap \Omega} H_{\partial E}^\alpha(x) \ V \cdot V(x) \ d\sigma(x).
\]

The function

\[
H_{\partial E}^\alpha : \partial E \rightarrow \mathbb{R}
\]

is called the nonlocal (or fractional) mean curvature.
Expression of Nonlocal Mean Curvature of hypersurfaces

Let $\Sigma \subset \mathbb{R}^N$ be a C^2 orientable hypersurface. The Mean Curvature of Σ at a point $x \in \Sigma$ is given by

$$H_\Sigma(x) = \frac{1}{N-1} \text{div} V(x),$$

where V is the (extended) unit normal vector field along Σ. The Nonlocal Mean Curvature (NMC) of Σ at a point $x \in \Sigma$ is given by

$$H^{\alpha}_\Sigma(x) = \frac{2(1-\alpha)}{\alpha} \int_{\Sigma} (y-x) \cdot V(y) |y-x|^N + \alpha \, d\sigma(y),$$

for $\alpha \in (0,1)$. Caffarelli-Souganidis '08, Caffarelli-Roquejoffre-Savin '10.
Expression of Nonlocal Mean Curvature of hypersurfaces

Let $\Sigma \subset \mathbb{R}^N$ be a C^2 orientable hypersurface.

The Mean Curvature of Σ at a point $x \in \Sigma$ is given by

$$H_\Sigma(x) = \frac{1}{N-1} \text{div} V(x),$$

where V is the (extended) unit normal vector field along Σ.

The Nonlocal Mean Curvature (NMC) of Σ at a point $x \in \Sigma$ is given by

$$H_\alpha_\Sigma(x) = 2(1 - \alpha) \frac{\alpha}{N+\alpha} \int_\Sigma (y-x) \cdot V(y) |y-x|^{N+\alpha} d\sigma(y),$$

for $\alpha \in (0,1)$.

Caffarelli-Souganidis '08, Caffarelli-Roquejoffre-Savin '10.
Expression of Nonlocal Mean Curvature of hypersurfaces

Let $\Sigma \subset \mathbb{R}^N$ be a C^2 orientable hypersurface.

The Mean Curvature of Σ at a point $x \in \Sigma$ is given by

$$H_{\Sigma}(x) = \frac{1}{N-1} \text{div} \, \mathcal{N}(x),$$

where \mathcal{N} is the (extended) unit normal vector field along Σ.

The Nonlocal Mean Curvature (NMC) of Σ at a point $x \in \Sigma$ is given by

$$H_{\alpha \Sigma}(x) = 2(1 - \alpha) \int_{\Sigma} \frac{(y - x) \cdot \mathcal{N}(y)}{|y - x|^N} + \alpha \, d\sigma(y),$$

for $\alpha \in (0, 1)$.

Caffarelli-Souganidis '08, Caffarelli-Roquejoffre-Savin '10.
Expression of Nonlocal Mean Curvature of hypersurfaces

Let \(\Sigma \subset \mathbb{R}^N \) be a \(C^2 \) orientable hypersurface.

The Mean Curvature of \(\Sigma \) at a point \(x \in \Sigma \) is given by

\[
H_\Sigma(x) = \frac{1}{N-1} \text{div } \mathcal{V}(x),
\]

where \(\mathcal{V} \) is the (extended) unit normal vector field along \(\Sigma \).

The Nonlocal Mean Curvature (NMC) of \(\Sigma \) at a point \(x \in \Sigma \) is given by

\[
H_{\Sigma}^\alpha(x) = \frac{2(1-\alpha)}{\alpha} \int_{\Sigma} \frac{(y-x) \cdot \mathcal{V}(y)}{|y-x|^{N+\alpha}} d\sigma(y), \quad \text{for } \alpha \in (0, 1)
\]
Expression of Nonlocal Mean Curvature of hypersurfaces

Let $\Sigma \subset \mathbb{R}^N$ be a C^2 orientable hypersurface.

The Mean Curvature of Σ at a point $x \in \Sigma$ is given by

$$H_{\Sigma}(x) = \frac{1}{N-1} \text{div } \mathcal{N}(x),$$

where \mathcal{N} is the (extended) unit normal vector field along Σ.

The Nonlocal Mean Curvature (NMC) of Σ at a point $x \in \Sigma$ is given by

$$H_{\Sigma}^\alpha(x) = \frac{2(1-\alpha)}{\alpha} \int_{\Sigma} \frac{(y-x) \cdot \mathcal{N}(y)}{|y-x|^{N+\alpha}} d\sigma(y), \quad \text{for } \alpha \in (0, 1)$$

Caffarelli-Souganidis '08, Caffarelli-Roquejoffre-Savin '10.
Symplectic expression of (Nonlocal) Mean Curvature

Consider the signed indicator function of a set $E \subset \mathbb{R}^N$:

$$
\tau_E(x) := \begin{cases}
-1 & \text{if } x \in E \\
+1 & \text{if } x \in E^c = \mathbb{R}^N \setminus E
\end{cases}
$$
Symplectic expression of (Nonlocal) Mean Curvature

Consider the signed indicator function of a set $E \subset \mathbb{R}^N$:

$$\tau_E(x) := \begin{cases} -1 & \text{if } x \in E \\ +1 & \text{if } x \in E^c = \mathbb{R}^N \setminus E. \end{cases}$$
Consider the signed indicator function of a set $E \subset \mathbb{R}^N$:

$$\tau_E(x) := \begin{cases}
-1 & \text{if } x \in E \\
+1 & \text{if } x \in E^c = \mathbb{R}^N \setminus E.
\end{cases}$$
Symplectic expression of (Nonlocal) Mean Curvature

Consider the signed indicator function of a set $E \subset \mathbb{R}^N$:

$$\tau_E(x) := \begin{cases}
-1 & \text{if } x \in E \\
+1 & \text{if } x \not\in E.
\end{cases}$$

The Mean Curvature at $x \in \partial E$ is

$$H_{\partial E}(x) := \frac{1}{2(N + 1)} \lim_{\varepsilon \to 0} \frac{-1}{|B_\varepsilon|} \int_{B_\varepsilon(x)} \tau_E(y) \, dy.$$
Symplectic expression of (Nonlocal) Mean Curvature

Consider the signed indicator function of a set $E \subset \mathbb{R}^N$:

$$\tau_E(x) := \begin{cases}
-1 & \text{if } x \in E \\
+1 & \text{if } x \not\in E.
\end{cases}$$

The Mean Curvature at $x \in \partial E$ is

$$H_{\partial E}(x) := \frac{1}{2(N+1)} \lim_{\varepsilon \to 0} \frac{-1}{\varepsilon |B_\varepsilon|} \int_{B_\varepsilon(x)} \tau_E(y) \, dy.$$

The Nonlocal Mean Curvature at $x \in \partial E$ is

$$H^\alpha_{E}(x) := (1 - \alpha) \text{p.v.} \int_{\mathbb{R}^N} \frac{\tau_E(y)}{|x - y|^{N+\alpha}} \, dy.$$
Symplectic expression of (Nonlocal) Mean Curvature

Consider the signed indicator function of a set $E \subset \mathbb{R}^N$:

$$\tau_E(x) := \begin{cases}
-1 & \text{if } x \in E \\
+1 & \text{if } x \notin E.
\end{cases}$$

The Mean Curvature at $x \in \partial E$ is

$$H_{\partial E}(x) := \frac{1}{2(N+1)} \lim_{\varepsilon \to 0} \frac{-1}{|B_\varepsilon|} \int_{B_\varepsilon(x)} \tau_E(y) \, dy.$$

The Nonlocal Mean Curvature at $x \in \partial E$ is

$$H_\alpha^E(x) := (1 - \alpha) \text{ p.v.} \int_{\mathbb{R}^N} \frac{\tau_E(y)}{|x - y|^{N+\alpha}} \, dy = (1 - \alpha) \lim_{\varepsilon \to 0} \int_{\mathbb{R}^N \setminus B_\varepsilon(x)} \frac{\tau_E(y)}{|x - y|^{N+\alpha}} \, dy.$$
Symplectic expression of (Nonlocal) Mean Curvature

Consider the signed indicator function of a set \(E \subset \mathbb{R}^N \):

\[
\tau_E(x) := \begin{cases}
-1 & \text{if } x \in E \\
+1 & \text{if } x \notin E.
\end{cases}
\]

The Mean Curvature at \(x \in \partial E \) is

\[
H_{\partial E}(x) := \frac{1}{2(N + 1)} \lim_{\epsilon \to 0} \frac{-1}{|B_\epsilon|} \int_{B_\epsilon(x)} \tau_E(y) \, dy.
\]

The Nonlocal Mean Curvature at \(x \in \partial E \) is

\[
H_E^\alpha(x) := (1 - \alpha) \text{ p.v.} \int_{\mathbb{R}^N} \frac{\tau_E(y)}{|x - y|^{N+\alpha}} \, dy = (1 - \alpha) \lim_{\epsilon \to 0} \int_{\mathbb{R}^N \setminus B_\epsilon(x)} \frac{\tau_E(y)}{|x - y|^{N+\alpha}} \, dy.
\]

Remark: Up to a constant,

\[
H_{\partial E}(x) = \lim_{\alpha \to 1} H_E^\alpha(x_0).
\]
Some properties of the Nonlocal mean curvature

▶ Invariant by rigid motion:

\[H_\partial E^\alpha = H_\partial \mathcal{R}(E) \quad \text{for } \mathcal{R} \text{ a rigid transformation} \]
Some properties of the Nonlocal mean curvature

- Invariant by rigid motion:
 \[H_{\partial E}^\alpha = H_{\partial R(E)}^\alpha \quad \text{for } R \text{ a rigid transformation} \]

- Scaling property:
 \[H_{\partial E_r}^\alpha = r^{-\alpha} H_{\partial E}^\alpha \quad \text{with } E_r = rE \]
Some properties of the Nonlocal mean curvature

- Invariant by rigid motion:
 \[H_\partial^\alpha E = H_\partial^\alpha \mathcal{R}(E) \quad \text{for } \mathcal{R} \text{ a rigid transformation} \]

- Scaling property:
 \[H_\partial^{\alpha E_r} = r^{-\alpha} H_\partial^\alpha E \quad \text{with } E_r = rE \]

- Comparison principle: If \(E_1 \subset E_2 \) with \(x \in \partial E_1 \cap \partial E_2 \), then \(H_\partial^{\alpha E_2} \leq H_\partial^{\alpha E_1} \)
Some properties of the Nonlocal mean curvature

- Invariant by rigid motion:
 \[H_{\partial E}^\alpha = H_{\partial R(E)}^\alpha \quad \text{for } R \text{ a rigid transformation} \]

- Scaling property:
 \[H_{\partial E_r}^\alpha = r^{-\alpha} H_{\partial E}^\alpha \quad \text{with } E_r = rE \]

- Comparison principle: If \(E_1 \subset E_2 \) with \(x \in \partial E_1 \cap \partial E_2 \), then \(H_{\partial E_2}^\alpha \leq H_{\partial E_1}^\alpha \)

Remark: Local comparison does not hold i.e. \(E_1 \subset E_2 \) is necessary!
Some examples of (Nonlocal) minimal surfaces

Examples:

▶ The plane: The vector $x - y$ is always perpendicular to the normal of the plane!

▶ Helicoid: (Cinti, Davila, Del Pino, 2016) Other less trivial Nonlocal minimal surfaces?
Some examples of (Nonlocal) minimal surfaces

(Nonlocal) minimal surfaces Σ are those satisfying

$$H_\Sigma(x) = H_\Sigma^\alpha(x) = \int_\Sigma \frac{(y - x) \cdot \mathcal{V}(y)}{|y - x|^{N+\alpha}} \, d\sigma(y) = 0$$

Examples:

- The plane: The vector $x - y$ is always perpendicular to the normal of the plane!
- Helicoid: (Cinti, Davila, Del Pino, 2016)

Other less trivial Nonlocal minimal surfaces?
Some examples of (Nonlocal) minimal surfaces

(Nonlocal) minimal surfaces Σ are those satisfying

$$H_\Sigma(x) = H_\Sigma^\alpha(x) = \int_\Sigma \frac{(y - x) \cdot \mathbf{V}(y)}{|y - x|^{N+\alpha}} d\sigma(y) = 0$$

Examples:

- Plane: The vector $x - y$ is always perpendicular to the normal of the plane!
- Helicoid: (Cinti, Davila, Del Pino, 2016)

Other less trivial Nonlocal minimal surfaces?
Some examples of (Nonlocal) minimal surfaces

(Nonlocal) minimal surfaces Σ are those satisfying

$$H_\Sigma(x) = H_\Sigma^\alpha(x) = \int_\Sigma \frac{(y - x) \cdot \mathcal{N}(y)}{|y - x|^{N+\alpha}} d\sigma(y) = 0$$

Examples:

- The plane: The vector $x - y$ is always perpendicular to the normal of the plane!
- Helicoid: (Cinti, Davila, Del Pino, 2016)
Some examples of (Nonlocal) minimal surfaces

(Nonlocal) minimal surfaces Σ are those satisfying

$$H_\Sigma(x) = H_\Sigma^\alpha(x) = \int_\Sigma \frac{(y-x) \cdot \mathcal{V}(y)}{|y-x|^{N+\alpha}} \, d\sigma(y) = 0$$

Examples:

▶ The plane: The vector $x - y$ is always perpendicular to the normal of the plane!

▶ Helicoid: (Cinti, Davilá, Del Pino, 2016)
Some examples of (Nonlocal) minimal surfaces

(Nonlocal) minimal surfaces Σ are those satisfying

$$H_\Sigma(x) = H_\Sigma^\alpha(x) = \int_{\Sigma} \frac{(y - x) \cdot \mathcal{V}(y)}{|y - x|^{N+\alpha}} \, d\sigma(y) = 0$$

Examples:

- **The plane:** The vector $x - y$ is always perpendicular to the normal of the plane!

- **Helicoid:** (Cinti, Davilá, Del Pino, 2016)

Other less trivial Nonlocal minimal surfaces?
Some nontrivial Nonlocal minimal surfaces (Davilá, Del Pino, Wei, 2018)

For each of the following surfaces Σ we have (provided α is close to 1)

$$H_\alpha^\Sigma(x) = \int_\Sigma (y - x) \cdot V(y) |y - x|^{N + \alpha} d\sigma(y) = 0.$$
For each of the following surfaces Σ we have (provided α is close to 1)

$$H^\alpha_\Sigma(x) = \int_{\Sigma} \frac{(y - x) \cdot \mathcal{V}(y)}{|y - x|^{N+\alpha}} \ d\sigma(y) = 0.$$
Some nontrivial Nonlocal minimal surfaces (Davilá, Del Pino, Wei, 2018)

For each of the following surfaces Σ we have (provided α is close to 1)

$$H_\Sigma^\alpha(x) = \int_\Sigma \frac{(y - x) \cdot \mathcal{N}(y)}{|y - x|^{N+\alpha}} \, d\sigma(y) = 0.$$

- The nonlocal Catenoid
For each of the following surfaces Σ we have (provided α is close to 1)

$$H^\alpha_{\Sigma}(x) = \int_{\Sigma} \frac{(y - x) \cdot \mathcal{N}(y)}{|y - x|^{N+\alpha}} \, d\sigma(y) = 0.$$
Trivial examples of Constant (Nonzero) Nonlocal Mean Curvature surfaces

Curves and surfaces Σ with $H^{\alpha}_{\Sigma}(x) = \int_{\Sigma} \left(y - x \right) \cdot V(y) \left| y - x \right| N + \alpha \, d\sigma(y) = \text{Const}, \quad \alpha \neq 0$.

Of course parallel lines/planes have zero classical mean curvature!
Trivial examples of Constant (Nonzero) Nonlocal Mean Curvature surfaces

Curves and surfaces Σ with

$$H_\Sigma^{\alpha}(x) = \int_{\Sigma} \frac{(y - x) \cdot \mathcal{V}(y)}{|y - x|^{N+\alpha}} d\sigma(y) = \text{Const.} \neq 0.$$
Trivial examples of Constant (Nonzero) Nonlocal Mean Curvature surfaces

Curves and surfaces Σ with

$$H_{\Sigma}^\alpha(x) = \int_{\Sigma} \frac{(y - x) \cdot \nu(y)}{|y - x|^{N+\alpha}} \, d\sigma(y) = \text{Const.} \neq 0.$$
Trivial examples of Constant (Nonzero) Nonlocal Mean Curvature surfaces

Curves and surfaces Σ with

$$H_\Sigma^\alpha(x) = \int_{\Sigma} \frac{(y - x) \cdot \mathcal{N}(y)}{|y - x|^{N+\alpha}} \, d\sigma(y) = \text{Const.} \neq 0.$$
Trivial examples of Constant (Nonzero) Nonlocal Mean Curvature surfaces

Curves and surfaces Σ with

$$H^\alpha_\Sigma(x) = \int_{\Sigma} \frac{(y-x) \cdot \nu(y)}{|y-x|^{N+\alpha}} \, d\sigma(y) = \text{Const.} \neq 0.$$

Of course parallel lines/planes have zero classical mean curvature!
NMC of parallel straight lines

Let \(\Sigma \) be the nonlocal mean curvature at \(x = (x_1, 0) \in L_1 \), integrate over \(L_2 \):

\[
H_\alpha \Sigma(x) = (1 - \alpha) \int \Sigma(y - x) \cdot V(y) |y - x|^{N+\alpha} \, d\sigma(y)
\]
The NMC of parallel straight lines is the interaction of a point in "Line 1" with the whole "Line 2".

$$H_\alpha \Sigma(x) = (1 - \alpha) \int \Sigma(y - x) \cdot V(y) |y - x| N + \alpha d\sigma(y)$$
NMC of parallel straight lines

The NMC of parallel straight lines is the interaction of a point in "Line 1" with the whole "Line 2".

\[
H_\Sigma^\alpha(x) = (1 - \alpha) \int_{\Sigma} \frac{(y - x) \cdot \mathcal{V}(y)}{|y - x|^{N+\alpha}} \, d\sigma(y)
\]
NMC of parallel straight lines

The NMC of parallel straight lines is the interaction of a point in "Line 1" with the whole "Line 2".

\[
H_\Sigma^\alpha(x) = (1 - \alpha) \int_{\Sigma} \frac{(y - x) \cdot \mathcal{N}(y)}{|y - x|^{N+\alpha}} \, d\sigma(y)
\]

\[
= (1 - \alpha) \int_{\mathbb{R}} \frac{1}{|(y_2, 1) - (x_1, 0)|^{N+\alpha}} \, dy_2
\]
NMC of parallel straight lines

The NMC of parallel straight lines is the interaction of a point in "Line 1" with the whole "Line 2".

\[H_\Sigma^\alpha(x) = (1 - \alpha) \int_{\Sigma} \frac{(y - x) \cdot \mathbf{v}(y)}{|y - x|^{N+\alpha}} d\sigma(y) \]

\[= (1 - \alpha) \int_{\mathbb{R}} \frac{1}{|(y_2, 1) - (x_1, 0)|^{N+\alpha}} dy_2 \]

\[= (1 - \alpha) \int_{\mathbb{R}} \frac{1}{(1 + t^2)^{(N+\alpha)/2}} dt. \]
Theorem (Alexandrov (1956)) The unit sphere is the only bounded connected surface with nonzero Constant Mean Curvature.

Theorem (Cabrè, Solà-Morales, F., Weth / Ciraolo, Figalli, Maggi and Novaga, '15) The sphere is the only bounded (not necessarily connected) nonzero Constant Nonlocal Mean Curvature hypersurfaces.

Idea of proof: Alexandrov's moving plane argument...
Rigidity I. Characterizations of the sphere

Theorem (Alexandrov (1956)) The unit sphere is the only bounded connected surface with nonzero Constant Mean Curvature.
Theorem (Alexandrov (1956)) The unit sphere is the only bounded connected surface with nonzero Constant Mean Curvature.
Rigidity I. Characterizations of the sphere

Theorem (Alexandrov (1956)) The unit sphere is the only bounded connected surface with nonzero Constant Mean Curvature.

Theorem (Cabré, Solà-Morales, F., Weth / Ciraolo, Figalli, Maggi and Novaga, ’15)

The sphere is the only bounded (not necessarily connected) nonzero Constant Nonlocal Mean Curvature hypersurfaces.
Theorem (Alexandrov (1956)) The unit sphere is the only bounded **connected** surface with nonzero Constant Mean Curvature.

Theorem (Cabré, Solà-Morales, F., Weth / Ciraolo, Figalli, Maggi and Novaga, ’15)

The sphere is the only bounded (not necessarily connected) nonzero Constant Nonlocal Mean Curvature hypersurfaces.

Idea of proof: Alexandrov’s moving plane argument...
The moving plane method

Step 1: Consider a smooth set E and call E_λ its reflection with respect to the hyperplane $\{x_1 = \lambda\}$.

Step 1: Then move the reflected set E_λ toward E until:

- Interior touching at $x \in \partial E \cap \partial E_\lambda$
- Non-transversal intersection $e_1 \in T_x \partial E = T_x \partial E_\lambda$
The moving plane method

- **Step 1:** Consider a smooth set E and call E_λ its reflection with respect to the hyperplane $\{x_1 = \lambda\}$
The moving plane method

- **Step 1:** Consider a smooth set E and call E_λ its reflection with respect to the hyperplane $\{x_1 = \lambda\}$

- **Step 1:** Then move the reflected set E_λ toward E until:

![Diagram showing the moving plane method](image)
The moving plane method

- **Step 1:** Consider a smooth set E and call E_λ its reflection with respect to the hyperplane $\{x_1 = \lambda\}$

- **Step 1:** Then move the reflected set E_λ toward E until:

 Interior touching at $x \in \partial E \cap \partial E_\lambda$
The moving plane method

- **Step 1:** Consider a smooth set E and call E_λ its reflection with respect to the hyperplane $\{x_1 = \lambda\}$

- **Step 1:** Then move the reflected set E_λ toward E until:

 Interior touching at $x \in \partial E \cap \partial E_\lambda$

 Non-transversal intersection $e_1 \in T_x \partial E = T_x \partial E_\lambda$
Comparison 1: $H_E^\alpha(x) := p.v. \int_{\mathbb{R}^N} \frac{\tau_E(y)}{|x-y|^{N+\alpha}} \, dy$

- **Step 1:** Consider a smooth set E and call E_λ its reflection with respect to the hyperplane $\{x_1 = \lambda\}$

- **Step 1:** Then move the reflected set E_λ toward E until:

 Interior touching at $x \in \partial E \cap \partial E_\lambda$

Because E and E_λ have the same NMC,

$$H_{\partial E}^\alpha(x) - H_{\partial E_\lambda}^\alpha(x) = 0 \implies E = E_\lambda.$$

Non-transversal intersection $e_1 \in T_x \partial E = T_x \partial E_\lambda$
Comparison II: $H_E^\alpha(x) := \text{p.v.} \int_{\mathbb{R}^N} \frac{\tau_E(y)}{|x-y|^{N+\alpha}} \, dy$

Step 1: Consider a smooth set E and call E_λ its reflection with respect to the hyperplane $\{x_1 = \lambda\}$

Step 1: Then move the reflected set E_λ toward E until:

Interior touching at $x \in \partial E \cap \partial E_\lambda$

Because E and E_λ have the same NMC,

$$H^\alpha_{\partial E}(x) - H^\alpha_{\partial E_\lambda}(x) = 0 \quad \implies \quad E = E_\lambda.$$

Non-transversal intersection $e_1 \in T_x \partial E = T_x \partial E_\lambda$

Because E and E_λ have both Constant NMC,

$$\partial e_1 H^\alpha_{\partial E}(x) - \partial e_1 H^\alpha_{\partial E_\lambda}(x) = 0 \quad \implies \quad E = E_\lambda.$$
Classification of graphs with Constant (Nonlocal) Mean Curvature?
Nonlocal Mean Curvature acting on graphs

Let $u: \mathbb{R}^{N-1} \to \mathbb{R}$ and the subgraph $\mathcal{E}_u = \{ (x, t) \in \mathbb{R}^{N-1} \times \mathbb{R} : t < u(x) \}$.

The mean curvature $H_{\partial \mathcal{E}_u}(x) = -\text{div} \nabla u \sqrt{1 + |\nabla u|^2}(x)$

The nonlocal mean curvature $H_\alpha_{\partial \mathcal{E}_u}(x) = \int_{\mathbb{R}^{N-1}} u(x) - u(y) \frac{1}{|x-y|^{N+\alpha}} dy,$ where $Q(r) = (1 - \alpha) \int_{1-\alpha}^1 \frac{d\tau}{(1+\tau^2 r^2)^{(N+\alpha)/2}}$.

“A quasilinear nonlocal operator of order $1 + \alpha$”

Remark: For $\alpha \in (0, 2], \sup_{\mathbb{R}^{N-1}} |\nabla u| \ll 1 \Rightarrow H_\alpha_{\partial \mathcal{E}_u} \approx (-\Delta)^{(1+\alpha)/2} u$.
Nonlocal Mean Curvature acting on graphs

Let \(u : \mathbb{R}^{N-1} \rightarrow \mathbb{R} \) and the subgraph

\[E_u = \{(x, t) \in \mathbb{R}^{N-1} \times \mathbb{R} : t < u(x)\}. \]
Nonlocal Mean Curvature acting on graphs

Let $u : \mathbb{R}^{N-1} \to \mathbb{R}$ and the subgraph

$$E_u = \{(x, t) \in \mathbb{R}^{N-1} \times \mathbb{R} : t < u(x)\}.$$

The mean curvature

$$H_{\partial E_u}(x) = -\text{div} \left(\frac{\nabla u}{\sqrt{1 + |\nabla u|^2}} \right)(x)$$

Remark: For $\alpha \in (0, 2]$, $\sup_{\mathbb{R}^{N-1}} |\nabla u| \ll 1 \Rightarrow H_\alpha \partial E_u \approx \left(-\Delta \right)^{1+\alpha/2} u$.
Nonlocal Mean Curvature acting on graphs

Let \(u : \mathbb{R}^{N-1} \to \mathbb{R} \) and the subgraph
\[
E_u = \{(x, t) \in \mathbb{R}^{N-1} \times \mathbb{R} : t < u(x)\}.
\]

The mean curvature
\[
H_{\partial E_u}(x) = -\text{div} \frac{\nabla u}{\sqrt{1 + |\nabla u|^2}}(x)
\]

"A quasilinear elliptic operator"
Nonlocal Mean Curvature acting on graphs

Let \(u : \mathbb{R}^{N-1} \to \mathbb{R} \) and the subgraph
\[
E_u = \{ (x, t) \in \mathbb{R}^{N-1} \times \mathbb{R} : t < u(x) \}.
\]

- The mean curvature

\[
H_{\partial E_u}(x) = -\text{div} \frac{\nabla u}{\sqrt{1 + |\nabla u|^2}}(x)
\]

"A quasilinear elliptic operator"

- The nonlocal mean curvature

\[
H_{\partial E_u}^\alpha(x) = \int_{\mathbb{R}^{N-1}} \frac{u(x) - u(y)}{|x - y|^{N+\alpha}} Q \left(\frac{u(x) - u(y)}{|x - y|} \right) dy,
\]

where \(Q(r) = (1 - \alpha) \int_{-1}^{1} \frac{d\tau}{(1 + \tau^2 r^2)^{\frac{N+\alpha}{2}}} \).
Nonlocal Mean Curvature acting on graphs

Let \(u : \mathbb{R}^{N-1} \to \mathbb{R} \) and the subgraph

\[
E_u = \{(x, t) \in \mathbb{R}^{N-1} \times \mathbb{R} : t < u(x)\}.
\]

- **The mean curvature**

\[
H_{\partial E_u}(x) = -\text{div} \frac{\nabla u}{\sqrt{1 + |\nabla u|^2}}(x)
\]

"A quasilinear elliptic operator"

- **The nonlocal mean curvature**

\[
H_{\partial E_u}^\alpha(x) = \int_{\mathbb{R}^{N-1}} \frac{u(x) - u(y)}{|x - y|^{N+\alpha}} Q \left(\frac{u(x) - u(y)}{|x - y|} \right) dy,
\]

where

\[
Q(r) = (1 - \alpha) \int_{-1}^{1} \frac{d\tau}{(1 + \tau^2 r^2)^{\frac{N+\alpha}{2}}}.
\]

"A quasilinear nonlocal operator of order \(1 + \alpha \)"
Nonlocal Mean Curvature acting on graphs

Let $u : \mathbb{R}^{N-1} \to \mathbb{R}$ and the subgraph

$$E_u = \{(x, t) \in \mathbb{R}^{N-1} \times \mathbb{R} : t < u(x)\}.$$

- **The mean curvature**

 $$H_{\partial E_u}(x) = -\text{div} \frac{\nabla u}{\sqrt{1 + |\nabla u|^2}}(x)$$

 "A quasilinear elliptic operator"

- **The nonlocal mean curvature**

 $$H_{\partial E_u}^\alpha(x) = \int_{\mathbb{R}^{N-1}} \frac{u(x) - u(y)}{|x - y|^{N+\alpha}} Q\left(\frac{u(x) - u(y)}{|x - y|}\right)dy,$$

 where $Q(r) = (1 - \alpha) \int_{-1}^{1} \frac{d\tau}{(1 + \tau^2 r^2)^{\frac{N+\alpha}{2}}}.$

 "A quasilinear nonlocal operator of order $1 + \alpha$"

Remark: For $\alpha \in (0, 2]$,

$$\sup_{\mathbb{R}^{N-1}} |\nabla u| \ll 1 \implies H_{\partial E_u}^\alpha \simeq (-\Delta)^{\frac{1+\alpha}{2}} u$$
Rigidity II: Bernstein’s Problem

Bernstein's Problem: Is there a (nonlocal) minimal graph in \mathbb{R}^N that is not a hyperplane?

In the classical case:

In the nonlocal case:

- No, if $N \leq 2$. Figalli, Valdinoci (2017).
- Open, if $N \geq 3$. A challenging open problem...!
Bernstein’s Problem: Is there a (nonlocal) minimal graph in \mathbb{R}^N that is not a hyperplane?
Bernstein’s Problem: Is there a (nonlocal) minimal graph in \mathbb{R}^N that is not a hyperplane?

In the classical case:
Bernstein’s Problem: Is there a (nonlocal) minimal graph in \mathbb{R}^N that is not a hyperplane?

In the classical case:

In the nonlocal case:
- **No**, if $N \leq 2$. Figalli, Valdinoci (2017).

- **Open**, if $N \geq 3$. A challenging open problem...!
Bernstein’s Problem: Is there a (nonlocal) minimal graph in \mathbb{R}^N that is not a hyperplane?

In the classical case:

In the nonlocal case:
Bernstein’s Problem: Is there a (nonlocal) minimal graph in \mathbb{R}^N that is not a hyperplane?

In the classical case:

In the nonlocal case:
- **No**, if $N \leq 2$. Figalli, Valdinoci (2017).
Bernstein’s Problem: Is there a (nonlocal) minimal graph in \mathbb{R}^N that is not a hyperplane?

In the classical case:

In the nonlocal case:
- No, if $N \leq 2$. Figalli, Valdinoci (2017).
- Open, if $N \geq 3$. A challenging open problem...!
Delaunay (1841): Surfaces of revolution in \mathbb{R}^3 with constant, nonzero mean curvature are surfaces of revolution of roulettes of the conics. They are cylinders, unduloids, spheres, and nodoids. Rolling an ellipsoid and tracing the focus then rotate the resulting curve around the z-axis. What about the nonlocal case?
Rigidity III: Rotationally symmetric Constant Mean Curvature surfaces

Delaunay (1841): Surfaces of revolution in \mathbb{R}^3 with constant nonzero Mean Curvature are surfaces of revolution of roulettes of the conics. They are cylinders, unduloids, spheres and nodoids. Rolling an ellipsoid and tracing the focus, then rotate the resulting curve around the z-axis.

What about the nonlocal case?
Rigidity III: Rotationally symmetric Constant Mean Curvature surfaces

Delaunay (1841): Surfaces of revolution in \mathbb{R}^3 with Constant nonzero Mean Curvature are surfaces of revolution of roulettes of the conics.
Rigidity III: Rotationally symmetric Constant Mean Curvature surfaces

Delaunay (1841): Surfaces of revolution in \mathbb{R}^3 with Constant nonzero Mean Curvature are surfaces of revolution of roulettes of the conics. They are cylinders, unduloids, spheres and nodoids.
Rigidity III: Rotationally symmetric Constant Mean Curvature surfaces

Delaunay (1841): Surfaces of revolution in \mathbb{R}^3 with Constant nonzero Mean Curvature are surfaces of revolution of roulettes of the conics. They are cylinders, unduloids, spheres and nodoids.

Rolling an ellipsoid and tracing the focus
Rigidity III: Rotationally symmetric Constant Mean Curvature surfaces

Delaunay (1841): Surfaces of revolution in \mathbb{R}^3 with Constant nonzero Mean Curvature are surfaces of revolution of roulettes of the conics. They are cylinders, unduloids, spheres and nodoids.

Rolling an ellipsoid and tracing the focus

Then rotate the resulting curve around the z-axis

Unduloids
Rigidity III: Rotationally symmetric Constant Mean Curvature surfaces

Delaunay (1841): Surfaces of revolution in \mathbb{R}^3 with Constant nonzero Mean Curvature are surfaces of revolution of roulettes of the conics. They are cylinders, unduloids, spheres and nodoids.

Rolling an ellipsoid and tracing the focus

Then rotate the resulting curve around the z-axis

Unduloids

What about the nonlocal case?
Curves and Surfaces with Constant Nonlocal Mean Curvature

\[
\{ (x, z) \in \mathbb{R}^m \times \mathbb{R}^n : |z| = \phi(x) \}
\]
Curves and Surfaces with Constant Nonlocal Mean Curvature

CNMC hypersurfaces of the form \(\{(x, z) \in \mathbb{R}^m \times \mathbb{R}^n : |z| = \varphi(x)\} \)
Curves and Surfaces with Constant Nonlocal Mean Curvature

CNMC hypersurfaces of the form \(\{(x, z) \in \mathbb{R}^m \times \mathbb{R}^n : |z| = \varphi(x)\} \)
Curves and Surfaces with Constant Nonlocal Mean Curvature

CNMC hypersurfaces of the form \(\{(x, z) \in \mathbb{R}^m \times \mathbb{R}^n : |z| = \varphi(x)\} \)

\(n=1, m=1 \) by Cabré, F., Morales and Weth (2016)
Curves and Surfaces with Constant Nonlocal Mean Curvature

CNMC hypersurfaces of the form \(\{(x, z) \in \mathbb{R}^m \times \mathbb{R}^n : |z| = \varphi(x)\} \)

\(n=1, m=1 \) by Cabré, F., Morales and Weth (2016)
Curves and Surfaces with Constant Nonlocal Mean Curvature

CNMC hypersurfaces of the form \(\{(x, z) \in \mathbb{R}^m \times \mathbb{R}^n : |z| = \varphi(x)\} \)

\(n=1, m=1\) by Cabré, F., Morales and Weth (2016)

\(n=2, m=1\) by Cabré, F. and Weth (2018)
Curves and Surfaces with Constant Nonlocal Mean Curvature

CNMC hypersurfaces of the form \(\{(x, z) \in \mathbb{R}^m \times \mathbb{R}^n : |z| = \varphi(x)\}\)

\(n=1, m=1\) by Cabré, F., Morales and Weth (2016)

\(n=2, m=1\) by Cabré, F. and Weth (2018)
Curves and Surfaces with Constant Nonlocal Mean Curvature

CNMC hypersurfaces of the form \(\{(x, z) \in \mathbb{R}^m \times \mathbb{R}^n : |z| = \varphi(x)\} \)

- \(n=1, m=1 \) by Cabré, F., Morales and Weth (2016)
- \(n=2, m=1 \) by Cabré, F. and Weth (2018)
- \(n=1, m=2 \) by Niang, Minlend and Thiam (Preprint 2018)
Global bifurcation from cylinder to spheres with CNMC (Open problem!)

Local bifurcation: Unduloid varies from cylinder to a string-of-pearl. Pearls are disjoint round-spheres.

In the non-local bifurcation: Unduloid varies from cylinder to a string-of-pearl. Pearls are disjoint not-round-spheres.

Hints: Dàvila, Del Pino, Dipierro, Valdinoci (2016) and Cabré, F., Weth (2017)
Global bifurcation from cylinder to spheres with CNMC (Open problem!) ²

Hints: Dàvila, Del Pino, Dipierro, Valdinoci (2016) and Cabré,F., Weth (2017)
Global bifurcation from cylinder to spheres with CNMC (Open problem!) ²

Local bifurcation: Unduloid varies from cylinder to a string-of-pearl. Pearls are disjoint round-spheres.

²Hints: Dàvila, Del Pino, Dipierro, Valdinoci (2016) and Cabré,F, Weth (2017)
Global bifurcation from cylinder to spheres with CNMC (Open problem!) \(^2\)

Local bifurcation: Unduloid varies from cylinder to a string-of-pearl. Pearls are disjoint round-spheres.

\(^2\)Hints: Dàvila, Del Pino, Dipierro, Valdinoci (2016) and Cabré, F., Weth (2017)
Global bifurcation from cylinder to spheres with CNMC (Open problem!)

Local bifurcation: Unduloid varies from cylinder to a string-of-pearl. Pearls are disjoint round-spheres.

In the NON-local bifurcation: Unduloid varies from cylinder to a string-of-pearl. Pearls are disjoint not-round-spheres.

Hints: Dàvila, Del Pino, Dipierro, Valdinoci (2016) and Cabré,F., Weth (2017)
Consider the hypersurface Σ_r made of periodic array of round spheres:

$$\Sigma_r := S^{N-1} + r\mathbb{Z}$$
Near spheres with CNMC

Consider the hypersurface Σ_r made of periodic array of round spheres:

$$\Sigma_r := S^{N-1} + r\mathbb{Z}$$

- It has constant classical mean curvature.
- It has non-constant nonlocal mean curvature. However, Theorem (Cabr´ e - F. - Weth, 2018) The hypersurfaces Σ_r can be perturbed (for large r) to a periodic hypersurface with Constant Nonlocal Mean Curvature.

More precisely, they have the form:
Near spheres with CNMC

Consider the hypersurface Σ_r made of periodic array of round spheres:

$$\Sigma_r := S^{N-1} + r\mathbb{Z}$$

- 1. It has constant classical mean curvature.
- 2. It has non-constant nonlocal mean curvature. However,
Consider the hypersurface Σ_r made of periodic array of round spheres:

$$\Sigma_r := S^{N-1} + r\mathbb{Z}$$

- 1. It has constant classical mean curvature.
- 2. It has non-constant nonlocal mean curvature. However,

Theorem (Cabré - F. - Weth, 2018) The hypersurfaces Σ_r can be perturbed (for large r) to a periodic hypersurface with Constant Nonlocal Mean Curvature.
Near spheres with CNMC

Consider the hypersurface Σ_r made of periodic array of round spheres:

$$\Sigma_r := S^{N-1} + r\mathbb{Z}$$

- It has constant classical mean curvature.
- It has non-constant nonlocal mean curvature. However,

Theorem (Cabré - F. - Weth, 2018) The hypersurfaces Σ_r can be perturbed (for large r) to a periodic hypersurface with Constant Nonlocal Mean Curvature. More precisely, they have the form:
Mean curvature flow approximations by Lévy diffusion heat flow

Let E be a smooth open set. Consider $X_{\alpha t}$ an α-stable Lévy process, (with $X_{2t} = B_t$ a Brownian motion).

Solution to the nonlocal heat diffusion

$$u_t(x) = \mathbb{E}_x(\tau_{E}(X_{\alpha t})),$$
$$u_0 = \tau_{E} = 1_{\mathbb{R}^N \setminus E}^{-1}.$$

For small times $t_0 > 0$, $\bigcup_{t < t_0} \{u_t = 0\} \sim \begin{cases}
\text{Mean Curvature motion of } \partial E
\text{if } \alpha \in (1, 2]
\text{Nonlocal Mean Curvature motion of } \partial E
\text{if } \alpha \in (0, 1)
\end{cases}$

▶ For $\alpha = 2$, Merriman-Bence-Osher (1992), Evans (1993),
▶ For $\alpha \in (0, 2)$, Caffarelli-Souganidis (2008).
Mean curvature flow approximations by Lévy diffusion heat flow

Let E be a smooth open set.
Mean curvature flow approximations by Lévy diffusion heat flow

Let E be a smooth open set.

Consider X_t^α an α-stable Lévy process,
(with $X_t^2 = B_t$ a Brownian motion).
Mean curvature flow approximations by Lévy diffusion heat flow

Let E be a smooth open set.

Consider X_t^α an α-stable Lévy process,

(with $X_t^2 = B_t$ a Brownian motion).

Solution to the nonlocal heat diffusion

$$u_t(x) = \mathbb{E}^x(\tau_E(X_t^\alpha)), \quad u_0 := \tau_E = 1_{\mathbb{R}^N \setminus E} - 1_E,$$

For $\alpha = 2$, Merriman-Bence-Osher (1992), Evans (1993),

For $\alpha \in (0, 2)$, Caffarelli-Souganidis (2008).
Mean curvature flow approximations by Lévy diffusion heat flow

Let E be a smooth open set.

Consider X_t^α an α-stable Lévy process,
(with $X_t^2 = B_t$ a Brownian motion).

Solution to the nonlocal heat diffusion

$$u_t(x) = \mathbb{E}^x(\tau_E(X_t^\alpha)),$$

$$u_0 := \tau_E = 1_{\mathbb{R}^N \setminus E} - 1_E,$$

For small times $t_0 > 0$,

$$\bigcup_{t < t_0} \{u_t = 0\} \sim \begin{cases}
\text{Mean Curvature motion of } \partial E
& \text{if } \alpha \in (1, 2]
\end{cases}$$
Mean curvature flow approximations by Lévy diffusion heat flow

Let \(E \) be a smooth open set.

Consider \(X_t^\alpha \) an \(\alpha \)-stable Lévy process,

(with \(X_t^2 = B_t \) a Brownian motion).

Solution to the nonlocal heat diffusion

\[
 u_t(x) = \mathbb{E}^x(\tau_E(X_t^\alpha)), \quad u_0 := \tau_E = 1_{\mathbb{R}^N \setminus E} - 1_E,
\]

For small times \(t_0 > 0 \),

\[
 \bigcup_{t < t_0} \{ u_t = 0 \} \sim \begin{cases}
 \text{Mean Curvature motion of } \partial E & \text{if } \alpha \in (1, 2] \\
 \text{Nonlocal Mean Curvature motion of } \partial E & \text{if } \alpha \in (0, 1)
\end{cases}
\]
Mean curvature flow approximations by Lévy diffusion heat flow

Let E be a smooth open set.

Consider X_t^α an α-stable Lévy process,
(with $X_t^2 = B_t$ a Brownian motion).

Solution to the nonlocal heat diffusion

$$ u_t(x) = \mathbb{E}^x(\tau_E(X_t^\alpha)), \quad u_0 := \tau_E = 1_{\mathbb{R}^N \setminus E} - 1_E, $$

For small times $t_0 > 0$,

$$ \bigcup_{t < t_0} \{ u_t = 0 \} \sim \begin{cases}
\text{Mean Curvature motion of } \partial E & \text{if } \alpha \in (1, 2] \\
\text{Nonlocal Mean Curvature motion of } \partial E & \text{if } \alpha \in (0, 1)
\end{cases} $$

- For $\alpha = 2$, Merriman-Bence-Osher (1992), Evans (1993),
Mean curvature flow approximations by Lévy diffusion heat flow

Let E be a smooth open set.

Consider X_t^α an α-stable Lévy process,
(with $X_t^2 = B_t$ a Brownian motion).

Solution to the nonlocal heat diffusion

$$u_t(x) = \mathbb{E}^x(\tau_E(X_t^\alpha)), \quad u_0 := \tau_E = 1_{\mathbb{R}^N \setminus E} - 1_E,$$

For small times $t_0 > 0$,

$$\bigcup_{t < t_0} \{u_t = 0\} \sim \begin{cases}
\text{Mean Curvature motion of } \partial E & \text{if } \alpha \in (1, 2] \\
\text{Nonlocal Mean Curvature motion of } \partial E & \text{if } \alpha \in (0, 1)
\end{cases}$$

- For $\alpha = 2$, Merriman-Bence-Osher (1992), Evans (1993),
- For $\alpha \in (0, 2)$, Caffarelli-Souganidis (2008).
Remarks and Open problems

The set of CNMC surfaces found so far captures the geometry and distributions of periodic patterns in some block copolymer phase diagram.

Investigate the nonlocal counterpart of the Gyroid.

The existence of a nonlocal catenoid in the full range of the fractional parameter α?

Existence of nonlocal minimal surfaces with genus e.g. Costa's surface

Existence of periodic nonlocal minimal surface e.g. Schwartz minimal surface and Schreck surfaces.

Connection of the theory of CNMC to Overdetermined problems!
Remarks and Open problems

- The set of CNMC surfaces found so far captures the geometry and distributions of periodic patterns in some block copolymer phase diagram.
Remarks and Open problems

- The set of CNMC surfaces found so far captures the geometry and distributions of periodic patterns in some block copolymer phase diagram.

- Investigate the nonlocal counterpart of the Gyroid.
Remarks and Open problems

- The set of CNMC surfaces found so far captures the geometry and distributions of periodic patterns in some block copolymer phase diagram.

- Investigate the nonlocal counterpart of the Gyroid.
 - The existence of a nonlocal catenoid in the full range of the fractional parameter α?
Remarks and Open problems

- The set of CNMC surfaces found so far captures the geometry and distributions of periodic patterns in some block copolymer phase diagram.

- Investigate the nonlocal counterpart of the Gyroid.
 - The existence of a nonlocal catenoid in the full range of the fractional parameter α?
 - Existence of nonlocal minimal surfaces with genus e.g. Costa’s surface.
Remarks and Open problems

- The set of CNMC surfaces found so far captures the geometry and distributions of periodic patterns in some block copolymer phase diagram.

- Investigate the nonlocal counterpart of the Gyroid.
 - The existence of a nonlocal catenoid in the full range of the fractional parameter α?
 - Existence of nonlocal minimal surfaces with genus e.g. Costa’s surface
 - Existence of periodic nonlocal minimal surface e.g. Schwartz minimal surface and Schreck surfaces.
Remarks and Open problems

- The set of CNMC surfaces found so far captures the geometry and distributions of periodic patterns in some block copolymer phase diagram.

- Investigate the nonlocal counterpart of the Gyroid.
 - The existence of a nonlocal catenoid in the full range of the fractional parameter α?
 - Existence of nonlocal minimal surfaces with genus e.g. Costa’s surface
 - Existence of periodic nonlocal minimal surface e.g. Schwartz minimal surface and Schreck surfaces.

 Connection of the theory of CNMC to Overdetermined problems!?
An elementary problem in fluid dynamics (Serrin 1971)

Consider a viscous incompressible laminar fluid flow in a long cylinder with given cross section \(\Omega \subset \mathbb{R}^2 \).

Stationary velocity field \(\mathbf{v} = (0, 0, u) \) with \(u : \Omega \to \mathbb{R} \).

Then \(u \) solves the Poisson problem

\[
-\Delta u = \delta \ell \eta \quad \text{in } \Omega,
\]

\(u = 0 \) on \(\partial \Omega \) (no slip boundary condition).

Here:

\(\delta \sim \text{pressure difference} \),

\(\ell \sim \text{cylinder length} \),

\(\eta \sim \text{viscosity} \).

Question: Which domains \(\Omega \) give rise to a constant tangential stress?

\[|\nabla u| = \text{const} \quad \text{on } \partial \Omega. \quad (1) \]
An elementary problem in fluid dynamics (Serrin 1971)

Consider a viscous incompressible laminar fluid flow in a long cylinder with given cross section $\Omega \subset \mathbb{R}^2$.

Then u solves the Poisson problem

$$-\Delta u = \delta \ell \eta \quad \text{in } \Omega, \quad u = 0 \quad \text{on } \partial \Omega$$

(no Slip boundary condition).

Here:

$\delta \sim$ pressure difference,

$\ell \sim$ cylinder length,

$\eta \sim$ viscosity.

Question: Which domains Ω give rise to a constant tangential stress?

$$|\nabla u| = \text{const} \quad \text{on } \partial \Omega$$
An elementary problem in fluid dynamics (Serrin 1971)

Consider a viscous incompressible laminar fluid flow in a long cylinder with given cross section $\Omega \subset \mathbb{R}^2$.
Stationary velocity field $v = (0, 0, u)$ with $u : \Omega \to \mathbb{R}$.
Consider a viscous incompressible laminar fluid flow in a long cylinder with given cross section $\Omega \subset \mathbb{R}^2$.

Stationary velocity field $\nu = (0, 0, u)$ with $u : \Omega \to \mathbb{R}$.

Then u solves the Poisson problem

$$\begin{align*}
-\Delta u &= \delta \ell \eta \\
u &= 0 \text{ on } \partial \Omega \quad \text{(no slip boundary condition).}
\end{align*}$$

Here:

$\delta \sim \text{pressure difference}$,

$\ell \sim \text{cylinder length}$,

$\eta \sim \text{viscosity}$.

Question: Which domains Ω give rise to a constant tangential stress?

$$|\nabla u| = \text{const} \quad \text{on } \partial \Omega. \quad (1)$$
An elementary problem in fluid dynamics (Serrin 1971)

Consider a viscous incompressible laminar fluid flow in a long cylinder with given cross section \(\Omega \subset \mathbb{R}^2 \).
Stationary velocity field \(\mathbf{v} = (0, 0, u) \) with \(u : \Omega \rightarrow \mathbb{R} \).

Then \(u \) solves the Poisson problem
\[
-\Delta u = \frac{\delta}{\ell \eta} \quad \text{in } \Omega, \quad u = 0 \quad \text{on } \partial \Omega \quad \text{(no Slip boundary condition)}.
\]

Here: \(\delta \sim \text{pressure difference} \), \(\ell \sim \text{cylinder length} \), \(\eta \sim \text{viscosity} \).
An elementary problem in fluid dynamics (Serrin 1971)

Consider a viscous incompressible laminar fluid flow in a long cylinder with given cross section \(\Omega \subset \mathbb{R}^2 \).
Stationary velocity field \(\mathbf{v} = (0, 0, u) \) with \(u : \Omega \to \mathbb{R} \).

Then \(u \) solves the Poisson problem
\[
-\Delta u = \frac{\delta}{\ell \eta} \quad \text{in } \Omega, \quad u = 0 \quad \text{on } \partial \Omega \quad \text{(no Slip boundary condition)}.
\]
Here: \(\delta \sim \text{pressure difference}, \ell \sim \text{cylinder length}, \eta \sim \text{viscosity} \).

Question: Which domains \(\Omega \) give rise to a constant tangential stress？
An elementary problem in fluid dynamics (Serrin 1971)

Consider a viscous incompressible laminar fluid flow in a long cylinder with given cross section $\Omega \subset \mathbb{R}^2$.
Stationary velocity field $v = (0, 0, u)$ with $u : \Omega \to \mathbb{R}$.

Then u solves the Poisson problem

$$-\Delta u = \frac{\delta}{\ell \eta} \quad \text{in } \Omega, \quad u = 0 \quad \text{on } \partial \Omega$$
(no Slip boundary condition).

Here: $\delta \sim$ pressure difference, $\ell \sim$ cylinder length, $\eta \sim$ viscosity.

Question: Which domains Ω give rise to a constant tangential stress ?

$$|\nabla u| = \text{const.} \quad \text{on } \partial \Omega.$$ \hspace{1cm} (1)
Theorem (Serrin 1971 and Weinberger 1971)

Let $\Omega \subset \mathbb{R}^N$ be a bounded domain with C^2-boundary such that the overdetermined problem

$$
\begin{align*}
-\Delta u &= 1 \quad \text{in } \Omega, \\
 u &= 0 \quad \text{on } \partial\Omega, \\
|\nabla u| &= \text{const} \quad \text{on } \partial\Omega
\end{align*}
$$

admits a positive solution.

Then $\Omega = B_r(0)$ and $u(x) = \frac{1}{2^N}(r^2 - |x|^2)$.

How about unbounded domains?
Theorem (Serrin 1971 and Weinberger 1971)

Let $\Omega \subset \mathbb{R}^N$ be a bounded domain with C^2-boundary such that the overdetermined problem

$$\begin{cases}
-\Delta u = 1 & \text{in } \Omega, \\
 u = 0 & \text{on } \partial\Omega, \\
|\nabla u| = \text{const} & \text{on } \partial\Omega
\end{cases}$$

admits a positive solution.

Then $\Omega = B_r(0)$ and

$$u(x) = \frac{1}{2N}(r^2 - |x|^2).$$

How about unbounded domains?
Theorem (Serrin 1971 and Weinberger 1971)

Let $\Omega \subset \mathbb{R}^N$ be a bounded domain with C^2-boundary such that the overdetermined problem

$$
\begin{cases}
-\Delta u = 1 & \text{in } \Omega, \\
u = 0 & \text{on } \partial \Omega, \\
|\nabla u| = \text{const} & \text{on } \partial \Omega
\end{cases}
$$

admits a positive solution.

Then $\Omega = B_r(0)$ and

$$u(x) = \frac{1}{2N}(r^2 - |x|^2).$$

How about unbounded domains?
Classification of unbounded Serrin domains?
Classification of unbounded Serrin domains?

Conjecture (Berestycki, Caffarelli, Nirenberg 1997)

Let $\Omega \subset \mathbb{R}^N$ be an unbounded sufficiently regular domain such that $\mathbb{R}^N \setminus \overline{\Omega}$ is connected, and let $f \in C^1(\mathbb{R})$. If the overdetermined problem

$$
\begin{cases}
-\Delta u = f(u) & \text{in } \Omega, \\
u = 0 & \text{on } \partial\Omega, \\
|\nabla u| = \text{const} & \text{on } \partial\Omega
\end{cases}
$$

(S)

admits a positive solution.
Classification of unbounded Serrin domains?

Conjecture (Berestycki, Caffarelli, Nirenberg 1997)

Let $\Omega \subset \mathbb{R}^N$ be an \textit{unbounded} sufficiently regular domain such that $\mathbb{R}^N \setminus \overline{\Omega}$ is connected, and let $f \in C^1(\mathbb{R})$. If the overdetermined problem

$$
\begin{align*}
-\Delta u &= f(u) & \text{in } \Omega, \\
u &= 0 & \text{on } \partial \Omega, \\
|\nabla u| &= \text{const} & \text{on } \partial \Omega
\end{align*}
$$

admits a positive solution.

Then

- Ω is an affine half space, or
- $\Omega = B^c$ for a ball $B \subset \mathbb{R}^N$, or
- Ω is a product of the form $\mathbb{R}^j \times B$ bzw. $\mathbb{R}^j \times B^c$ (modulo $O(N)$)

The conjecture is false!

- Sicbaldi 2010, Sicbaldi-Schlenk 2012, with $f(u) = \lambda u$.
- del Pino-Pacard-Wei (2015), monostable nonlinearity f.
- Ros-Sicbaldi-Ruiz, 2016, with $f(u) = u^p$, $N \geq 2$ and $\partial \Omega$ connected.
Classification of unbounded Serrin domains?

Conjecture (Berestycki, Caffarelli, Nirenberg 1997)

Let $\Omega \subset \mathbb{R}^N$ be an *unbounded* sufficiently regular domain such that $\mathbb{R}^N \setminus \overline{\Omega}$ is connected, and let $f \in C^1(\mathbb{R})$. If the overdetermined problem

$$
(S) \quad \begin{cases}
-\Delta u = f(u) & \text{in } \Omega, \\
u = 0 & \text{on } \partial \Omega, \\
|\nabla u| = \text{const} & \text{on } \partial \Omega
\end{cases}
$$

admits a positive solution.

Then
- Ω is an affine half space, or
- $\Omega = B^c$ for a ball $B \subset \mathbb{R}^N$, or
- Ω is a product of the form $\mathbb{R}^j \times B$ bzw. $\mathbb{R}^j \times B^c$ (modulo $O(N)$)

The conjecture is false!
Classification of unbounded Serrin domains?

Conjecture (Berestycki, Caffarelli, Nirenberg 1997)

Let Ω ⊂ \(\mathbb{R}^N \) be an unbounded sufficiently regular domain such that \(\mathbb{R}^N \setminus \overline{\Omega} \) is connected, and let \(f \in C^1(\mathbb{R}) \). If the overdetermined problem

\[
\begin{aligned}
\Delta u &= f(u) & \text{in } \Omega, \\
\mathbf{u} &= 0 & \text{on } \partial \Omega, \\
|\nabla u| &= \text{const} & \text{on } \partial \Omega
\end{aligned}
\]

admits a positive solution. Then

- \(\Omega \) is an affine half space, or
- \(\Omega = B^c \) for a ball \(B \subset \mathbb{R}^N \), or
- \(\Omega \) is a product of the form \(\mathbb{R}^j \times B \) bzw. \(\mathbb{R}^j \times B^c \) (modulo \(O(N) \)).

The conjecture is false!

- Sicbaldi 2010, Sicbaldi-Schlenk 2012, with \(f(u) = \lambda u \).
Classification of unbounded Serrin domains?

Conjecture (Berestycki, Caffarelli, Nirenberg 1997)

Let $\Omega \subset \mathbb{R}^N$ be an unbounded sufficiently regular domain such that $\mathbb{R}^N \setminus \overline{\Omega}$ is connected, and let $f \in C^1(\mathbb{R})$. If the overdetermined problem

\[
\begin{cases}
-\Delta u = f(u) & \text{in } \Omega, \\
u = 0 & \text{on } \partial \Omega, \\
|\nabla u| = \text{const} & \text{on } \partial \Omega
\end{cases}
\]

admits a positive solution.

Then

- Ω is an affine half space, or
- $\Omega = B^c$ for a ball $B \subset \mathbb{R}^N$, or
- Ω is a product of the form $\mathbb{R}^j \times B$ bzw. $\mathbb{R}^j \times B^c$ (modulo $O(N)$)

The conjecture is false!

- Sicbaldi 2010, Sicbaldi-Schlenk 2012, with $f(u) = \lambda u$.
- del Pino-Pacard-Wei (2015), monostable nonlinearity f.

Classification of unbounded Serrin domains?

Conjecture (Berestycki, Caffarelli, Nirenberg 1997)

Let $\Omega \subset \mathbb{R}^N$ be an unbounded sufficiently regular domain such that $\mathbb{R}^N \setminus \overline{\Omega}$ is connected, and let $f \in C^1(\mathbb{R})$. If the overdetermined problem

\[
(S) \begin{cases}
-\Delta u = f(u) & \text{in } \Omega, \\
 u = 0 & \text{on } \partial \Omega, \\
 |\nabla u| = \text{const} & \text{on } \partial \Omega
\end{cases}
\]

admits a positive solution.

Then

- Ω is an affine half space, or
- $\Omega = B^c$ for a ball $B \subset \mathbb{R}^N$, or
- Ω is a product of the form $\mathbb{R}^j \times B$ bzw. $\mathbb{R}^j \times B^c$ (modulo $O(N)$)

The conjecture is false!

- Sicbaldi 2010, Sicbaldi-Schlenk 2012, with $f(u) = \lambda u$.
- del Pino-Pacard-Wei (2015), monostable nonlinearity f.
- Ros-Sicbaldi-Ruiz, 2016, with $f(u) = u^p$, $N \geq 2$ and $\partial \Omega$ connected.
Classification of unbounded Serrin domains?

Conjecture (Berestycki, Caffarelli, Nirenberg 1997)

Let $\Omega \subset \mathbb{R}^N$ be an unbounded sufficiently regular domain such that $\mathbb{R}^N \setminus \overline{\Omega}$ is connected, and let $f \in C^1(\mathbb{R})$. If the overdetermined problem

\[
(S) \quad \begin{cases}
-\Delta u = f(u) & \text{in } \Omega, \\
u = 0 & \text{on } \partial\Omega, \\
|\nabla u| = \text{const} & \text{on } \partial\Omega
\end{cases}
\]

admits a positive solution.

Then

- Ω is an affine half space, or
- $\Omega = B^c$ for a ball $B \subset \mathbb{R}^N$, or
- Ω is a product of the form $\mathbb{R}^j \times B$ bzw. $\mathbb{R}^j \times B^c$ (modulo $O(N)$)

The conjecture is false!

- Sicbaldi 2010, Sicbaldi-Schlenk 2012, with $f(u) = \lambda u$.
- del Pino-Pacard-Wei (2015), monostable nonlinearity f.
- Ros-Sicbaldi-Ruiz, 2016, with $f(u) = u^p$, $N \geq 2$ and $\partial\Omega$ connected.

How about the original torsion problem: $f \equiv 1$?
Non-trivial solutions\footnote{M.M. F., I.A. Minlend and T. Weth, (2016)}
Non-trivial solutions \(^3\)

Serrin domains of the form \(\Omega_\varphi := \{(x, z) \in \mathbb{R}^m \times \mathbb{R}^n : |z| < \varphi(x)\}\), i.e.

\[^3\text{M.M. F., I.A. Minlend and T. Weth, (2016)}\]
Non-trivial solutions

Serrin domains of the form $\Omega_\varphi := \{(x, z) \in \mathbb{R}^m \times \mathbb{R}^n : |z| < \varphi(x)\}$, i.e.

\[
\begin{aligned}
-\Delta u &= 1 \quad \text{in } \Omega_\varphi \\
\partial_\nu u &= \text{Const.} \quad \text{on } \Omega_\varphi.
\end{aligned}
\]
Non-trivial solutions

Serrin domains of the form $\Omega_\varphi := \{(x, z) \in \mathbb{R}^m \times \mathbb{R}^n : |z| < \varphi(x)\}$, i.e.

$$
\begin{cases}
-\Delta u = 1 & \text{in } \Omega_\varphi \\
u = 0, & \partial_\nu u = \text{Const.} & \text{on } \Omega_\varphi.
\end{cases}
$$

\[\text{Diagram:} \quad n=1, m=1\]
Non-trivial solutions

Serrin domains of the form \(\Omega_\varphi := \{(x, z) \in \mathbb{R}^m \times \mathbb{R}^n : |z| < \varphi(x)\} \), i.e.

\[
\begin{cases}
-\Delta u = 1 & \text{in } \Omega_\varphi \\
u = 0, \quad \partial_\nu u = \text{Const.} & \text{on } \Omega_\varphi.
\end{cases}
\]

\[n=1, m=1\]

\[n=1, m=2\]

\(^3\)M.M. F., I.A. Minlend and T. Weth, (2016)
Non-trivial solutions

Serrin domains of the form $\Omega_\varphi := \{(x, z) \in \mathbb{R}^m \times \mathbb{R}^n : |z| < \varphi(x)\}$, i.e.

$$\begin{cases}
-\Delta u = 1 & \text{in } \Omega_\varphi \\
u = 0, \quad \partial_\nu u = \text{Const.} & \text{on } \Omega_\varphi.
\end{cases}$$

\[^{3}\text{M.M. F., I.A. Minlend and T. Weth, (2016)}\]
Thank you for your attention!