Let G be a connected reductive group over \mathbb{F}_q. Let σ be the Frobenius morphism on $G(\overline{\mathbb{F}_q})$. Let B be a σ-stable Borel subgroup and W be the Weyl group. Then we have the Bruhat decomposition

$$G = \bigsqcup_{w \in W} BwB.$$

Consider the σ-conjugation action $g \cdot_{\sigma} g' = gg'\sigma(g)^{-1}$.

Theorem (Lang, ’56)

Any two elements in G are σ-conjugate to each other.

Deligne and Lusztig ’76 introduced the Deligne-Lusztig variety. For any $w \in W$, set

$$X_w = \{gB \in G/B; g^{-1}\sigma(g) \in BwB\}.$$
(Classical) Deligne-Lusztig varieties

Let G be a connected reductive group over \mathbb{F}_q. Let σ be the Frobenius morphism on $G(\mathbb{F}_q)$. Let B be a σ-stable Borel subgroup and W be the Weyl group. Then we have the Bruhat decomposition

$$G = \bigsqcup_{w \in W} BwB.$$

Consider the σ-conjugation action $g \cdot \sigma g' = gg'\sigma(g)^{-1}$.

Theorem (Lang, '56)

Any two elements in G are σ-conjugate to each other.

Deligne and Lusztig '76 introduced the Deligne-Lusztig variety. For any $w \in W$, set

$$X_w = \{gB \in G/B; g^{-1}\sigma(g) \in BwB\}.$$

The finite reductive group $G(\mathbb{F}_q)$ acts naturally on X_w and on the cohomology of X_w. It plays a crucial role in the representation theory.
Let G be a connected reductive group over \mathbb{F}_q. Let σ be the Frobenius morphism on $G(\bar{\mathbb{F}}_q)$. Let B be a σ-stable Borel subgroup and W be the Weyl group. Then we have the Bruhat decomposition

$$G = \bigsqcup_{w \in W} BwB.$$

Consider the σ-conjugation action $g \cdot_\sigma g' = gg'\sigma(g)^{-1}$.

Theorem (Lang, ’56)

Any two elements in G are σ-conjugate to each other.

Deligne and Lusztig ’76 introduced the Deligne-Lusztig variety. For any $w \in W$, set

$$X_w = \{gB \in G/B; g^{-1}\sigma(g) \in BwB\}.$$

The finite reductive group $G(\mathbb{F}_q)$ acts naturally on X_w and on the cohomology of X_w. It plays a crucial role in the representation theory.
Some geometric properties of X_w

- X_w is nonempty;
- $\dim X_w = \ell(w)$;
- [Lusztig, Digne-Michel ’06, Bonnafé-Rouquier ’06, Görtz ’09]

The following are equivalent:

1. X_w is irreducible;
2. X_w is connected;
3. The element w is not contained in any Frobenius-stable proper standard parabolic subgroup of W.
Some geometric properties of X_w

- X_w is nonempty;
- $\dim X_w = \ell(w)$;
- [Lusztig, Digne-Michel ’06, Bonnafé-Rouquier ’06, Görtz ’09]
 The following are equivalent:
 1. X_w is irreducible;
 2. X_w is connected;
 3. The element w is not contained in any Frobenius-stable proper standard parabolic subgroup of W.

- In general, the number of connected components of X_w equals $\#(G/P)(\mathbb{F}_q)$, where P is the smallest standard rational parabolic subgroup of G whose Weyl group contains w.
Some geometric properties of X_w

- X_w is nonempty;
- $\dim X_w = \ell(w)$;
- [Lusztig, Digne-Michel ’06, Bonnafé-Rouquier ’06, Görtz ’09]
The following are equivalent:
 1. X_w is irreducible;
 2. X_w is connected;
 3. The element w is not contained in any Frobenius-stable proper standard parabolic subgroup of W.

In general, the number of connected components of X_w equals $\#(G/P)(\mathbb{F}_q)$, where P is the smallest standard rational parabolic subgroup of G whose Weyl group contains w.
Isocrystals

F a non-arch. local field with valuation ring \mathcal{O}_F and residue field $\overline{\mathbb{F}}_q$.
$	ilde{F}$ completion of F^{un} with valuation ring $\mathcal{O}_{\tilde{F}}$ and residue field $k = \overline{\mathbb{F}}_q$.
σ Frobenius morphism of \tilde{F} over F.

Definition

An isocrystal is a pair (N, g), where N is a finite dimensional vector space over \tilde{F} and $g : N \to N$ is a semi-linear bijection. A crystal M of an isocrystal (N, g) is a g-stable $\mathcal{O}_{\tilde{F}}$-lattice of N.

Isocrystals

\(F \) a non-arch. local field with valuation ring \(\mathcal{O}_F \) and residue field \(\mathbb{F}_q \).
\(\bar{F} \) completion of \(F^{un} \) with valuation ring \(\mathcal{O}_{\bar{F}} \) and residue field \(k = \bar{\mathbb{F}}_q \).
\(\sigma \) Frobenius morphism of \(\bar{F} \) over \(F \).

Definition

An isocrystal is a pair \((N, g) \), where \(N \) is a finite dimensional vector space over \(\bar{F} \) and \(g : N \to N \) is a semi-linear bijection. A crystal \(M \) of an isocrystal \((N, g) \) is a \(g \)-stable \(\mathcal{O}_{\bar{F}} \)-lattice of \(N \).

Isocrystal \(\leadsto \) Newton slope, crystal \(\leadsto \) Hodge slope

Example

Let \(N = \bigoplus_{i=1}^3 \bar{F}e_i \), \(g(e_1) = e_2 \), \(g(e_2) = e_3 \), \(g(e_3) = \epsilon e_1 \). Let \(M = \bigoplus_{i=1}^3 \mathcal{O}_{\bar{F}}e_i \) be a crystal of \((N, g) \). Then \(\nu(N, g) = (\frac{1}{3}, \frac{1}{3}, \frac{1}{3}) \) and \(\mu(M) = (1, 0, 0) \).
Isocrystals

\(F \) a non-arch. local field with valuation ring \(\mathcal{O}_F \) and residue field \(\mathbb{F}_q \).
\(\tilde{F} \) completion of \(F^{un} \) with valuation ring \(\mathcal{O}_{\tilde{F}} \) and residue field \(k = \mathbb{F}_q \).
\(\sigma \) Frobenius morphism of \(\tilde{F} \) over \(F \).

Definition

An isocrystal is a pair \((N, g)\), where \(N \) is a finite dimensional vector space over \(\tilde{F} \) and \(g : N \to N \) is a semi-linear bijection. A crystal \(M \) of an isocrystal \((N, g)\) is a \(g \)-stable \(\mathcal{O}_{\tilde{F}} \)-lattice of \(N \).

Example

Let \(N = \bigoplus_{i=1}^{3} \tilde{F} e_i \), \(g(e_1) = e_2, g(e_2) = e_3, g(e_3) = \epsilon e_1 \). Let \(M = \bigoplus_{i=1}^{3} \mathcal{O}_{\tilde{F}} e_i \) be a crystal of \((N, g)\). Then \(\nu(N, g) = (\frac{1}{3}, \frac{1}{3}, \frac{1}{3}) \) and \(\mu(M) = (1, 0, 0) \). We have \(\nu(N, g) \preceq \mu(M) \) in the dominance order.
Isocrystals

F a non-arch. local field with valuation ring \mathcal{O}_F and residue field $\overline{\mathbb{F}}_q$. $
\tilde{F}$ completion of F^{un} with valuation ring $\mathcal{O}_{\tilde{F}}$ and residue field $k = \overline{\mathbb{F}}_q$. $
\sigma$ Frobenius morphism of \tilde{F} over F.

Definition

An isocrystal is a pair (N, g), where N is a finite dimensional vector space over \tilde{F} and $g : N \rightarrow N$ is a semi-linear bijection. A crystal M of an isocrystal (N, g) is a g-stable $\mathcal{O}_{\tilde{F}}$-lattice of N.

Isocrystal \sim Newton slope, crystal \sim Hodge slope

Example

Let $N = \bigoplus_{i=1}^{3} \tilde{F} e_i$, $g(e_1) = e_2$, $g(e_2) = e_3$, $g(e_3) = \epsilon e_1$. Let $M = \bigoplus_{i=1}^{3} \mathcal{O}_{\tilde{F}} e_i$ be a crystal of (N, g). Then $\nu(N, g) = (\frac{1}{3}, \frac{1}{3}, \frac{1}{3})$ and $\mu(M) = (1, 0, 0)$. We have $\nu(N, g) \leq \mu(M)$ in the dominance order.
Mazur’s inequality

Theorem

(1) [Mazur ’73] Let \((N, g)\) be an isocrystal and \(M\) be a crystal of \((N, g)\). Then

\[
\mu(M) \geq \nu(N, g).
\]

(2) [Kottwitz-Rapoport ’03] Let \((N, g)\) be an isocrystal of dimension \(n\). Let \(\mu = (a_1, \ldots, a_n) \in \mathbb{Z}^n\) with \(a_1 \geq a_2 \geq \cdots \geq a_n\) and \(\mu \geq \nu(N, g)\). Then there exists a crystal \(M\) of \((N, g)\) with \(\mu(M) = \mu\).

Group-theoretic reformulation: \(G = \text{GL}_n(\bar{\mathcal{F}})\) and \(K = \text{GL}_n(\mathcal{O}_F)\).

Isocrystal \(\leftrightarrow\) \(\sigma\)-conjugacy class \([b]\)

Crystal \(\leftrightarrow\) \(K \times K\)-double coset \(K \mu K\)

Mazur’s inequality: \(K \mu K \cap [b] \neq \emptyset\) if and only if \(\nu_b \leq \mu\).
Mazur’s inequality

Theorem

(1) [Mazur ’73] Let \((N, g)\) be an isocrystal and \(M\) be a crystal of \((N, g)\). Then

\[\mu(M) \geq \nu(N, g). \]

(2) [Kottwitz-Rapoport ’03] Let \((N, g)\) be an isocrystal of dimension \(n\). Let \(\mu = (a_1, \ldots, a_n) \in \mathbb{Z}^n\) with \(a_1 \geq a_2 \geq \cdots \geq a_n\) and \(\mu \geq \nu(N, g)\). Then there exists a crystal \(M\) of \((N, g)\) with \(\mu(M) = \mu\).

Group-theoretic reformulation: \(G = GL_n(\mathbb{F})\) and \(K = GL_n(\mathcal{O}_\mathbb{F})\).

Isocrystal \(\leftrightarrow\) \(\sigma\)-conjugacy class \([b]\)

Crystal \(\leftrightarrow\) \(K \times K\)-double coset \(K\mu K\)

Mazur’s inequality: \(K\mu K \cap [b] \neq \emptyset\) if and only if \(\nu_b \leq \mu\).
Notation

G reductive group over F, σ Frobenius morphism on $G(\overline{F})$, I σ-stable Iwahori subgroup, \tilde{W} Iwahori-Weyl group. We have

$$G(\overline{F}) = \bigsqcup_{w \in \tilde{W}} Iwl.$$

Note that \tilde{W} is a quasi-Coxeter group, has a natural Bruhat order \leq and the length function ℓ on it.

We have $\dim(Iwl/I) = \ell(w)$ and $Iwl/I = \bigsqcup_{w' \leq w} Iw'I/I$.

If G is unramified, we let $K \supset I$ be a hyperspecial parahoric subgroup. Then

$$G(\overline{F}) = \bigsqcup_{\mu \text{dominant}} K\mu.$$
Notation

G reductive group over F, σ Frobenius morphism on $G(\tilde{F})$, I σ-stable Iwahori subgroup, \tilde{W} Iwahori-Weyl group. We have

$$G(\tilde{F}) = \bigsqcup_{w \in \tilde{W}} lw/l.$$

Note that \tilde{W} is a quasi-Coxeter group, has a natural Bruhat order \leq and the length function ℓ on it.

We have $\dim(lw/l) = \ell(w)$ and $lw/l = \bigsqcup_{w' \leq w} lw'/l$.

If G is unramified, we let $K \supset I$ be a hyperspecial parahoric subgroup. Then $G(\tilde{F}) = \bigsqcup_{\mu \text{ dominant}} K\mu K$.
Notation

G reductive group over F, σ Frobenius morphism on $G(\tilde{F})$, I σ-stable Iwahori subgroup, \tilde{W} Iwahori-Weyl group. We have

$$G(\tilde{F}) = \bigsqcup_{w \in \tilde{W}} lwI.$$

Note that \tilde{W} is a quasi-Coxeter group, has a natural Bruhat order \leq and the length function ℓ on it. We have $\dim(lwl/I) = \ell(w)$ and $\overline{lwl/I} = \bigsqcup_{w' \leq w} lw'I/I$.

If G is unramified, we let $K \supset I$ be a hyperspecial parahoric subgroup. Then $G(\tilde{F}) = \bigsqcup_{\mu \text{ dominant}} K\mu K$.

The affine flag variety $Fl = G(\tilde{F})/I$

The affine Grassmannian $Gr = G(\tilde{F})/K$
Notation

G reductive group over F, σ Frobenius morphism on $G(\tilde{F})$, I σ-stable Iwahori subgroup, $\tilde{\mathcal{W}}$ Iwahori-Weyl group. We have

$$G(\tilde{F}) = \bigsqcup_{w \in \tilde{\mathcal{W}}} lwI.$$

Note that $\tilde{\mathcal{W}}$ is a quasi-Coxeter group, has a natural Bruhat order \leq and the length function ℓ on it. We have $\dim(lwl/I) = \ell(w)$ and $lwl/I = \bigsqcup_{w' \leq w} lw'I/I$.

If G is unramified, we let $K \supset I$ be a hyperspecial parahoric subgroup. Then $G(\tilde{F}) = \bigsqcup_{\mu \text{ dominant}} K\mu K$.

The affine flag variety $Fl = G(\tilde{F})/I$

The affine Grassmannian $Gr = G(\tilde{F})/K$
The affine Deligne-Lusztig varieties we are particularly interested in are

- **ADLV in the affine Grassmannian**

\[X_{\lambda}(b) = \{ gK \in G/K ; g^{-1}b\sigma(g) \in K\epsilon^\lambda K \} \subset Gr. \]

- **ADLV in the affine flag variety**

\[X_w(b) = \{ gl \in G/l ; g^{-1}b\sigma(g) \in lwI \} \subset Fl. \]

- The union of ADLV in the affine flag variety

\[X(\mu, b) = \bigcup_{w \in \text{Adm}(\mu)} X_w(b) \subset Fl. \]

Here the admissible set \(\text{Adm}(\mu) \) is defined to be

\[\text{Adm}(\mu) = \{ w \in \tilde{W} ; w \leq t^{\mu'} \text{ for some conjugate } \mu' \text{ of } \mu \}. \]
Below we list some major problems on the affine Deligne-Lusztig varieties:

- When is an affine Deligne-Lusztig variety nonempty?
- If it is nonempty, what is its dimension?
- What are the connected components?
- Is there a simple geometric structure for certain affine Deligne-Lusztig varieties?

These are interesting, yet challenging problems in Lie theory and have important applications to number theory.
Major problems

Below we list some major problems on the affine Deligne-Lusztig varieties:

- When is an affine Deligne-Lusztig variety nonempty?
- If it is nonempty, what is its dimension?
- What are the connected components?
- Is there a simple geometric structure for certain affine Deligne-Lusztig varieties?

These are interesting, yet challenging problems in Lie theory and have important applications to number theory.

A major difference between affine Deligne-Lusztig varieties and classical Deligne-Lusztig varieties is that affine Deligne-Lusztig varieties have the second parameter: the σ-conjugacy class $[b]$ of $G(\bar{F})$.
Major problems

Below we list some major problems on the affine Deligne-Lusztig varieties:

- When is an affine Deligne-Lusztig variety nonempty?
- If it is nonempty, what is its dimension?
- What are the connected components?
- Is there a simple geometric structure for certain affine Deligne-Lusztig varieties?

These are interesting, yet challenging problems in Lie theory and have important applications to number theory.

A major difference between affine Deligne-Lusztig varieties and classical Deligne-Lusztig varieties is that affine Deligne-Lusztig varieties have the second parameter: the σ-conjugacy class $[b]$ of $G(\hat{F})$.
Classification of σ-conjugacy classes

Kottwitz ’85 & ’97 gave a classification of the set $B(G)$ of σ-conjugacy classes of $G(\tilde{F})$:

$$(\kappa, \nu): B(G) \hookrightarrow \pi_1(G)_{\text{Gal} (\tilde{F}/F)} \times X_*(T)^+_Q,$$

where κ is the Kottwitz map and ν is the Newton map.

A more explicit way: [Görtz-Haines-Kottwitz-Reuman ’10, H. ’14]

Let $\tilde{W}/_\sigma \tilde{W}$ be the set of σ-conjugacy classes of \tilde{W}. Then

$$\tilde{W}/_\sigma \tilde{W} \xrightarrow{\Psi} B(G).$$

Here κ is deduced from the map $\tilde{W} \to \tilde{W}/W_{aff} \cong \pi_1(G)$ and $\nu(w)$ is the unique dominant element conjugate to the rational coweight λ/n, where n is a positive integer with $(w\sigma)^n = t^\lambda$.
Classification of σ-conjugacy classes

Kottwitz '85 & '97 gave a classification of the set $B(G)$ of σ-conjugacy classes of $G(\tilde{F})$:

$$\mathbf{(\kappa, \nu)}: B(G) \rightarrow \pi_1(G)_{\text{Gal}(\bar{F}/F)} \times X^*(T)^+_Q,$$

where κ is the Kottwitz map and ν is the Newton map.

A more explicit way: [Görtz-Haines-Kottwitz-Reuman '10, H. '14]

Let $\tilde{W}/\sigma \tilde{W}$ be the set of σ-conjugacy classes of \tilde{W}. Then

$$\tilde{W}/\sigma \tilde{W} \xrightarrow{\Psi} B(G).$$

Here κ is deduced from the map $\tilde{W} \rightarrow \tilde{W}/W_{\text{aff}} \cong \pi_1(G)$ and $\nu(w)$ is the unique dominant element conjugate to the rational coweight λ/n, where n is a positive integer with $(w\sigma)^n = t^\lambda$.
Straight elements

Definition
An element $w \in \tilde{W}$ is called σ-straight if for all $n \in \mathbb{N}$,

$$\ell(w \sigma(w) \cdots \sigma^{n-1}(w)) = n \ell(w).$$

A σ-conjugacy class is called straight if it contains a σ-straight element.

We denote by $\tilde{W} // \sigma \tilde{W}$ the set of straight σ-conjugacy classes of \tilde{W}.

Theorem (H. '14)

$$\tilde{W} // \sigma \tilde{W} \xrightarrow{1-1} B(G).$$

$$\pi_1(G)_{Gal(\bar{F}/F)} \times X_* (T)_Q^+$$
Straight elements

Definition

An element \(w \in \tilde{W} \) is called \(\sigma \)-straight if for all \(n \in \mathbb{N} \),

\[
\ell(w \sigma(w) \cdots \sigma^{n-1}(w)) = n \ell(w).
\]

A \(\sigma \)-conjugacy class is called straight if it contains a \(\sigma \)-straight element.

We denote by \(\tilde{W} / / \sigma \tilde{W} \) the set of straight \(\sigma \)-conjugacy classes of \(\tilde{W} \).

Theorem (H. ’14)

\[\tilde{W} / / \sigma \tilde{W} \overset{1-1}{\longrightarrow} B(G). \]

\[\pi_1(G)_{\text{Gal}(\bar{F}/F)} \times X_*(T)^+_Q \]
“Dimension=Degree” Theorem

Theorem (H.-Nie ’14)

Let H be the extended affine Hecke algebra of W over $\mathbb{Z}[\nu^{\pm 1}]$. For any $w \in \tilde{W}$, there exists polynomials $f_{w,\mathcal{O}} \in \mathbb{N}[\nu - \nu^{-1}]$ for each σ-conjugacy class \mathcal{O} such that

$$T_w \equiv \sum f_{w,\mathcal{O}} T_{w_{\mathcal{O}}} \mod [H, H]_{\sigma},$$

here $w_{\mathcal{O}}$ is a minimal length representative of \mathcal{O}.

Theorem (H. ’14)

Let $b \in G(L)$ and $w \in \tilde{W}$. Then

$$\dim X_w(b) = \max_{\mathcal{O}; \kappa(\mathcal{O}) = \kappa(b), \nu(\mathcal{O}) = \nu(b)} \frac{1}{2} \left(\ell(w) + \ell(w_{\mathcal{O}}) + \deg f_{w,\mathcal{O}} \right) - \langle \bar{\nu}_b, 2\rho \rangle.$$

Moreover, $X_w(b) \neq \emptyset$ iff $f_{w,\mathcal{O}} \neq 0$ for some \mathcal{O} with $(\kappa, \nu)(\mathcal{O}) = (\kappa, \nu)(b)$.
“Dimension=Degree” Theorem

Theorem (H.-Nie ’14)

Let H be the extended affine Hecke algebra of W over $\mathbb{Z}[v^{\pm 1}]$. For any $w \in \tilde{W}$, there exists polynomials $f_{w,\mathcal{O}} \in \mathbb{N}[v - v^{-1}]$ for each σ-conjugacy class \mathcal{O} such that

$$T_w \equiv \sum f_{w,\mathcal{O}} T_{w_\mathcal{O}} \mod [H, H]_\sigma,$$

here $w_\mathcal{O}$ is a minimal length representative of \mathcal{O}.

Theorem (H. ’14)

Let $b \in G(L)$ and $w \in \tilde{W}$. Then

$$\dim X_w(b) = \max_{\mathcal{O}; \kappa(\mathcal{O}) = \kappa(b), \nu(\mathcal{O}) = \nu(b)} \frac{1}{2} \left(\ell(w) + \ell(w_\mathcal{O}) + \deg f_{w,\mathcal{O}} \right) - \langle \bar{\nu}_b, 2\rho \rangle.$$

Moreover, $X_w(b) \neq \emptyset$ iff $f_{w,\mathcal{O}} \neq 0$ for some \mathcal{O} with $(\kappa, \nu)(\mathcal{O}) = (\kappa, \nu)(b)$.

Xuhua He (UMD) Affine Deligne-Lusztig varieties 11 / 22
Theorem (Rapoport-Richartz ’96, Kottwitz ’03, Gashi ’10)

Let λ be a dominant coweight and $b \in G$. Then $X_\lambda(b) \neq \emptyset$ if and only if $\kappa([b]) = \kappa(\lambda)$ and $\nu_b \leq \lambda$.

Theorem (Görtz-Haines-Kottwitz-Reuman ’10, Görtz-H.-Nie ’15)

Let G be a quasi-split group and $[b] \in B(G)$ be basic. Then $X_w(b) \neq \emptyset$ if and only if there is no “Levi obstruction”.

Nonemptiness pattern

Theorem (Rapoport-Richartz ’96, Kottwitz ’03, Gashi ’10)
Let λ be a dominant coweight and $b \in G$. Then $X_\lambda(b) \neq \emptyset$ if and only if $\kappa([b]) = \kappa(\lambda)$ and $\nu_b \leq \lambda$.

Theorem (Görtz-Haines-Kottwitz-Reuman ’10, Görtz-H.-Nie ’15)
Let G be a quasi-split group and $[b] \in B(G)$ be basic. Then $X_w(b) \neq \emptyset$ if and only if there is no “Levi obstruction”.

Theorem (Conjecture of Kottwitz-Rapoport ’03, Wintenberger ’05, H. ’16)
Let $[b] \in B(G)$. Then $X(\mu, b) \neq \emptyset$ if and only if $[b] \in B(G, \mu)$, i.e. $\kappa([b]) = \kappa(\mu)$ and ν_b is less than or equal to the Galois average of μ.
Nonemptiness pattern

Theorem (Rapoport-Richartz ’96, Kottwitz ’03, Gashi ’10)
Let λ be a dominant coweight and $b \in G$. Then $X_\lambda(b) \neq \emptyset$ if and only if $\kappa([b]) = \kappa(\lambda)$ and $\nu_b \leq \lambda$.

Theorem (Görtz-Haines-Kottwitz-Reuman ’10, Görtz-H.-Nie ’15)
Let G be a quasi-split group and $[b] \in B(G)$ be basic. Then $X_w(b) \neq \emptyset$ if and only if there is no “Levi obstruction”.

Theorem (Conjecture of Kottwitz-Rapoport ’03, Wintenberger ’05, H. ’16)
Let $[b] \in B(G)$. Then $X(\mu, b) \neq \emptyset$ if and only if $[b] \in B(G, \mu)$, i.e. $\kappa([b]) = \kappa(\mu)$ and ν_b is less than or equal to the Galois average of μ.
Dimension formula

Theorem (Conjecture of Rapoport ’05, reformulated by Kottwitz ’06, Görtz-Haines-Kottwitz-Reuman+Viehmann ’06, Hamacher ’15, Zhu ’17)

Let λ be a dominant coweight and $b \in G$. If $X_\lambda(b) \neq \emptyset$, then

$$\dim X_\lambda(b) = \langle \lambda - \nu_b, \rho \rangle - \frac{1}{2} \text{def}_G(b),$$

where $\text{def}_G(b)$ is the defect of b.

Theorem (Conjecture of Görtz-Haines-Kottwitz-Reuman ’10, H. ’14 & ’16)

Let $[b] \in B(G)$ be basic and $w \in W$ be an element in the shrunken Weyl chamber (i.e., the lowest two-sided cell of W). If $X_w(b) \neq \emptyset$, then

$$\dim X_w(b) = \frac{1}{2}(\ell(w) + \ell(\eta_\sigma(w)) - \text{def}_G(b)).$$
Theorem (Conjecture of Rapoport ’05, reformulated by Kottwitz ’06, Görtz-Haines-Kottwitz-Reuman+Viehmann ’06, Hamacher ’15, Zhu ’17)

Let λ be a dominant coweight and $b \in G$. If $X_\lambda(b) \neq \emptyset$, then

$$\dim X_\lambda(b) = \langle \lambda - \nu_b, \rho \rangle - \frac{1}{2} \text{def}_G(b),$$

where $\text{def}_G(b)$ is the defect of b.

Theorem (Conjecture of Görtz-Haines-Kottwitz-Reuman ’10, H. ’14 & ’16)

Let $[b] \in B(G)$ be basic and $w \in W$ be an element in the shrunken Weyl chamber (i.e., the lowest two-sided cell of W). If $X_w(b) \neq \emptyset$, then

$$\dim X_w(b) = \frac{1}{2} (\ell(w) + \ell(\eta_\sigma(w)) - \text{def}_G(b)).$$
Example of G_2

Hodge-Newton decomposition

The pair \((\lambda, b)\) is called Hodge-Newton decomposable w.r.t. a proper Levi subgroup \(M\) if \(b \in M\) and \(\kappa_M(\lambda) = \kappa_M(b)\).

Theorem (Katz '79, Kottwitz '03)

Let \((\lambda, b)\) be Hodge-Newton decomposable w.r.t. a Levi \(M\). Then

\[
X^M_\chi(b) \cong X^G_\chi(b).
\]

Theorem (Görtz-H.-Nie)

Suppose that \((\mu, b)\) is Hodge-Newton decomposable with respect to some proper Levi subgroup. Then

\[
X(\mu, b) \cong \bigsqcup_{P' = M' N'} X^{M'}(\mu_{P'}, b_{P'}),
\]

where \(P'\) runs through a certain finite set of semistandard parabolic subgroups. The subsets in the union are open and closed.
Connected components

Theorem (Viehmann ’08, Chen-Kisin-Viehmann ’15, Nie)

Assume that G is an unramified simple group and that (λ, b) is Hodge-Newton indecomposable. Then

$$\pi_0(X_{\leq \lambda}(b)) \cong \pi_1(G)^\sigma_{\Gamma_0}.$$

Theorem (H.-Zhou)

Assume that $[b] \in B(G, \mu)$ is basic and that (μ, b) is Hodge-Newton indecomposable. Then

$$\pi_0(X(\mu, b)) \cong \pi_1(G)^\sigma_{\Gamma_0}.$$
Connected components

Theorem (Viehmann ’08, Chen-Kisin-Viehmann ’15, Nie)

Assume that G is an unramified simple group and that (λ, b) is Hodge-Newton indecomposable. Then

$$\pi_0(X_{\leq \lambda}(b)) \cong \pi_1(G)_{\Gamma_0}^\sigma.$$

Theorem (H.-Zhou)

Assume that $[b] \in B(G, \mu)$ is basic and that (μ, b) is Hodge-Newton indecomposable. Then $\pi_0(X(\mu, b)) \cong \pi_1(G)_{\Gamma_0}^\sigma.$

Theorem (Chen-Nie)

Let G be a split group. Assume that $[b] \in B(G, \mu)$ and that (μ, b) is Hodge-Newton indecomposable. Then $\pi_0(X(\mu, b)) \cong \pi_1(G).$
Connected components

Theorem (Viehmann ’08, Chen-Kisin-Viehmann ’15, Nie)
Assume that G is an unramified simple group and that (λ, b) is Hodge-Newton indecomposable. Then

$$\pi_0(X_{\leq \lambda}(b)) \cong \pi_1(G)_{\Gamma_0}.$$

Theorem (H.-Zhou)
Assume that $[b] \in B(G, \mu)$ is basic and that (μ, b) is Hodge-Newton indecomposable. Then $\pi_0(X(\mu, b)) \cong \pi_1(G)_{\Gamma_0}$.

Theorem (Chen-Nie)
Let G be a split group. Assume that $[b] \in B(G, \mu)$ and that (μ, b) is Hodge-Newton indecomposable. Then $\pi_0(X(\mu, b)) \cong \pi_1(G)$.
Theorem (Görtz-H.-Nie)

Assume that G is simple, μ is a dominant coweight of G and K' is a parahoric subgroup. Then the following conditions are equivalent:

- For basic $[b_0] \in B(G, \mu)$, $X(\mu, b_0)_{K'}$ is naturally a union of classical Deligne-Lusztig varieties;
- For any nonbasic $[b] \in B(G, \mu)$, $\dim X(\mu, b)_{K'} = 0$;
- The pair (μ, b) is Hodge-Newton decomposable for any nonbasic $[b] \in B(G, \mu)$;
- The coweight μ is minute for G.

For quasi-split groups, minute means that $\sum_{i \in \mathcal{O}} \langle \mu, \omega_i^\vee \rangle \leq 1$ for any Galois orbit \mathcal{O} on the set of simple roots. The definition for non quasi-split group is more involved.
Theorem (Görtz-H.-Nie)

Assume that G is simple, μ is a dominant coweight of G and K' is a parahoric subgroup. Then the following conditions are equivalent:

- For basic $[b_0] \in B(G, \mu)$, $X(\mu, b_0)_{K'}$ is naturally a union of classical Deligne-Lusztig varieties;
- For any nonbasic $[b] \in B(G, \mu)$, $\dim X(\mu, b)_{K'} = 0$;
- The pair (μ, b) is Hodge-Newton decomposable for any nonbasic $[b] \in B(G, \mu)$;
- The coweight μ is minute for G.

For quasi-split groups, minute means that $\sum_{i \in O} \langle \mu, \omega_i^\vee \rangle \leq 1$ for any Galois orbit O on the set of simple roots. The definition for non quasi-split group is more involved.
Classification

Fully Hodge-Newton decomposable cases are

- The fake unitary case. Studied by Harris-Taylor.
- The Drinfeld case.
- $U(1, n)$ of a hermitian form. Studied by Vollaard-Wedhorn ‘11 (unramified case) and by Rapoport-Terstiege-Wilson ‘14 (ramified case).
- $SO(2, n)$ of a quadratic form. Studied by Howard-Pappas ‘17.
- A few exceptional cases.
Theorem (H.-Rapoport ’17)

Under several axioms of Shimura varieties,

- The Kottwitz-Rapoport stratum $KR_{K,w}$ is nonempty if and only if $w \in \text{Adm}(\mu)_K$.
- The Newton stratum $N_{K,[b]}$ is nonempty if and only if $[b] \in B(G,\mu)$.

There exists the Ekedahl-Kottwitz-Oort-Rapoport stratification on Sh_K with arbitrary parahoric level structure, $Sh_K = \bigcup_{w \in \text{Adm}(\mu)} \bigcup \tilde{W}_{EKOR}$, w.

The closure of a EKOR stratum is a union of EKOR strata.
Application to Shimura varieties

Theorem (H.-Rapoport ’17)

Under several axioms of Shimura varieties,

- The Kottwitz-Rapoport stratum $KR_{K,w}$ is nonempty if and only if $w \in \text{Adm}(\mu)_{K}$.
- The Newton stratum $N_{K,[b]}$ is nonempty if and only if $[b] \in B(G,\mu)$.
- (Grothendieck’s conjecture) For $[b], [b'] \in B(G,\mu)$,

$$\overline{N_{K,[b]} \cap N_{K,[b']}} \neq \emptyset \iff \nu_{b'} \leq \nu_{b}.$$
Theorem (H.-Rapoport ’17)

Under several axioms of Shimura varieties,

- The Kottwitz-Rapoport stratum KR_K, w is nonempty if and only if $w \in \text{Adm}(\mu)_K$.
- The Newton stratum $N_K, [b]$ is nonempty if and only if $[b] \in B(G, \mu)$.
- (Grothendieck’s conjecture) For $[b], [b'] \in B(G, \mu)$,

$$\overline{N}_{K, [b]} \cap N_{K, [b']} \neq \emptyset \iff \nu_{b'} \leq \nu_b.$$

- There exists the Ekedahl-Kottwitz-Oort-Rapoport stratification on Sh_K with arbitrary parahoric level structure,

$$\text{Sh}_K = \bigsqcup_{w \in \text{Adm}(\mu) \cap K \tilde{W}} \text{EKOR}_{K, w}.$$

The closure of a EKOR stratum is a union of EKOR strata.
Theorem (H.-Rapoport ’17)

Under several axioms of Shimura varieties,

- The Kottwitz-Rapoport stratum $KR_{K,w}$ is nonempty if and only if $w \in \text{Adm}(\mu)_K$.
- The Newton stratum $N_{K,[b]}$ is nonempty if and only if $[b] \in B(G,\mu)$.
- (Grothendieck’s conjecture) For $[b], [b'] \in B(G,\mu)$,
 \[
 \overline{N_{K,[b]} \cap N_{K,[b']}} \neq \emptyset \iff \nu_{b'} \leq \nu_b.
 \]
- There exists the Ekedahl-Kottwitz-Oort-Rapoport stratification on Sh_K with arbitrary parahoric level structure,
 \[
 Sh_K = \bigsqcup_{w \in \text{Adm}(\mu) \cap K} \tilde{W} EKOR_{K,w}.
 \]

The closure of a EKOR stratum is a union of EKOR strata.
Some other applications

In below, we briefly mention some other applications of ADLV.

- Rad-Hartl established the Langlands-Rapoport conjecture over function field, in which the nonemptiness of $X(\mu, b)$ is used.
- The work of Kisin ’17, and Zhou on the Langlands-Rapoport conjecture for Shimura varieties, in which the description of the connected components of $X(\mu, b)$ is used.
- Chen-Fargues-Shen established the Fargues-Rapoport conjecture weakly admissible=admissible iff it is fully HN decomposable.
- The work of Rapoport-Terstiege-Zhang ’13 and Li-Zhu ’17 towards Zhang’s AFL, in which the basic locus of unramified $U(1, n)$ is used.
- The work of Helm-Tian-Xiao ’17 on the Tate conjecture for certain Shimura varieties, in which the basic locus of ADLV in the Hilbert-Blumenthal case is used.
Open problems

We mention some open problems on the affine Deligne-Lusztig varieties.

- The nonemptiness pattern of $X_w(b)$ for nonbasic b, in particular, the asymptotic behavior for w. [conjectured by Görtz-Haines-Kottwitz-Reuman]

- The dimension of $X_w(b)$ for basic b and w in the critical strip. Little is known.
Open problems

We mention some open problems on the affine Deligne-Lusztig varieties.

- The nonemptiness pattern of $X_w(b)$ for nonbasic b, in particular, the asymptotic behavior for w. [conjectured by Görtz-Haines-Kottwitz-Reuman]

- The dimension of $X_w(b)$ for basic b and w in the critical strip. Little is known.

- The dimension of $X_w(b)$ for nonbasic b, in particular the asymptotic behavior for w. [conjectured by Görtz-Haines-Kottwitz-Reuman]
Open problems

We mention some open problems on the affine Deligne-Lusztig varieties.

- The nonemptiness pattern of $X_w(b)$ for nonbasic b, in particular, the asymptotic behavior for w. [conjectured by Görtz-Haines-Kottwitz-Reuman]

- The dimension of $X_w(b)$ for basic b and w in the critical strip. Little is known.

- The dimension of $X_w(b)$ for nonbasic b, in particular the asymptotic behavior for w. [conjectured by Görtz-Haines-Kottwitz-Reuman]

- The dimension of $X(\mu, b)$ for basic b. No conjectural formula in the general case, although certain cases are known (e.g. fully HN decomposable case, and Siegel case for even g due to Görtz-Yu)
Open problems

We mention some open problems on the affine Deligne-Lusztig varieties.

- The nonemptiness pattern of $X_w(b)$ for nonbasic b, in particular, the asymptotic behavior for w. [conjectured by Görtz-Haines-Kottwitz-Reuman]
- The dimension of $X_w(b)$ for basic b and w in the critical strip. Little is known.
- The dimension of $X_w(b)$ for nonbasic b, in particular the asymptotic behavior for w. [conjectured by Görtz-Haines-Kottwitz-Reuman]
- The dimension of $X(\mu, b)$ for basic b. No conjectural formula in the general case, although certain cases are known (e.g. fully HN decomposable case, and Siegel case for even g due to Görtz-Yu)
- The description of connected components of $X(\mu, b)$ for nonsplit G and nonbasic b. Are the Hodge-Newton decomposability and the Kottwitz map the only obstruction for the connectedness?
Open problems

We mention some open problems on the affine Deligne-Lusztig varieties.

- The nonemptiness pattern of $X_w(b)$ for nonbasic b, in particular, the asymptotic behavior for w. [conjectured by Görtz-Haines-Kottwitz-Reuman]
- The dimension of $X_w(b)$ for basic b and w in the critical strip. Little is known.
- The dimension of $X_w(b)$ for nonbasic b, in particular the asymptotic behavior for w. [conjectured by Görtz-Haines-Kottwitz-Reuman]
- The dimension of $X(\mu, b)$ for basic b. No conjectural formula in the general case, although certain cases are known (e.g. fully HN decomposable case, and Siegel case for even g due to Görtz-Yu)
- The description of connected components of $X(\mu, b)$ for nonsplit G and nonbasic b. Are the Hodge-Newton decomposability and the Kottwitz map the only obstruction for the connectedness?
IGNORAMUS

WIR WERDEN WISSEN