Double affine Grassmannians and Coulomb branches of $3d \mathcal{N} = 4$ quiver gauge theories

Michael Finkelberg

Higher School of Economics & Skolkovo Institute of Science and Technology, Moscow

2018.08.04

Hall-Littlewood functions

In order to compute spherical functions for p-adic groups, Macdonald introduced Hall-Littlewood functions for a semisimple Lie group H:

$$P_{\lambda}(q) = rac{1}{W_{\lambda}(q)} rac{\sum_{w \in W} (-1)^{\ell(w)} w \left(e^{\lambda +
ho} \prod_{lpha \in R^+} (1 - q e^{-lpha})
ight)}{e^{
ho} \prod_{lpha \in R^+} (1 - e^{-lpha})},$$

where $\lambda \in \Lambda^+$ is a dominant weight of H, (R the root system; W the Weyl group, and $W_{\lambda}(q)$ the Poincaré polynomial of the stabilizer of λ in W).

• $P_{\lambda}(0) = \chi^{\lambda}$, the irreducible characters.

Kostka-Foulkes polynomials

• The Kostka-Foulkes polynomials $K_{\lambda\mu}(q)$: the matrix entries of the transformation matrix to the basis of irreducible characters χ^{λ} from the Hall-Littlewood basis of symmetric functions:

$$\chi^{\lambda} = \sum_{\Lambda^+ \ni \mu \leq \lambda} \mathcal{K}_{\lambda\mu}(q) P_{\mu}(q).$$

• Lusztig: $K_{\lambda\mu}$ are particular cases of Kazhdan-Lusztig polynomials for the affine Weyl group $\Rightarrow K_{\lambda\mu}(q) \in \mathbb{N}[q]$. Also, $K_{\lambda\mu}(1) = \dim V_{\mu}^{\lambda}$ is the weight multiplicity. So $K_{\lambda\mu}(q)$ is a q-analogue of the weight multiplicity.

Geometric meaning

The positivity property $K_{\lambda\mu}(q) \in \mathbb{N}[q]$ holds due to the geometric interpretation as a Poincaré polynomial:

$$q^{-\dim \mathsf{Gr}_{G}^{\mu}/2} \mathcal{K}_{\lambda\mu}(q^{-1}) = \sum_{i>0} \dim \mathcal{IC}(\overline{\mathsf{Gr}}_{G}^{\lambda})_{\mu}^{-2i} q^{-i},$$

where G is the Langlands dual of our initial group H, i.e. $H=G^{\vee}$, $\operatorname{Gr}_G=G_{\mathcal{K}}/G_{\mathcal{O}}$ is the affine Grassmannian of G $(\mathcal{O}=\mathbb{C}[\![z]\!],\ \mathcal{K}=\mathbb{C}(\!(z)\!))$. It is the union of $G_{\mathcal{O}}$ -orbits $\operatorname{Gr}_G^{\lambda}$ numbered by the dominant coweights of G, i.e. dominant weights $\lambda\in\Lambda^+$ of $H=G^{\vee}$. The closure $\overline{\operatorname{Gr}}_G^{\lambda}\subset\operatorname{Gr}_G$ of a $G_{\mathcal{O}}$ -orbit $\operatorname{Gr}_G^{\lambda}$ is the union $\bigsqcup_{\Lambda^+\ni\mu\leq\lambda}\operatorname{Gr}_G^{\mu}$. Finally, $\mathcal{IC}(\overline{\operatorname{Gr}}_G^{\lambda})_{\mu}^{-2i}$ is the cohomology in degree -2i of the stalk of the IC-sheaf at a point in $\operatorname{Gr}_G^{\mu}$.

Geometric Satake equivalence

This geometric interpretation of the q-analogue of weight multiplicities is one of manifestations of the geometric Satake equivalence: a tensor equivalence of $\operatorname{Rep}(G^{\vee}), \otimes$ and the abelian category $\operatorname{Perv}_{G_{\mathcal{O}}}(\operatorname{Gr}_{G})$ of $G_{\mathcal{O}}$ -equivariant perverse sheaves on Gr_{G} , equipped with the convolution monoidal structure \star .

This tensor equivalence (Lusztig, Drinfeld, Ginzburg, Beilinson, Mirković, Vilonen,...) is a cornerstone of the geometric Langlands program.

Satake isomorphism

It is a categorification of the following classical result. If the base field is \mathbb{F}_q , and the coefficient field is \mathbb{Q}_ℓ , then the convolution algebra of $G_{\mathcal{O}}$ -invariant functions on $G_{\mathcal{G}}$ (spherical affine Hecke algebra) is isomorphic to $\mathbb{Q}_\ell[G^\vee]^{G^\vee}$ (Satake isomorphism).

The characteristic function of a $G_{\mathcal{O}}$ -orbit Gr_G^{λ} is P_{λ} , while the Frobenius trace function of $\mathcal{IC}(\overline{Gr}_G^{\lambda})$ is χ^{λ} .

Kac-Moody Lie algebras

• For a symmetrizable Kac-Moody Lie algebra $\mathfrak h$ with the root system R and the Weyl group W, Viswanath defined the Hall-Littlewood functions

$$P_{\lambda}(q) = rac{1}{W_{\lambda}(q)} rac{\sum_{w \in W} (-1)^{\ell(w)} w \left(e^{\lambda +
ho} \prod_{lpha \in R^+} (1 - q e^{-lpha})^{m_{lpha}}
ight)}{e^{
ho} \prod_{lpha \in R^+} (1 - e^{-lpha})^{m_{lpha}}},$$

where $\lambda \in \Lambda^+$ is a dominant weight, and m_α is the multiplicity of a positive root α .

• Again, the Kostka-Foulkes polynomials are defined via $\sum_{\Lambda^+\ni\mu<\lambda} \mathcal{K}_{\lambda\mu}(q) P_\mu(q) = \chi^\lambda \text{ (irreducible characters)}.$

Affine Lie algebras

Viswanath proved $\mathcal{K}_{\lambda\mu}(q)\in\mathbb{Z}[q]$ and suggested

Conjecture $K_{\lambda\mu}(q)\in\mathbb{N}[q]$.

Question What is a geometric meaning of $K_{\lambda\mu}(q)$?

Example $\mathfrak h$ a dual untwisted affine Lie algebra, with the Langlands dual (i.e. with the transposed Cartan matrix) affine Lie algebra $\mathfrak g_{\rm aff}=\mathfrak g[t^{\pm 1}]\oplus \mathbb CK\oplus \mathbb Cd$.

 λ the basic fundamental weight of $\mathfrak h$ (at level 1),

 $\mu = \lambda - a\delta$ for the minimal imaginary root δ ; $a \in \mathbb{N}$.

G the simply connected almost simple Lie group with Lie algebra \mathfrak{g} .

Uhlenbeck space

 $\operatorname{Bun}_G^a(\mathbb{A}^2)$ is the moduli space of G-bundles on \mathbb{P}^2 , with the second Chern class a, equipped with a trivialization at the infinite line $\mathbb{P}^1_\infty \subset \mathbb{P}^2$.

In other words, $\operatorname{Bun}_G^a(\mathbb{A}^2)$ is the moduli space of G_c -instantons on \mathbb{R}^4 with topological charge a. It possesses a (partial) Uhlenbeck compactification $\mathcal{U}_G^a(\mathbb{A}^2) = \bigsqcup_{0 \leq b \leq a} \operatorname{Bun}_G^b(\mathbb{A}^2) \times \operatorname{Sym}^{a-b}(\mathbb{A}^2)$ (the moduli space of ideal instantons). We have

$$\mathcal{K}_{\lambda\mu}(q^{-1}) = \sum_{i>0} \dim \mathcal{IC}(\mathcal{U}_{G}^{a}(\mathbb{A}^{2}))_{0}^{-2i}q^{-i},$$

where $0 = a \cdot 0 \in \mathsf{Sym}^a(\mathbb{A}^2) \subset \mathcal{U}_G^a(\mathbb{A}^2)$.

Double affine Grassmannian

Based on this equality, I. Frenkel (and also I. Grojnowski) suggested that the Uhlenbeck spaces should play a role of affine Grassmannian for affine Lie algebras (i.e. double affine Grassmannian).

Note a discrepancy: $\overline{\mathrm{Gr}}_G^\lambda$ is a projective variety, while $\mathcal{U}_G^a(\mathbb{A}^2)$ is affine. The reason is $\overline{\mathrm{Gr}}_G^\lambda = \bigsqcup_{\Lambda^+ \ni \mu \leq \lambda} \mathrm{Gr}_G^\mu$ is a finite union since Λ^+ has the minimal elements (0 and minuscule coweights).

But for a Kac-Moody algebra of nonfinite type Λ^+ does not have minimal elements. So while Gr_G is a union of projective varieties $\overline{\operatorname{Gr}}_G^\lambda$, the sought-for affine Grassmannian for a general Kac-Moody algebra must be of semiinfinite nature.

Transversal slices

So the best we can hope for in general case are the transversal slices $\overline{\mathcal{W}}_{\mu}^{\lambda},\ \mu\leq\lambda.$

In the finite case $\overline{\mathcal{W}}_{\mu}^{\lambda}$ is the intersection of $\overline{\mathrm{Gr}}_{G}^{\lambda}$ and the opposite orbit $K_{1} \cdot \mu$ of the congruence subgroup $K_{1} \subset G[z^{-1}]$, the kernel of evaluation $G[z^{-1}] \to G$.

Due to transversality, $\mathcal{IC}(\overline{\mathcal{W}}_{\mu}^{\lambda})_{\mu}^{\bullet} = \mathcal{IC}(\overline{\mathsf{Gr}}_{G}^{\lambda})_{\mu}^{\bullet}$ (up to a shift) is a graded version of the weight space V_{μ}^{λ} .

• $\mathcal{W}^{\lambda}_{\mu} := \operatorname{Gr}^{\lambda}_{G} \cap (K_{1} \cdot \mu)$ are the symplectic leaves of a natural Poisson structure on Gr_{G} (Mirković, Kamnitzer, Webster, Weekes, Yacobi).

Nakajima quiver varieties

Another geometric realization of the weight spaces of integrable representations for symmetric Kac-Moody Lie algebras: via Nakajima quiver varieties.

The (off-diagonal part of the) Cartan matrix is viewed as the incidence matrix of a graph. We choose an orientation and view it as a quiver Q with the set of vertices Q_0 and the set of arrows Q_1 .

Given Q_0 -graded vector spaces $V=\oplus_{i\in Q_0}V_i$ and $W=\oplus_{i\in Q_0}W_i$, we set $GL(V):=\prod_{i\in Q_0}GL(V_i)$, and consider its representation $\mathbf{N}:=\bigoplus_{e\in Q_1}\operatorname{Hom}(V_{t(e)},V_{h(e)})\oplus\bigoplus_{i\in Q_0}\operatorname{Hom}(W_i,V_i)$.

Nakajima quiver varieties

The cotangent space $\mathbf{N} \oplus \mathbf{N}^*$ carries a natural symplectic form and a symplectic action of GL(V). Consider the Hamiltonian reduction

$$\mathfrak{M}_0(V,W) = (\mathbf{N} \oplus \mathbf{N}^*) /\!\!/ \mathit{GL}(V)$$

(the spectrum of the ring of GL(V)-invariant functions on the zero level of the moment map), and also its GIT version

$$\mathfrak{M}(V,W) = (\mathbf{N} \oplus \mathbf{N}^*) /\!\!/_{\mathsf{det}} \mathit{GL}(V)$$

(the projective spectrum of the ring of semiinvariants with respect to the character $\prod_{i \in O_0} \det : GL(V) \to \mathbb{C}^{\times}$).

• The natural projection $\pi \colon \mathfrak{M}(V,W) \to \mathfrak{M}_0(V,W)$ is a semismall resolution of singularities under the following numerical conditions. Recall that Q_0 is the set of simple roots / fundamental weights of a symmetric Kac-Moody Lie algebra $\mathfrak g$. We set

$$\lambda = \sum_{i \in Q_0} \dim(W_i) \omega_i, \ \alpha = \sum_{i \in Q_0} \dim(V_i) \alpha_i, \ \mu = \lambda - \alpha.$$

Theorem (Nakajima) (a) If μ is dominant and enters with nonzero mutiplicity into the irreducible integrable representation V^{λ} of \mathfrak{g} , then $\pi \colon \mathfrak{M}(V,W) \to \mathfrak{M}_0(V,W)$ is a semismall resolution of singularities.

(b) Under the conditions of (a), there is a natural isomorphism $H_{\text{top}}(\pi^{-1}(0)) \simeq V_{\mu}^{\lambda}$. In other words, a basis in V_{μ}^{λ} is formed by the classes of irreducible components of the Lagrangian subvariety $\pi^{-1}(0) \subset \mathfrak{M}(V, W)$.

Thus in the finite case, the weight components V_{μ}^{λ} of irreducible representations arise from the geometry of both $\overline{\mathcal{W}}_{\mu}^{\lambda}$ and $\mathfrak{M}_{0}(V,W)$, but in two different ways.

Such a relation between (singular) symplectic varieties $\mathfrak{M}_0(V,W)$ and $\overline{\mathcal{W}}_{\mu}^{\lambda}$ is an instance of the so called symplectic duality (Braden, Licata, Proudfoot, Webster):

X an affine normal conical Poisson variety. We assume X to be singular symplectic, with a symplectic resolution $\pi \colon \widetilde{X} \to X$. We set

- $\mathfrak{s}_X := H^2(X,\mathbb{C}).$
- \mathfrak{t}_X is the Lie algebra of a Cartan torus in the group of symplectomorphisms of X commuting with the contracting \mathbb{C}^{\times} -action.

Symplectic duality

Sometimes one can find another such variety X^{\vee} with isomorphisms $\mathfrak{s}_X \simeq \mathfrak{t}_{X^{\vee}}, \ \mathfrak{t}_X \simeq \mathfrak{s}_{X^{\vee}}.$

Examples. 1. X and X^{\vee} the nilpotent cones in the Langlands dual Lie algebras.

- 2. For partitions $\lambda \geq \mu$ of n, let $\mathcal{S}^{\lambda}_{\mu}$ be the intersection of the nilpotent orbit closure $\overline{\mathbb{O}}_{\lambda} \subset \mathfrak{gl}(n)$ with the Slodowy slice to the orbit \mathbb{O}_{μ} . Then $\mathcal{S}^{\lambda}_{\mu}$ is dual to $\mathcal{S}^{\mu^t}_{\lambda^t}$.
- 3. (Gale) duality of toric hyperkähler manifolds.
- 4. Sym^a(\mathbb{A}^2/Γ) $^{\vee} \simeq \mathcal{U}_G^a(\mathbb{A}^2)/\mathbb{G}_a^2$ for a finite subgroup $\Gamma \subset SL(2)$ corresponding by McKay to an almost simple simply laced Lie group G.

Lusztig-Spaltenstein duality

Expectation There is an order reversing bijection between the sets of symplectic leaves of X and X^{\vee} (wrong in the case of Langlands dual nilpotent cones).

It extends to a bijection between pairs (a symplectic leaf, an irreducible local system on it).

Thus there is a bijection $\mathcal{F} \mapsto \mathcal{F}^{\vee}$ between the isomorphism classes of irreducible perverse sheaves on X, X^{\vee} smooth along symplectic leaves.

Hyperbolic stalks

Furthermore, an integral point $\chi \in \mathfrak{s}_{X,\mathbb{Z}} = H^2(\widetilde{X},\mathbb{Z})$ defines a partial resolution $\pi_\chi \colon \widetilde{X}_\chi \to X$. On the other hand, χ viewed as an integral point of \mathfrak{t}_{X^\vee} defines a hamiltonian action $\chi \colon \mathbb{C}^\times \curvearrowright X^\vee$. Let us assume that \widetilde{X}_χ is smooth.

Conjecture (Hikita) There is an isomorphism of rings $H^{\bullet}(\widetilde{X}_{\chi}, \mathbb{C}) \simeq \mathbb{C}[(X^{\vee})^{\chi(\mathbb{C}^{\times})}].$

Expectation For $\mathcal{F} \in \operatorname{Perv}(X)$, the multiplicity $[\pi_* \mathcal{IC}(\widetilde{X}_\chi) : \mathcal{F}]$ is isomorphic to the hyperbolic stalk $\Phi_\chi \mathcal{F}^\vee$ at the unique $\chi(\mathbb{C}^\times)$ -fixed point of X^\vee .

Nakajima quiver varieties vs. transversal slices

Returning to our main example $X=\mathfrak{M}_0(V,W),\ \widetilde{X}=\mathfrak{M}(V,W),\ X^\vee=\overline{\mathcal{W}}_\mu^\lambda$, we take the skyscraper sheaf at the vertex of X for \mathcal{F} . Then $\mathcal{F}^\vee=\mathcal{IC}(\overline{\mathcal{W}}_\mu^\lambda)$.

We have
$$V_\mu^\lambda = H_{\mathsf{top}}(\pi^{-1}(0)) = [\pi_* \mathcal{IC}(\widetilde{X}) : \mathcal{F}] = \Phi_\rho \mathcal{IC}(\overline{\mathcal{W}}_\mu^\lambda).$$

• Moreover, the stalk of $\mathcal{IC}(\overline{\mathcal{W}}_{\mu}^{\lambda})$ at the fixed point μ is the associated graded of the hyperbolic stalk (wrt a filtration corresponding to the Brylinski-Kostant filtration of the weight space V_{μ}^{λ}).

Higgs branch vs. Coulomb branch

From now on we assume that X is the hamiltonian reduction of a symplectic representation of cotangent type $\mathbf{N} \oplus \mathbf{N}^*$ of a reductive Lie group \mathcal{G} (like in our example with quiver varieties).

Then there is a recipe (Nakajima + Braverman + . . .) to construct X^{\vee} in the framework of 3-dimensional $\mathcal{N}=4$ supersymmetric gauge theories:

• X plays the role of the Higgs branch $\mathcal{M}_H(\mathcal{G}, \mathbf{N})$, while X^{\vee} plays the role of the Coulomb branch $\mathcal{M}_C(\mathcal{G}, \mathbf{N})$.

Variety of triples

Recall: the affine Grassmannian $\operatorname{Gr}_{\mathcal{G}}=\mathcal{G}_{\mathcal{K}}/\mathcal{G}_{\mathcal{O}}$ is the moduli space of pairs (\mathcal{P},σ) where \mathcal{P} is a \mathcal{G} -bundle on the formal disc $D=\operatorname{Spec}\mathcal{O}$, and σ is a trivialization of \mathcal{P} on the punctured formal disc $D^*=\operatorname{Spec}\mathcal{K}$.

We need the moduli space $\mathcal{R}_{\mathcal{G},\mathbf{N}}$ of triples (\mathcal{P},σ,s) where s is a section of the associated vector bundle $\mathcal{P}_{\mathsf{triv}}\overset{\mathcal{G}}{\times}\mathbf{N}$ on D^* such that s extends to a regular section of $\mathcal{P}_{\mathsf{triv}}\overset{\mathcal{G}}{\times}\mathbf{N}$ on D, and $\sigma(s)$ extends to a regular section of $\mathcal{P}\overset{\mathcal{G}}{\times}\mathbf{N}$ on D.

Variety of triples

That is, s extends to a regular section of the vector bundle associated to the \mathcal{G} -bundle glued from \mathcal{P} and $\mathcal{P}_{\text{triv}}$ on the non-separated scheme glued of 2 copies of D along D^* (raviolo \approx).

The group $\mathcal{G}_{\mathcal{O}}$ acts on $\mathcal{R}_{\mathcal{G},\mathbf{N}}$ by changing the trivialization σ , and we have an evident projection $\mathcal{R}_{\mathcal{G},\mathbf{N}} \to \mathrm{Gr}_{\mathcal{G}}$ forgetting s. The fibers of this projection are profinite dimensional vector spaces: the fiber over the base point is $\mathbf{N}[[z]]$, and all the other fibers are subspaces in $\mathbf{N}[[z]]$ of finite codimension.

One may say that $\mathcal{R}_{\mathcal{G},\mathbf{N}}$ is a $\mathcal{G}_{\mathcal{O}}$ -equivariant "constructible profinite dimensional vector bundle" over $\mathrm{Gr}_{\mathcal{G}}$.

Coulomb branch

The $\mathcal{G}_{\mathcal{O}}$ -equivariant Borel-Moore homology $H^{\mathcal{G}_{\mathcal{O}}}_{\bullet}(\mathcal{R}_{\mathcal{G},\mathbf{N}})$ is well-defined, and forms an associative algebra with respect to a convolution operation.

This algebra is commutative, finitely generated and integral, and its spectrum $\mathcal{M}_{\mathcal{C}}(\mathcal{G}, \mathbf{N}) = \operatorname{Spec} H^{\mathcal{G}_{\mathcal{O}}}_{\bullet}(\mathcal{R}_{\mathcal{G},\mathbf{N}})$ is an irreducible normal affine variety of dimension $2\operatorname{rk}(\mathcal{G})$, the *Coulomb branch*.

It is expected to be a (singular) hyper-Kähler manifold.

• It carries a Poisson structure with an open symplectic leaf since $H^{\mathcal{G}_{\mathcal{O}}}_{\bullet}(\mathcal{R}_{\mathcal{G},\mathbf{N}})$ can be quantized by considering extra equivariance wrt the loop rotations.

Conjectural slices for Kac-Moody Lie algebras

Conclusion Let \mathfrak{g}_Q be a symmetric Kac-Moody Lie algebra associated to a quiver Q.

Recall: given a dominant weight λ , and another weight $\mu = \lambda - \alpha$, we wanted to construct a slice $\overline{\mathcal{W}}_{\mu}^{\lambda}$ in the affine Grassmannian of \mathfrak{g}_Q with IC stalks encoded by Kostka-Viswanath polynomials.

Consider a representation V of Q such that $\alpha = \sum_{i \in Q_0} \dim(V_i) \alpha_i$ with framing W such that $\lambda = \sum_{i \in Q_0} \dim(W_i) \omega_i$.

It gives rise to a representation

$$\mathbf{N}=igoplus_{e\in Q_1}\mathsf{Hom}(V_{t(e)},V_{h(e)})\oplusigoplus_{i\in Q_0}\mathsf{Hom}(W_i,V_i) ext{ of } \mathcal{G}=\mathit{GL}(V).$$

Generalizations

Conjecture The Coulomb branch $\mathcal{M}_{\mathcal{C}}(\mathcal{G}, \mathbf{N})$ is the desired slice $\overline{\mathcal{W}}_{\mu}^{\lambda}$ in the affine Grassmannian of $\mathfrak{g}_{\mathcal{Q}}$.

It is indeed so if Q is a finite Dynkin quiver, and in a few instances when Q is affine.

Some variations of the above construction (with flavor symmetry) allow to construct the convolution diagrams over slices, and their Beilinson-Drinfeld deformations.