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Hall-Littlewood functions

In order to compute spherical functions for p-adic groups,
Macdonald introduced Hall-Littlewood functions for a semisimple
Lie group H :

Pλ(q) =
1

Wλ(q)

∑
w∈W (−1)`(w)w

(
eλ+ρ

∏
α∈R+(1− qe−α)

)
eρ
∏

α∈R+(1− e−α)
,

where λ ∈ Λ+ is a dominant weight of H ,
(R the root system; W the Weyl group, and Wλ(q) the Poincaré
polynomial of the stabilizer of λ in W ).

• Pλ(0) = χλ, the irreducible characters.
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Kostka-Foulkes polynomials

• The Kostka-Foulkes polynomials Kλµ(q):
the matrix entries of the transformation matrix to the basis of
irreducible characters χλ from the Hall-Littlewood basis of
symmetric functions:

χλ =
∑

Λ+3µ≤λ

Kλµ(q)Pµ(q).

• Lusztig: Kλµ are particular cases of Kazhdan-Lusztig polynomials
for the affine Weyl group ⇒ Kλµ(q) ∈ N[q].
Also, Kλµ(1) = dimV λ

µ is the weight multiplicity.
So Kλµ(q) is a q-analogue of the weight multiplicity.
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Geometric meaning

The positivity property Kλµ(q) ∈ N[q] holds due to the geometric
interpretation as a Poincaré polynomial:

q− dim GrµG/2Kλµ(q−1) =
∑
i>0

dim IC(GrλG )−2i
µ q−i ,

where G is the Langlands dual of our initial group H , i.e. H = G∨,
• GrG = GK/GO is the affine Grassmannian of G
(O = C[[z ]], K = C((z))). It is the union of GO-orbits GrλG
numbered by the dominant coweights of G , i.e. dominant weights
λ ∈ Λ+ of H = G∨. The closure GrλG ⊂ GrG of a GO-orbit GrλG is
the union

⊔
Λ+3µ≤λ GrµG . Finally, IC(GrλG )−2i

µ is the cohomology in

degree −2i of the stalk of the IC-sheaf at a point in GrµG .
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Geometric Satake equivalence

This geometric interpretation of the q-analogue of weight
multiplicities is one of manifestations of the geometric Satake
equivalence: a tensor equivalence of Rep(G∨),⊗ and the abelian
category PervGO(GrG ) of GO-equivariant perverse sheaves on GrG ,
equipped with the convolution monoidal structure ?.

This tensor equivalence (Lusztig, Drinfeld, Ginzburg, Beilinson,
Mirković, Vilonen,...) is a cornerstone of the geometric Langlands
program.
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Satake isomorphism

It is a categorification of the following classical result. If the base
field is Fq, and the coefficient field is Q`, then the convolution
algebra of GO-invariant functions on GrG (spherical affine Hecke
algebra) is isomorphic to Q`[G

∨]G
∨

(Satake isomorphism).

The characteristic function of a GO-orbit GrλG is Pλ, while the
Frobenius trace function of IC(GrλG ) is χλ.
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Kac-Moody Lie algebras

• For a symmetrizable Kac-Moody Lie algebra h with the root
system R and the Weyl group W , Viswanath defined the
Hall-Littlewood functions

Pλ(q) =
1

Wλ(q)

∑
w∈W (−1)`(w)w

(
eλ+ρ

∏
α∈R+(1− qe−α)mα

)
eρ
∏

α∈R+(1− e−α)mα
,

where λ ∈ Λ+ is a dominant weight, and mα is the multiplicity of a
positive root α.
• Again, the Kostka-Foulkes polynomials are defined via∑
Λ+3µ≤λ

Kλµ(q)Pµ(q) = χλ (irreducible characters).
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Affine Lie algebras

Viswanath proved Kλµ(q) ∈ Z[q] and suggested

Conjecture Kλµ(q) ∈ N[q].

Question What is a geometric meaning of Kλµ(q)?

Example h a dual untwisted affine Lie algebra, with the Langlands
dual (i.e. with the transposed Cartan matrix) affine Lie algebra
gaff = g[t±1]⊕ CK ⊕ Cd .
λ the basic fundamental weight of h (at level 1),
µ = λ− aδ for the minimal imaginary root δ; a ∈ N.
G the simply connected almost simple Lie group with Lie algebra g.
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Uhlenbeck space

Buna
G (A2) is the moduli space of G -bundles on P2, with the second

Chern class a, equipped with a trivialization at the infinite line
P1
∞ ⊂ P2.

In other words, Buna
G (A2) is the moduli space of Gc-instantons on

R4 with topological charge a. It possesses a (partial) Uhlenbeck
compactification Ua

G (A2) =
⊔

0≤b≤a Bunb
G (A2)× Syma−b(A2)

(the moduli space of ideal instantons). We have

Kλµ(q−1) =
∑
i>0

dim IC(Ua
G (A2))−2i

0 q−i ,

where 0 = a · 0 ∈ Syma(A2) ⊂ Ua
G (A2).
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Double affine Grassmannian

Based on this equality, I. Frenkel (and also I. Grojnowski) suggested
that the Uhlenbeck spaces should play a role of affine Grassmannian
for affine Lie algebras (i.e. double affine Grassmannian).

Note a discrepancy: GrλG is a projective variety, while Ua
G (A2) is

affine. The reason is GrλG =
⊔

Λ+3µ≤λ GrµG is a finite union since Λ+

has the minimal elements (0 and minuscule coweights).

But for a Kac-Moody algebra of nonfinite type Λ+ does not have
minimal elements. So while GrG is a union of projective varieties
GrλG , the sought-for affine Grassmannian for a general Kac-Moody
algebra must be of semiinfinite nature.
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Transversal slices

So the best we can hope for in general case are the transversal
slices Wλ

µ, µ ≤ λ.

In the finite case Wλ
µ is the intersection of GrλG and the opposite

orbit K1 · µ of the congruence subgroup K1 ⊂ G [z−1], the kernel of
evaluation G [z−1]→ G .

Due to transversality, IC(Wλ
µ)•µ = IC(GrλG )•µ (up to a shift) is a

graded version of the weight space V λ
µ .

• Wλ
µ := GrλG ∩ (K1 · µ) are the symplectic leaves of a natural

Poisson structure on GrG (Mirković, Kamnitzer, Webster, Weekes,
Yacobi).
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Nakajima quiver varieties

Another geometric realization of the weight spaces of integrable
representations for symmetric Kac-Moody Lie algebras: via
Nakajima quiver varieties.

The (off-diagonal part of the) Cartan matrix is viewed as the
incidence matrix of a graph. We choose an orientation and view it
as a quiver Q with the set of vertices Q0 and the set of arrows Q1.

Given Q0-graded vector spaces V = ⊕i∈Q0
Vi and W = ⊕i∈Q0

Wi ,
we set GL(V ) :=

∏
i∈Q0

GL(Vi), and consider its representation
N :=

⊕
e∈Q1

Hom(Vt(e),Vh(e))⊕
⊕

i∈Q0
Hom(Wi ,Vi).
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Nakajima quiver varieties

The cotangent space N⊕N∗ carries a natural symplectic form and
a symplectic action of GL(V ). Consider the Hamiltonian reduction

M0(V ,W ) = (N⊕N∗)///GL(V )

(the spectrum of the ring of GL(V )-invariant functions on the zero
level of the moment map), and also its GIT version

M(V ,W ) = (N⊕N∗)///detGL(V )

(the projective spectrum of the ring of semiinvariants with respect
to the character

∏
i∈Q0

det : GL(V )→ C×).

• The natural projection π : M(V ,W )→M0(V ,W ) is a semismall
resolution of singularities under the following numerical conditions.
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Recall that Q0 is the set of simple roots / fundamental weights of a
symmetric Kac-Moody Lie algebra g. We set

λ =
∑
i∈Q0

dim(Wi)ωi , α =
∑
i∈Q0

dim(Vi)αi , µ = λ− α.

Theorem (Nakajima) (a) If µ is dominant and enters with nonzero
mutiplicity into the irreducible integrable representation V λ of g,
then π : M(V ,W )→M0(V ,W ) is a semismall resolution of
singularities.
(b) Under the conditions of (a), there is a natural isomorphism
Htop(π−1(0)) ' V λ

µ . In other words, a basis in V λ
µ is formed by the

classes of irreducible components of the Lagrangian subvariety
π−1(0) ⊂M(V ,W ).
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Thus in the finite case, the weight components V λ
µ of irreducible

representations arise from the geometry of both Wλ
µ and

M0(V ,W ), but in two different ways.

Such a relation between (singular) symplectic varieties M0(V ,W )
and Wλ

µ is an instance of the so called symplectic duality (Braden,
Licata, Proudfoot, Webster):

X an affine normal conical Poisson variety. We assume X to be
singular symplectic, with a symplectic resolution π : X̃ → X . We set
• sX := H2(X̃ ,C).
• tX is the Lie algebra of a Cartan torus in the group of
symplectomorphisms of X commuting with the contracting
C×-action.
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Symplectic duality

Sometimes one can find another such variety X∨ with isomorphisms
sX ' tX∨, tX ' sX∨.
Examples. 1. X and X∨ the nilpotent cones in the Langlands dual
Lie algebras.
2. For partitions λ ≥ µ of n, let Sλµ be the intersection of the

nilpotent orbit closure Oλ ⊂ gl(n) with the Slodowy slice to the

orbit Oµ. Then Sλµ is dual to Sµ
t

λt .
3. (Gale) duality of toric hyperkähler manifolds.
4. Syma(A2/Γ)∨ ' Ua

G (A2)/G2
a for a finite subgroup Γ ⊂ SL(2)

corresponding by McKay to an almost simple simply laced Lie
group G .
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Lusztig-Spaltenstein duality

Expectation There is an order reversing bijection between the sets
of symplectic leaves of X and X∨

(wrong in the case of Langlands dual nilpotent cones).

It extends to a bijection between pairs (a symplectic leaf, an
irreducible local system on it).

Thus there is a bijection F 7→ F∨ between the isomorphism classes
of irreducible perverse sheaves on X ,X∨ smooth along symplectic
leaves.
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Hyperbolic stalks

Furthermore, an integral point χ ∈ sX ,Z = H2(X̃ ,Z) defines a

partial resolution πχ : X̃χ → X . On the other hand, χ viewed as an
integral point of tX∨ defines a hamiltonian action χ : C× y X∨.
Let us assume that X̃χ is smooth.

Conjecture (Hikita) There is an isomorphism of rings

H•(X̃χ,C) ' C[(X∨)χ(C×)].

Expectation For F ∈ Perv(X ), the multiplicity [π∗IC(X̃χ) : F ] is
isomorphic to the hyperbolic stalk ΦχF∨ at the unique χ(C×)-fixed
point of X∨.
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Nakajima quiver varieties vs. transversal slices

Returning to our main example
X = M0(V ,W ), X̃ = M(V ,W ), X∨ =Wλ

µ, we take the

skyscraper sheaf at the vertex of X for F . Then F∨ = IC(Wλ
µ).

We have V λ
µ = Htop(π−1(0)) = [π∗IC(X̃ ) : F ] = ΦρIC(Wλ

µ).

• Moreover, the stalk of IC(Wλ
µ) at the fixed point µ is the

associated graded of the hyperbolic stalk (wrt a filtration
corresponding to the Brylinski-Kostant filtration of the weight
space V λ

µ ).
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Higgs branch vs. Coulomb branch

From now on we assume that X is the hamiltonian reduction of a
symplectic representation of cotangent type N⊕N∗ of a reductive
Lie group G (like in our example with quiver varieties).

Then there is a recipe (Nakajima + Braverman + . . .) to construct
X∨ in the framework of 3-dimensional N = 4 supersymmetric
gauge theories:

• X plays the role of the Higgs branch MH(G,N), while X∨ plays
the role of the Coulomb branch MC (G,N).
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Variety of triples

Recall: the affine Grassmannian GrG = GK/GO is the moduli space
of pairs (P , σ) where P is a G-bundle on the formal disc
D = SpecO, and σ is a trivialization of P on the punctured formal
disc D∗ = SpecK.

We need the moduli space RG,N of triples (P , σ, s) where s is a

section of the associated vector bundle Ptriv

G
× N on D∗ such that s

extends to a regular section of Ptriv

G
× N on D, and σ(s) extends to

a regular section of P
G
× N on D.
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Variety of triples

That is, s extends to a regular section of the vector bundle
associated to the G-bundle glued from P and Ptriv on the
non-separated scheme glued of 2 copies of D along D∗ (raviolo m).

The group GO acts on RG,N by changing the trivialization σ, and
we have an evident projection RG,N → GrG forgetting s. The fibers
of this projection are profinite dimensional vector spaces: the fiber
over the base point is N[[z ]], and all the other fibers are subspaces
in N[[z ]] of finite codimension.

One may say that RG,N is a GO-equivariant “constructible profinite
dimensional vector bundle” over GrG.
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Coulomb branch

The GO-equivariant Borel-Moore homology HGO• (RG,N) is
well-defined, and forms an associative algebra with respect to a
convolution operation.

This algebra is commutative, finitely generated and integral, and its
spectrum MC (G,N) = SpecHGO• (RG,N) is an irreducible normal
affine variety of dimension 2 rk(G), the Coulomb branch.

It is expected to be a (singular) hyper-Kähler manifold.

• It carries a Poisson structure with an open symplectic leaf since
HGO• (RG,N) can be quantized by considering extra equivariance wrt
the loop rotations.
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Conjectural slices for Kac-Moody Lie algebras

Conclusion Let gQ be a symmetric Kac-Moody Lie algebra
associated to a quiver Q.

Recall: given a dominant weight λ, and another weight µ = λ− α,
we wanted to construct a slice Wλ

µ in the affine Grassmannian of
gQ with IC stalks encoded by Kostka-Viswanath polynomials.

Consider a representation V of Q such that α =
∑

i∈Q0
dim(Vi)αi

with framing W such that λ =
∑

i∈Q0
dim(Wi)ωi .

It gives rise to a representation
N =

⊕
e∈Q1

Hom(Vt(e),Vh(e))⊕
⊕

i∈Q0
Hom(Wi ,Vi) of G = GL(V ).
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Generalizations

Conjecture The Coulomb branch MC (G,N) is the desired slice Wλ
µ

in the affine Grassmannian of gQ .

It is indeed so if Q is a finite Dynkin quiver, and in a few instances
when Q is affine.

Some variations of the above construction (with flavor symmetry)
allow to construct the convolution diagrams over slices, and their
Beilinson-Drinfeld deformations.
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