Counting vector bundles on curves

Olivier Schiffmann

02 / 08 / 2018

Université de Paris-Saclay Orsay, CNRS
A naive classification problem

Let X be a smooth projective curve (say, over \mathbb{C}).
A naive classification problem

Let X be a smooth projective curve (say, over \mathbb{C}).

Can we classify all vector bundles on X of fixed rank r and degree d?
A naive classification problem

Let X be a smooth projective curve (say, over \mathbb{C}).

Can we classify all vector bundles on X of fixed rank r and degree d?

For instance, for $r = 1$ and $d \in \mathbb{Z}$, the vector bundles are parametrized by points of the Jacobian $Jac(X)$ (a smooth projective variety itself).
A naive classification problem

Let X be a smooth projective curve (say, over \mathbb{C}).

Can we classify all vector bundles on X of fixed rank r and degree d?

For instance, for $r = 1$ and $d \in \mathbb{Z}$, the vector bundles are parametrized by points of the Jacobian $Jac(X)$ (a smooth projective variety itself).

Krull-Schmidt Theorem: every vector bundle on X is isomorphic to a direct sum of indecomposable vector bundles.
A naive classification problem

Let X be a smooth projective curve (say, over \mathbb{C}).

Can we classify all vector bundles on X of fixed rank r and degree d?

For instance, for $r = 1$ and $d \in \mathbb{Z}$, the vector bundles are parametrized by points of the Jacobian $Jac(X)$ (a smooth projective variety itself).

Krull-Schmidt Theorem: every vector bundle on X is isomorphic to a direct sum of indecomposable vector bundles. This decomposition is unique (up to permutation).
A naive classification problem

Let \(X \) be a smooth projective curve (say, over \(\mathbb{C} \)).

Can we classify all vector bundles on \(X \) of fixed rank \(r \) and degree \(d \)?

For instance, for \(r = 1 \) and \(d \in \mathbb{Z} \), the vector bundles are parametrized by points of the Jacobian \(\text{Jac}(X) \) (a smooth projective variety itself).

Krull-Schmidt Theorem: every vector bundle on \(X \) is isomorphic to a direct sum of indecomposable vector bundles. This decomposition is unique (up to permutation) but NOT canonical!
A naive classification problem

Let X be a smooth projective curve (say, over \mathbb{C}).

Can we classify all vector bundles on X of fixed rank r and degree d?

For instance, for $r = 1$ and $d \in \mathbb{Z}$, the vector bundles are parametrized by points of the Jacobian $\text{Jac}(X)$ (a smooth projective variety itself).

Krull-Schmidt Theorem: every vector bundle on X is isomorphic to a direct sum of indecomposable vector bundles. This decomposition is unique (up to permutation) but NOT canonical!

Can we classify all indecomposable vector bundles on X of fixed rank r and degree d?
Suppose that $X = \mathbb{P}^1$. Then we have the Serre line bundles $\mathcal{O}(n)$, $n \in \mathbb{Z}$. Moreover, $Jac(X) = \{pt\}$.
Suppose that $X = \mathbb{P}^1$. Then we have the Serre line bundles $\mathcal{O}(n)$, $n \in \mathbb{Z}$. Moreover, $\text{Jac}(X) = \{\text{pt}\}$.

Theorem (Birkhoff-Grothendieck)

Any indecomposable vector bundle on \mathbb{P}^1 is a line bundle, isomorphic to $\mathcal{O}(n)$ for some (unique) $n \in \mathbb{Z}$.
Genus one: Atiyah theorem

Suppose that X is a (smooth) elliptic curve. Then

$$\text{Jac}(X) \cong X$$

For instance, the assignment $x \mapsto \mathcal{O}(x)$ yields an isomorphism $X \cong \text{Pic}^1(X)$.
Suppose that X is a (smooth) elliptic curve. Then

$$\text{Jac}(X) \cong X$$

For instance, the assignment $x \mapsto \mathcal{O}(x)$ yields an isomorphism $X \cong \text{Pic}^1(X)$.

Theorem (Atiyah)

For any $r \in \mathbb{N}$ and $d \in \mathbb{Z}$, the set of indecomposable vector bundles on X of rank r and degree d is (canonically) isomorphic to X.
Genus one: Atiyah theorem

Suppose that X is a (smooth) elliptic curve. Then

$$\text{Jac}(X) \cong X$$

For instance, the assignment $x \mapsto \mathcal{O}(x)$ yields an isomorphism $X \cong \text{Pic}^1(X)$.

Theorem (Atiyah)

For any $r \in \mathbb{N}$ and $d \in \mathbb{Z}$, the set of indecomposable vector bundles on X of rank r and degree d is (canonically) isomorphic to X.

Ex: For any degree one line bundle $\mathcal{O}(x)$, by Riemann-Roch we have $\text{Ext}^1(\mathcal{O}(x), \mathcal{O}) = 0$ hence there is a unique nonsplit extension

$$0 \longrightarrow \mathcal{O}(x) \longrightarrow \mathcal{V}_x \longrightarrow \mathcal{O} \longrightarrow 0$$

Then $\{\mathcal{V}_x \mid x \in X\}$ forms a complete collection of (distinct) rank 2 and degree 1 indecomposable vector bundles on X.
What about higher genus curves?

When X is of genus $g \geq 2$, there is no hope to achieve a classification of all indecomposable bundles (in what terms?)
What about higher genus curves?

When X is of genus $g \geq 2$, there is no hope to achieve a classification of all indecomposable bundles (in what terms?)

The usual solutions:

- only consider semistable vector bundles and study the algebraic variety parametrizing them
- consider all vector bundles and study the algebraic stack parametrizing them

Note:
- indecomposable vector bundles are NOT semistable in general
- indecomposable vector bundles form only a constructible substack of the stack of all vector bundles
What about higher genus curves?

When X is of genus $g \geq 2$, there is no hope to achieve a classification of all indecomposable bundles (in what terms?)

The usual solutions:
- only consider \textit{semistable} vector bundles and study the algebraic variety parametrizing them
- consider all vector bundles and study the algebraic stack parametrizing them

Note:
- indecomposable vector bundles are NOT semistable in general
- indecomposable vector bundles form only a constructible substack of the stack of all vector bundles
What about higher genus curves?

When X is of genus $g \geq 2$, there is no hope to achieve a classification of all indecomposable bundles (in what terms?)

The usual solutions:
- only consider semistable vector bundles and study the algebraic variety parametrizing them
- consider all vector bundles and study the algebraic stack parametrizing them

Note:
- indecomposable vector bundles are NOT semistable in general
- indecomposable vector bundles form only a constructible substack of the stack of all vector bundles
What about higher genus curves?

When \(X \) is of genus \(g \geq 2 \), there is no hope to achieve a classification of all indecomposable bundles (in what terms?)

The usual solutions:
- only consider \emph{semistable} vector bundles and study the algebraic variety parametrizing them
- consider all vector bundles and study the algebraic \emph{stack} parametrizing them

Note:
What about higher genus curves?

When X is of genus $g \geq 2$, there is no hope to achieve a classification of all indecomposable bundles (in what terms?)

The usual solutions:
- only consider *semistable* vector bundles and study the algebraic variety parametrizing them
- consider all vector bundles and study the algebraic *stack* parametrizing them

Note:
- indecomposable vector bundles are *NOT* semistable in general
- indecomposable vector bundles form only a *constructible* substack of the stack of all vector bundles
A better question

Can we count indecomposable vector bundles (of a given rank and degree)?

Let X be a smooth, geometrically connected, projective curve of genus g over a finite field \mathbb{F}_q and let $I_{r,d}(X)$ be the number of isomorphism classes of indecomposable vector bundles on X of rank r and degree d.

$A_{r,d}(X)$ be the number of isomorphism classes of geometrically indecomposable vector bundles on X of rank r and degree d.

Fact: For any r, d, we have $A_{r,d}(X) < \infty$.

For simplicity, we will only consider $A_{r,d}(X)$, which is a better behaved quantity (from which we may determine $I_{r,d}(X)$).
A better question

Can we count indecomposable vector bundles (of a given rank and degree)?
A better question

Can we count indecomposable vector bundles (of a given rank and degree)?

Let X be a smooth, geometrically connected, projective curve of genus g over a finite field \mathbb{F}_q.

Fact: For any r, d, we have $A_{r, d}(X) \leq I_{r, d}(X) < \infty$.

For simplicity, we will only consider $A_{r, d}(X)$, which is a better behaved quantity (from which we may determine $I_{r, d}(X)$).
A better question

Can we count indecomposable vector bundles (of a given rank and degree)?

Let X be a smooth, geometrically connected, projective curve of genus g over a finite field \mathbb{F}_q and let:

$A_{r,d}(X)$ be the number of isomorphism classes of indecomposable vector bundles on X of rank r and degree d.

$I_{r,d}(X)$ be the number of isomorphism classes of geometrically indecomposable vector bundles on X of rank r and degree d.

Fact: For any r, d, we have $A_{r,d}(X) < \infty$.

For simplicity, we will only consider $A_{r,d}(X)$, which is a better behaved quantity (from which we may determine $I_{r,d}(X)$).
A better question

Can we count indecomposable vector bundles (of a given rank and degree)?

Let X be a smooth, geometrically connected, projective curve of genus g over a finite field \mathbb{F}_q and let:

$I_{r,d}(X)$ be the number of isomorphism classes of indecomposable vector bundles on X of rank r and degree d
A better question

Can we count indecomposable vector bundles (of a given rank and degree)?

Let X be a smooth, geometrically connected, projective curve of genus g over a finite field \mathbb{F}_q and let:

$I_{r,d}(X)$ be the number of isomorphism classes of indecomposable vector bundles on X of rank r and degree d

$A_{r,d}(X)$ be the number of isomorphism classes of geometrically indecomposable vector bundles on X of rank r and degree d
A better question

Can we count indecomposable vector bundles (of a given rank and degree) ?

Let X be a smooth, geometrically connected, projective curve of genus g over a finite field \mathbb{F}_q and let :

$I_{r,d}(X)$ be the number of isomorphism classes of indecomposable vector bundles on X of rank r and degree d

$A_{r,d}(X)$ be the number of isomorphism classes of geometrically indecomposable vector bundles on X of rank r and degree d

Fact : $For any r, d, we have A_{r,d}(X), I_{r,d}(X) < \infty.$
Can we count indecomposable vector bundles (of a given rank and degree)?

Let X be a smooth, geometrically connected, projective curve of genus g over a finite field \mathbb{F}_q and let:

$I_{r,d}(X)$ be the number of isomorphism classes of indecomposable vector bundles on X of rank r and degree d

$A_{r,d}(X)$ be the number of isomorphism classes of geometrically indecomposable vector bundles on X of rank r and degree d

Fact: For any r, d, we have $A_{r,d}(X), I_{r,d}(X) < \infty$.

For simplicity, we will only consider $A_{r,d}(X)$, which is a better behaved quantity (from which we may determine $I_{r,d}(X)$).
Some examples

The Birkhoff-Grothendieck and Atiyah theorems give respectively

\[A_{r,d}(\mathbb{P}^1) = \begin{cases}
1 & \text{if } r = 1 \\
0 & \text{if } r > 1
\end{cases} \]

Recall that \(|X(F_q)| = 1 - \sigma_1 - \sigma_2 + q \) where \(\sigma_1, \sigma_2 \) are the Weil numbers of \(X \).
Some examples

The Birkhoff-Grothendieck and Atiyah theorems give respectively

\[A_{r,d}(\mathbb{P}^1) = \begin{cases}
1 & \text{if } r = 1 \\
0 & \text{if } r > 1
\end{cases} \]

and for \(X \) an elliptic curve

\[A_{r,d}(X) = |X(\mathbb{F}_q)| \quad \forall \, r, d \]
Some examples

The Birkhoff-Grothendieck and Atiyah theorems give respectively

$$A_{r,d}(\mathbb{P}^1) = \begin{cases} 1 & \text{if } r = 1 \\ 0 & \text{if } r > 1 \end{cases}$$

and for X an elliptic curve

$$A_{r,d}(X) = |X(\mathbb{F}_q)| \quad \forall \, r, d$$

Recall that

$$|X(\mathbb{F}_q)| = 1 - \sigma_1 - \sigma_2 + q$$

where σ_1, σ_2 are the Weil numbers of X.
Some examples

The Birkhoff-Grothendieck and Atiyah theorems give respectively

$$A_{r,d}(\mathbb{P}^1) = \begin{cases} 1 & \text{if } r = 1 \\ 0 & \text{if } r > 1 \end{cases}$$

and for X an elliptic curve

$$A_{r,d}(X) = |X(\mathbb{F}_q)| \quad \forall \ r, d$$

Recall that

$$|X(\mathbb{F}_q)| = 1 - \sigma_1 - \sigma_2 + q$$

where σ_1, σ_2 are the Weil numbers of X.
Let X be a smooth projective curve of genus g over a finite field \mathbb{F}_q.
Weil numbers (I)

Let X be a smooth projective curve of genus g over a finite field \mathbb{F}_q. We can encode the number of \mathbb{F}_{q^n}-points of X for all n in a generating series

$$
\zeta_X(z) = \exp \left(\sum_{n \geq 1} |X(\mathbb{F}_{q^n})| \frac{z^n}{n} \right).
$$

Theorem (Weil) There exist a (unique) polynomial $L_X(z) \in \mathbb{Z}[z]$ of degree $2g$ such that

$$
\zeta_X(z) = L_X(z)(1 - z)(1 - qz).
$$

We may write $L_X(z) = \prod_{2g} 2 i=1 (1 - \sigma_i z)$, where \{\sigma_1, ..., \sigma_{2g}\} are by definition the Weil numbers of X.

Weil numbers (I)

Let X be a smooth projective curve of genus g over a finite field \mathbb{F}_q. We can encode the number of \mathbb{F}_{q^n}-points of X for all n in a generating series

$$\zeta_X(z) = \exp \left(\sum_{n \geq 1} \left| X(\mathbb{F}_{q^n}) \right| \frac{z^n}{n} \right).$$

Theorem (Weil)

There exist a (unique) polynomial $L_X(z) \in \mathbb{Z}[z]$ of degree $2g$ such that

$$\zeta_X(z) = \frac{L_X(z)}{(1 - z)(1 - qz)}.$$
Let X be a smooth projective curve of genus g over a finite field \mathbb{F}_q. We can encode the number of \mathbb{F}_{q^n}-points of X for all n in a generating series

$$
\zeta_X(z) = \exp \left(\sum_{n \geq 1} |X(\mathbb{F}_{q^n})| \frac{z^n}{n} \right).
$$

Theorem (Weil)

There exist a (unique) polynomial $L_X(z) \in \mathbb{Z}[z]$ of degree $2g$ such that

$$
\zeta_X(z) = \frac{L_X(z)}{(1 - z)(1 - qz)}.
$$

We may write $L_X(z) = \prod_{i=1}^{2g} (1 - \sigma_i z)$, where $\{\sigma_1, \ldots, \sigma_{2g}\}$ are by definition the Weil numbers of X.

Weil numbers (1)
For instance, we have, for any n

$$|X(\mathbb{F}_{q^n})| = 1 - \sum_i \sigma_i^n + q^n$$
Weil numbers (II)

For instance, we have, for any n

$$|X(\mathbb{F}_{q^n})| = 1 - \sum_i \sigma_i^n + q^n$$

In addition, we have

$$|\sigma_i| = q^{1/2}$$

for all i and we may reorder the Weil numbers so that

$$\sigma_{2i-1}\sigma_{2i} = q$$

for all i.
Let X be as before, and let l be a prime number, $l \nmid q$.
Let X be as before, and let l be a prime number, $l \nmid q$.

The étale cohomology group $H^1 = H^1(X \otimes \overline{\mathbb{F}_q}, \overline{\mathbb{Q}_l})$ carries an action of the Frobenius element Fr_X, and the characteristic polynomial of Fr_X^{-1} is equal to $L_X(z)$.
Let X be as before, and let l be a prime number, $l \nmid q$.

The étale cohomology group $H^1 = H^1(X \otimes \overline{\mathbb{F}_q}, \overline{\mathbb{Q}_l})$ carries an action of the Frobenius element Fr_X, and the characteristic polynomial of Fr_X^{-1} is equal to $L_X(z)$.

H^1 also carries a symplectic (intersection) form, and Fr_X belongs to $GSp(H^1, \overline{\mathbb{Q}_l})$.
Let X be as before, and let l be a prime number, $l \nmid q$.

The étale cohomology group $H^1 = H^1(X \otimes \overline{\mathbb{F}_q}, \overline{\mathbb{Q}_l})$ carries an action of the Frobenius element Fr_X, and the characteristic polynomial of Fr_X^{-1} is equal to $L_X(z)$.

H^1 also carries a symplectic (intersection) form, and Fr_X belongs to $GSp(H^1, \overline{\mathbb{Q}_l})$.

Hence, we can view Fr_X as a conjugacy class in $GSp(2g, \overline{\mathbb{Q}_l})$.

Let X be as before, and let l be a prime number, $l \nmid q$.

The étale cohomology group $H^1 = H^1(X \otimes \overline{F_q}, \overline{Q_l})$ carries an action of the Frobenius element Fr_X, and the characteristic polynomial of Fr_X^{-1} is equal to $L_X(z)$. H^1 also carries a symplectic (intersection) form, and Fr_X belongs to $GSp(H^1, \overline{Q_l})$.

Hence, we can view Fr_X as a conjugacy class in $GSp(2g, \overline{Q_l})$.

In particular, we can evaluate any element of the character ring

$$R_g := \text{Rep}(GSp(2g, \overline{Q_l}))$$

on Fr_X, for any X (defined over some field of characteristic $p \neq l$).
We will say that a function on the set of smooth projective curves of genus g over some finite field \mathbb{F}_q, $l \nmid q$, is *polynomial* if it comes from a character $\chi \in R_g$.

All this is very explicit:

$$\text{Rep}(\text{GSp}(2g, \overline{\mathbb{Q}}_l)) = \mathbb{Q}_l[T^g]$$

where $T^g = \{(z_1, \ldots, z_{2g}) \in (\mathbb{Q}_l^*)^2 | z_{2i} - 1 z_{2i} = z_{2j} - 1 z_{2j} \forall i, j\}$

$W_g = (S_{2g}) \rtimes S_g$.

10
We will say that a function on the set of smooth projective curves of genus g over some finite field \mathbb{F}_q, $l \nmid q$, is *polynomial* if it comes from a character $\chi \in R_g$. It is moreover *positive* and *integral* if it comes from the character of an actual (i.e. non virtual) $Gsp(2g, \overline{\mathbb{Q}}_l)$-representation.
Weil numbers, Frobenius and $GSp(2g, \mathbb{Q}_l)$, II

We will say that a function on the set of smooth projective curves of genus g over some finite field \mathbb{F}_q, $l \nmid q$, is \textit{polynomial} if it comes from a character $\chi \in R_g$. It is moreover \textit{positive} and \textit{integral} if it comes from the character of an actual (i.e. non virtual) $Gsp(2g, \mathbb{Q}_l)$-representation.

All this is very explicit:

$$Rep(GSp(2g, \mathbb{Q}_l)) = \mathbb{Q}_l[T_g]^{W_g}$$

where

$$T_g = \{(z_1, \ldots, z_{2g}) \in (\mathbb{Q}_l^*)^{2g} \mid z_{2i-1}z_{2i} = z_{2j-1}z_{2j} \forall i, j\}$$

$$W_g = (S_2)^g \rtimes S_g.$$
Examples of polynomial functions

Many functions of X are in fact polynomial: for instance

- The number of points of the base field $q = z_1 z_2 \cdots = z_2^g - 1 z_2^g$.
- The number of F_q^n-rational points on X for any $n | \chi(F_q^n)$.
- The number of F_q^n-rational points on the Jacobian of X.

$|Jac_X(F_q^n)| = 2^g \prod_{i=1}^{g} (1 - z_n^i)$. etc.
Examples of polynomial functions

Many functions of X are in fact polynomial: for instance

- The number of points of the base field $q = z_1 z_2 = \cdots = z_{2g-1} z_{2g}$
Examples of polynomial functions

Many functions of X are in fact polynomial: for instance

- The number of points of the base field $q = z_1 z_2 = \cdots = z_{2g-1} z_{2g}$
- The number of \mathbb{F}_{q^n}-rational points on X for any n

$$|X(\mathbb{F}_{q^n})| = 1 - \sum_i z_i^n + q^n$$
Examples of polynomial functions

Many functions of X are in fact polynomial: for instance

- The number of points of the base field $q = z_1 z_2 = \cdots = z_{2g-1} z_{2g}$
- The number of \mathbb{F}_{q^n}-rational points on X for any n

$$|X(\mathbb{F}_{q^n})| = 1 - \sum_i z_i^n + q^n$$

- The number of \mathbb{F}_{q^n}-rational points on the Jacobian of X.

$$|Jac_X(\mathbb{F}_{q^n})| = \prod_{i=1}^{2g} (1 - z_i^n),$$

etc.
Theorem (S. 14')

For any $g \geq 0$ and any r, d, there exists a polynomial $A_{g,r,d} \in R_g$ such that for any smooth projective, geometrically connected curve X of genus g defined over some finite field \mathbb{F}_q, we have

$$A_{g,r,d}(X) = A_{g,r,d}(FrX).$$
Theorem (S. 14’)

For any $g \geq 0$ and any r, d, there exists a polynomial $A_{g,r,d} \in \mathbb{R}_g$ such that for any smooth projective, geometrically connected curve X of genus g defined over some finite field \mathbb{F}_q, we have

$$A_{g,r,d}(X) = A_{g,r,d}(F r X).$$

This result is effective, i.e. there is an explicit formula (later combinatorially simplified by A. Mellit).
Kac polynomials for curves

Theorem (S. 14')

For any $g \geq 0$ and any r, d, there exists a polynomial $A_{g,r,d} \in R_g$ such that for any smooth projective, geometrically connected curve X of genus g defined over some finite field \mathbb{F}_q, we have

$$A_{g,r,d}(X) = A_{g,r,d}(FrX).$$

This result is **effective**, i.e. there is an explicit formula (later combinatorially simplified by A. Mellit).

Moreover, Mellit proved that $A_{g,r,d}$ is independent of d (so we may just write $A_{g,r}$).
Some examples of Kac polynomials

If \(r = 1 \) then we are simply counting points of the Jacobian \(\text{Jac}(X) \):

\[
A_{g,1} = \prod_{i=1}^{2g} (1 - z_i)
\]
Some examples of Kac polynomials

If $r = 1$ then we are simply counting points of the Jacobian $Jac(X)$:

$$A_{g,1} = \prod_{i=1}^{2g}(1 - z_i)$$

If $r = 2$ we have

$$A_{g,2} = \prod_{i=1}^{2g}(1 - z_i) \cdot \left(\frac{\prod_i (1 - qz_i)}{(q - 1)(q^2 - 1)} - \frac{\prod_i (1 + z_i)}{4(1 + q)} \right)$$

$$+ \frac{\prod_i (1 - z_i)}{2(q - 1)} \left[\frac{1}{2} - \frac{1}{q - 1} - \sum_i \frac{1}{1 - z_i} \right] \right).$$
A glimpse into the formula

We have

$$\sum_r \frac{A_{g,r}}{q-1} T^r = [(1 - u)\log(\Omega_g(u))]_{u=1}$$

where

$$\Omega_g(u) = \sum_{\mu \in \mathcal{P}} \prod_{\Box \in \mu} \frac{\prod_{i=1}^g (u^{a(\Box)} + 1 - z_{2i-1} q^{l(\Box)}))(u^{a(\Box)} - z_{2i-1}^{-1} q^{l(\Box)} + 1)}{(u^{a(\Box)} + 1 - q^{l(\Box)})(u^{a(\Box)} - q^{l(\Box)} + 1)}$$

and $a(\Box)$, resp. $l(\Box)$ are the arm-length and leg-length of a box in a partition.
Theorem (S. 14’)

For any $g, r,$

$$A_{g,r} \in \text{Im}(\mathbb{N}[-z_1, \ldots, -z_{2g}] \to R_g).$$
Positivity and Integrality

Theorem (S. 14’)

For any \(g, r, \)

\[
A_{g,r} \in \text{Im}(\mathbb{N}[-z_1, \ldots, -z_{2g}] \to R_g).
\]

Conjecture

\(A_{g,r} \) is integral and positive, i.e. there exists a (non virtual) \(\text{GSp}(2g, \mathbb{Q}_l) \)-representation \(A_{g,r} \) such that \(A_{g,r}(Fr_X) = \chi_{A_{g,r}}(Fr_X). \)
Theorem (S. 14’)

For any g, r,

$$A_{g,r} \in \text{Im}(\mathbb{N}[-z_1, \ldots , -z_{2g}] \to R_g).$$

Conjecture

$A_{g,r}$ is integral and positive, i.e. there exists a (non virtual) $\text{GSp}(2g, \mathbb{Q}_l)$-representation $A_{g,r}$ such that $A_{g,r}(Fr_X) = \chi_{A_{g,r}}(Fr_X)$.

There are some natural generalisations of all the above to the parabolic setting (J.-A. Lin, A. Mellit). This involves Macdonald polynomials!
Two natural questions

1) Cute, but why should I care? (i.e. do these polynomials have anything to do with anything else?)

2) What am I doing in this section? (i.e. do these polynomials have anything to do with Lie theory?)

For 1) ⇝ Betti numbers or point count for character varieties or moduli spaces of stable Higgs bundles on curves

For 2) ⇝ Hall algebras of curves and infinite-dimensional quantum groups (such as the elliptic Hall algebra), counting of cuspidal functions and function field Langlands program (for $GL(n)$)
Two natural questions

1) Cute
Two natural questions

1) Cute, but why should I care?
Two natural questions

1) Cute, but why should I care?
(i.e. do these polynomials have anything to do with anything else?)
Two natural questions

1) Cute, but why should I care?
 (i.e. do these polynomials have anything to do with anything else?)

2) What am I doing in this section?
Two natural questions

1) Cute, but why should I care?
 (i.e. do these polynomials have anything to do with anything else?)

2) What am I doing in this section?
 (i.e. do these polynomials have anything to do with Lie theory?)
Two natural questions

1) Cute, but why should I care?
(i.e. do these polynomials have anything to do with anything else?)

2) What am I doing in this section?
(i.e. do these polynomials have anything to do with Lie theory?)

For 1) Betti numbers or point count for character varieties or moduli spaces of stable Higgs bundles on curves
Two natural questions

1) Cute, but why should I care?
(i.e. do these polynomials have anything to do with anything else?)

2) What am I doing in this section?
(i.e. do these polynomials have anything to do with Lie theory?)

For 1) \rightsquigarrow Betti numbers or point count for character varieties or moduli spaces of stable Higgs bundles on curves

For 2) \rightsquigarrow Hall algebras of curves and infinite-dimensional quantum groups (such as the elliptic Hall algebra), counting of cuspidal functions and function field Langlands program (for $GL(n)$)
Let X be a smooth projective curve of genus g, geometrically connected, defined over some field k.

Let $\mathcal{M}_{g, r, d}(X)$ be the moduli stack of Higgs bundles on X of rank r and degree d.

Let $\mathcal{M}_{g, r, d}^{st}(X)$ be the associated moduli space of (semi)stable Higgs bundles (a smooth quasi-projective symplectic algebraic variety).

Let $\Lambda_{g, r, d}^{st}(X) = \{ (E, \theta) \in \mathcal{M}_{g, r, d}^{st}(X) | \theta \text{ nilpotent} \}$ be the stable global nilpotent cone. It is a (singular, reducible) lagrangian subvariety.
Let X be a smooth projective curve of genus g, geometrically connected, defined over some field k. Fix coprime integers (r, d). \[\text{Higgs}_{r,d}(X) = \left\{ (E, \theta) \mid E \in \text{Bun}_{r,d}(X), \theta \in \text{Hom}(E, E \otimes \Omega_X) \right\}\] be the moduli stack of Higgs bundles on X of rank r and degree d. Let $\text{Higgs}_{\text{st}}_{r,d}(X)$ be the associated moduli space of (semi)stable Higgs bundles (a smooth quasi-projective symplectic algebraic variety). Let $\Lambda_{\text{st}}_{r,d}(X) = \left\{ (E, \theta) \in \text{Higgs}_{\text{st}}_{r,d}(X) \mid \theta \text{ nilpotent} \right\}$ be the stable global nilpotent cone. It is a (singular, reducible) lagrangian subvariety.
Moduli spaces of stable Higgs bundles

Let X be a smooth projective curve of genus g, geometrically connected, defined over some field k. Fix coprime integers (r, d).

Let

$$Higgs_{r,d}(X) = \{(\mathcal{E}, \theta) \mid \mathcal{E} \in \text{Bun}_{r,d}(X), \theta \in \text{Hom}(\mathcal{E}, \mathcal{E} \otimes \Omega_X)\}$$

be the moduli stack of Higgs bundles on X of rank r and degree d.

Moduli spaces of stable Higgs bundles

Let X be a smooth projective curve of genus g, geometrically connected, defined over some field k. Fix coprime integers (r, d).

Let

$$Higgs_{r,d}(X) = \{(\mathcal{E}, \theta) \mid \mathcal{E} \in Bun_{r,d}(X), \theta \in \text{Hom}(\mathcal{E}, \mathcal{E} \otimes \Omega_X)\}$$

be the moduli stack of Higgs bundles on X of rank r and degree d.

Let $Higgs^\text{st}_{r,d}(X)$ be the associated moduli space of (semi)stable Higgs bundles (a smooth quasi-projective symplectic algebraic variety).
Moduli spaces of stable Higgs bundles

Let X be a smooth projective curve of genus g, geometrically connected, defined over some field k. Fix coprime integers (r, d).

Let

$$\text{Higgs}_{r,d}(X) = \{(\mathcal{E}, \theta) \mid \mathcal{E} \in \text{Bun}_{r,d}(X), \theta \in \text{Hom}(\mathcal{E}, \mathcal{E} \otimes \Omega_X)\}$$

be the moduli stack of Higgs bundles on X of rank r and degree d.

Let $\text{Higgs}^{st}_{r,d}(X)$ be the associated moduli space of (semi)stable Higgs bundles (a smooth quasi-projective symplectic algebraic variety).

Let

$$\Lambda^{st}_{r,d}(X) = \{(\mathcal{E}, \theta) \in \text{Higgs}^{st}_{r,d}(X) \mid \theta \text{ nilpotent}\}$$

be the stable global nilpotent cone. It is a (singular, reducible) lagrangian subvariety.
Let \((r, d)\) be relatively prime. The following hold:

\[|Higgs_{ss}(r, d)(\mathbb{F}_q)| = q \frac{1}{2} \left(-1 + 2 \left(\frac{g - 1}{r} \right)^2 \right) \]

\[P_{cc}(Higgs_{ss}(r, d)(X), t) = t^2 + 2 \left(\frac{g - 1}{r} \right)^2 \]

\[|\text{Irr}(\Lambda_{ss}(r, d)(X))| = \frac{1}{2} \left(-1 + 2 \left(\frac{g - 1}{r} \right)^2 \right) \]
Theorem (S., 14')

Let \((r, d)\) be relatively prime. The following hold:

i) \((k = \mathbb{F}_q)\) We have \(|\text{Higgs}_{r,d}(\mathbb{F}_q)| = q^{1+(g-1)r^2}A_{g,r}(\text{Fr}_X),\)
Theorem (S., 14’)

Let \((r, d)\) be relatively prime. The following hold:

1. \((k = \mathbb{F}_q)\) We have \(|\text{Higgs}^{ss}_{r,d}(\mathbb{F}_q)| = q^{1+(g-1)r^2} A_{g,r}(\text{Fr}_X),\)

2. \((k = \mathbb{C})\) The Poincaré polynomial \(P_c(\text{Higgs}^{ss}_{r,d}(X), t)\) is equal to \(t^{2+2(g-1)r^2} A_{g,r}(t, \ldots, t),\)
Betti numbers of Hitchin moduli spaces

Theorem (S., 14’)

Let \((r, d)\) be relatively prime. The following hold:

i) \((k = \mathbb{F}_q)\) We have \(|Higgs^{ss}_{r,d}(\mathbb{F}_q)| = q^{1+(g-1)r^2} A_{g,r}(Fr_X),\)

ii) \((k = \mathbb{C})\) The Poincaré polynomial \(P_c(Higgs^{ss}_{r,d}(X), t)\) is equal to \(t^{2+2(g-1)r^2} A_{g,r}(t, \ldots, t),\)

iii) \(|Irr(\Lambda^{ss}_{r,d}(X))| = A_{g,r}(0, \ldots, 0).\)
For $k = \mathbb{C}$, $Higgs_{r,d}^{ss}(X)$ is diffeomorphic to the (twisted) character variety $\mathcal{M}_{g,r}$ of representations of the fundamental group of a genus g Riemann surface into $GL(r)$.
For $k = \mathbb{C}$, $Higgs_{r,d}^{ss}(X)$ is diffeomorphic to the (twisted) character variety $\mathcal{M}_{g,r}$ of representations of the fundamental group of a genus g Riemann surface into $GL(r)$.

Corollary

The Poincaré polynomial of the (twisted) genus g character variety of rank r is equal to $t^{2+2(g-1)r^2} A_{g,r}(t,\ldots, t)$.
The Poincaré polynomial of $\text{Higgs}^{ss}_{r,d}(X)$ was previously computed:
- in rank two by Hitchin ('87)
- in rank three by Gothen ('93)
- in rank four by García-Prada, Heinloth and Schmidt ('12, algorithm)

Hausel-Rodriguez-Villegas conjecture
The Poincaré polynomial of $Higgs_{r,d}^{ss}(X)$ was previously computed:
- in rank two by Hitchin ('87)
- in rank three by Gothen ('93)
- in rank four by Garcia-Prada, Heinloth and Schmidt ('12, algorithm)

T. Hausel and F. Rodriguez-Villegas gave a conjectural formula for the Betti numbers of $Higgs_{r,d}^{ss}(X)$, later extended to $|Higgs_{r,d}^{ss}(X)(\mathbb{F}_q)|$ by S. Mozgovoy.

The main theorem together with Mellit's simplification of the explicit formula yields a proof of these conjectures.
Variations

- By a different method, one may extend the above results to moduli spaces of (semi)stable twisted Higgs bundles

\[Higgs_{r,d}^L(X) = \{(E, \theta) \mid E \in Bun_{r,d}(X), \theta \in Hom(E, E \otimes L)\} \]

when \(\deg(L) \leq 0 \) or \(\deg(L) \geq 2g - 2 \). (S. Mozgovoy, S.-, '14)

- There is a version for parabolic Higgs bundles (A. Mellit, proving a conjecture of Hausel, Letellier and Rodriguez-Villegas, '17)

- There is a motivic version, also for moduli spaces of flat connections (R. Fedorov, A. Soibelman, Y. Soibelman, 16’)

- There is an arithmetic analogue (i.e. over number fields) by P.-H. Chaudouard (16’)
Variations

- By a different method, one may extend the above results to moduli spaces of (semi)stable twisted Higgs bundles

\[Higgs_{r,d}^L(X) = \{(\mathcal{E}, \theta) \mid \mathcal{E} \in \text{Bun}_{r,d}(X), \theta \in \text{Hom}(\mathcal{E}, \mathcal{E} \otimes \mathcal{L})\} \]

when \(\text{deg}(\mathcal{L}) \leq 0 \) or \(\text{deg}(\mathcal{L}) \geq 2g - 2 \). (S. Mozgovoy, S.-, '14)

- There is a version for parabolic Higgs bundles (A. Mellit, proving a conjecture of Hausel, Letellier and Rodriguez-Villegas, '17)

- There is a motivic version, also for moduli spaces of flat connections (R. Fedorov, A. Soibelman, Y. Soibelman, 16')

- There is an arithmetic analogue (i.e. over number fields) by P.-H. Chaudouard (16')
Variations

- By a different method, one may extend the above results to moduli spaces of (semi)stable twisted Higgs bundles

\[\text{Higgs}_{r,d}^L(X) = \{ (\mathcal{E}, \theta) \mid \mathcal{E} \in \text{Bun}_{r,d}(X), \theta \in \text{Hom}(\mathcal{E}, \mathcal{E} \otimes \mathcal{L}) \} \]

when \(\deg(\mathcal{L}) \leq 0 \) or \(\deg(\mathcal{L}) \geq 2g - 2 \). (S. Mozgovoy, S.-, '14)

- There is a version for parabolic Higgs bundles (A. Mellit, proving a conjecture of Hausel, Letellier and Rodriguez-Villegas, '17)

- There is a motivic version, also for moduli spaces of flat connections (R. Fedorov, A. Soibelman, Y. Soibelman, 16')
Variations

- By a different method, one may extend the above results to moduli spaces of (semi)stable twisted Higgs bundles

\[Higgs^{L}_{r,d}(X) = \{(\mathcal{E}, \theta) \mid \mathcal{E} \in \text{Bun}_{r,d}(X), \theta \in \text{Hom}(\mathcal{E}, \mathcal{E} \otimes L)\} \]

when \(\text{deg}(L) \leq 0\) or \(\text{deg}(L) \geq 2g - 2\). (S. Mozgovoy, S.-, '14)

- There is a version for parabolic Higgs bundles (A. Mellit, proving a conjecture of Hausel, Letellier and Rodriguez-Villegas, '17)

- There is a motivic version, also for moduli spaces of flat connections (R. Fedorov, A. Soibelman, Y. Soibelman, 16’)

- There is an arithmetic analogue (i.e. over number fields) by P.-H. Chaudouard (16’)
Idea of proof (deformation argument)

Why are the numbers of indecomposable vector bundles and (semi)stable Higgs bundles of fixed rank and degree so closely related?
Idea of proof (deformation argument)

Why are the numbers of indecomposable vector bundles and (semi)stable Higgs bundles of fixed rank and degree so closely related?

One way to see this: there exists a \mathbb{G}_m-equivariant one-parameter family $\mathcal{Y} \to \mathbb{A}^1$

\[
\begin{array}{ccccccccc}
Higgs_{r,d}^{st} & \to & \mathcal{Y} & \leftarrow & \mathcal{Y}_t \\
\downarrow & & \downarrow & & \downarrow \\
\{0\} & \to & \mathbb{A}^1 & \leftarrow & \{t\}
\end{array}
\]

with central fiber $\mathcal{Y}_0 \cong Higgs_{r,d}^{st}$ and such that:

1. $|\mathcal{Y}_t(\mathcal{F}_q)| = |\mathcal{Y}_0(\mathcal{F}_q)|$ for any t,
2. there is a map $\pi: \mathcal{Y} \to \text{Bun}_{r,d}(X)$ such that, for $t \neq 0$, $\pi|\mathcal{Y}_t: \mathcal{Y}_t \to \text{Bun}_{r,d}(X)$ is a linear stack over the substack of indecomposable vector bundles.
Idea of proof (deformation argument)

Why are the numbers of indecomposable vector bundles and (semi)stable Higgs bundles of fixed rank and degree so closely related?

One way to see this: there exists a \mathbb{G}_m-equivariant one-parameter family $\mathcal{Y} \to \mathbb{A}^1$

\[
\begin{array}{c}
Higgs_{r,d}^{st} \rightarrow \mathcal{Y} \leftarrow \mathcal{Y}_t \\
\downarrow \quad \downarrow \quad \downarrow \\
\{0\} \rightarrow \mathbb{A}^1 \leftarrow \{t\}
\end{array}
\]

with central fiber $\mathcal{Y}_0 \simeq Higgs_{r,d}^{st}$ and such that:

1. $|\mathcal{Y}_t(\mathbb{F}_q)| = |\mathcal{Y}_0(\mathbb{F}_q)|$ for any t,
2. there is a map $\pi : \mathcal{Y} \to \text{Bun}_{r,d}(X)$ such that, for $t \neq 0$,

\[
\pi|_{\mathcal{Y}_t} : \mathcal{Y}_t \to \text{Bun}_{r,d}(X)
\]

is a linear stack over the substack of indecomposable vector bundles.
A *quiver* is a finite, oriented graph. Let I be its set of edges and Ω its set of arrows.

Let k be any field. A *representation* of Q over k is the following data:

i) a finite dimensional k-vector space V_i for each $i \in I$

ii) a k-linear map $x_h : V_i \to V_j$ for each arrow $h : i \to j$.

Representations of Q over k form an abelian category.
A quiver is a finite, oriented graph. Let I be its set of edges and Ω its set of arrows.

$$\begin{array}{c}
\bullet_{1} \xrightarrow{} \bullet_{2} \\
\downarrow \hspace{1cm}
\downarrow \\
\bullet_{3} \xleftarrow{} \bullet_{4}
\end{array}$$
A quiver is a finite, oriented graph. Let I be its set of edges and Ω its set of arrows.

Let k be any field. A representation of Q over k is the following data:

Let k be any field. A representation of Q over k is the following data:
A quiver is a finite, oriented graph. Let I be its set of edges and Ω its set of arrows.

Let k be any field. A representation of Q over k is the following data:

i) a finite dimensional k-vector space V_i for each $i \in I$.
A *quiver* is a finite, oriented graph. Let I be its set of edges and Ω its set of arrows.

Let k be any field. A *representation* of Q over k is the following data:

i) a finite dimensional k-vector space V_i for each $i \in I$

ii) a k-linear map $x_h : V_i \to V_j$ for each arrow $h : i \to j$.

Representations of Q over k form an abelian category.
A quiver is a finite, oriented graph. Let I be its set of edges and Ω its set of arrows.

Let k be any field. A representation of Q over k is the following data:

i) a finite dimensional k-vector space V_i for each $i \in I$

ii) a k-linear map $x_h : V_i \to V_j$ for each arrow $h : i \to j$.

Representations of Q over k form an abelian category.
Quivers and curves

There is a strong analogy between categories of representations of quivers and categories of coherent sheaves on smooth projective curves.
There is a strong analogy between categories of representations of quivers and categories of coherent sheaves on smooth projective curves. Both are of global dimension one.

Quivers and curves
Quivers and curves

There is a strong analogy between categories of representations of quivers and categories of coherent sheaves on smooth projective curves.

Both are of global dimension one (moduli stacks of objects are smooth),
Quivers and curves

There is a strong analogy between categories of representations of quivers and categories of coherent sheaves on smooth projective curves.

Both are of global dimension one (moduli stacks of objects are smooth), and all Hom spaces are finite dimensional.
Quivers and curves

There is a strong analogy between categories of representations of quivers and categories of coherent sheaves on smooth projective curves.

Both are of global dimension one (moduli stacks of objects are smooth), and all Hom spaces are finite dimensional.

There is a trichotomy:
There is a strong analogy between categories of representations of quivers and categories of coherent sheaves on smooth projective curves.

Both are of global dimension one (moduli stacks of objects are smooth), and all Hom spaces are finite dimensional.

There is a trichotomy:
- Curves: rational, elliptic, higher genus.
Quivers and curves

There is a strong analogy between categories of representations of quivers and categories of coherent sheaves on smooth projective curves.

Both are of global dimension one (moduli stacks of objects are smooth), and all Hom spaces are finite dimensional.

There is a trichotomy:
- Curves: rational, elliptic, higher genus.
- Quivers: finite type (Dynkin), tame type (extended Dynkin), wild.
Quivers and curves

There is a strong analogy between categories of representations of quivers and categories of coherent sheaves on smooth projective curves.

Both are of global dimension one (moduli stacks of objects are smooth), and all Hom spaces are finite dimensional.

There is a trichotomy:
- Curves: rational, elliptic, higher genus.
- Quivers: finite type (Dynkin), tame type (extended Dynkin), wild.

(Numerical) Grothendieck groups and lattices:
Quivers and curves

There is a strong analogy between categories of representations of quivers and categories of coherent sheaves on smooth projective curves.

Both are of global dimension one (moduli stacks of objects are smooth), and all Hom spaces are finite dimensional.

There is a trichotomy:
- Curves: rational, elliptic, higher genus.
- Quivers: finite type (Dynkin), tame type (extended Dynkin), wild.

(Numerical) Grothendieck groups and lattices:
- Quiver $Q = (I, \Omega)$: $K_0(\text{Rep}_k Q) = \mathbb{Z}^I$
Quivers and curves

There is a strong analogy between categories of representations of quivers and categories of coherent sheaves on smooth projective curves.

Both are of global dimension one (moduli stacks of objects are smooth), and all Hom spaces are finite dimensional.

There is a trichotomy:
- Curves: rational, elliptic, higher genus.
- Quivers: finite type (Dynkin), tame type (extended Dynkin), wild.

(Numerical) Grothendieck groups and lattices:
- Quiver $Q = (I, \Omega): K_0(Rep_k Q) = \mathbb{Z}^I$
- Curve X: $K_0(Coh(X)) = \mathbb{Z}^2$
There is a strong analogy between categories of representations of quivers and
categories of coherent sheaves on smooth projective curves.

Both are of global dimension one (moduli stacks of objects are smooth), and all Hom
spaces are finite dimensional.

There is a trichotomy:
- Curves: rational, elliptic, higher genus.
- Quivers: finite type (Dynkin), tame type (extended Dynkin), wild.

(Numerical) Grothendieck groups and lattices:
- Quiver $Q = (I, \Omega): K_0(\text{Rep}_k Q) = \mathbb{Z}^I$
- Curve X: $K_0(\text{Coh}(X)) = \mathbb{Z}^2$

In both cases, these come equipped with their respective Euler forms

$$\langle M, N \rangle = \text{hom}(M, N) - \text{ext}^1(M, N)$$
Let $Q = (I, \Omega)$ be a quiver. Let $d \in \mathbb{N}^I$ be a dimension vector. For $k = \mathbb{F}_q$ a finite field, let $A_{Q,d,k}$ be the number of geometrically indecomposable representations of Q over k of dimension d.

Theorem (Kac, 81', Hausel-Letellier-Rodriguez-Villegas 13')

There exists a unique polynomial $A_{Q,d} \in \mathbb{Z}[t]$ such that for any k, we have $A_{Q,d,k} = A_{Q,d}(|k|)$. Moreover, $A_{Q,d}(t) \in \mathbb{N}[t]$.

When Q has no edge loops, the lattice $L = (\mathbb{Z}^I, (\cdot, \cdot))$ is a Kac-Moody lattice (i.e., the root lattice of a Kac-Moody algebra). Moreover (Kac's theorem) $A_{Q,d}(t) \neq 0$ if and only if d is a root of L.
Kac and Okounkov conjectures (I)

Let $Q = (I, \Omega)$ be a quiver. Let $d \in \mathbb{N}^I$ be a dimension vector. For $k = \mathbb{F}_q$ a finite field, let $A_{Q,d,k}$ be the number of geometrically indecomposable representations of Q over k of dimension d.

Theorem (Kac, 81’, Hausel-Letellier-Rodriguez-Villegas 13’)

There exists a unique polynomial $A_{Q,d} \in \mathbb{Z}[t]$ such that for any k we have $A_{Q,d,k} = A_{Q,d}(|k|)$. Moreover, $A_{Q,d}(t) \in \mathbb{N}[t]$.
Kac and Okounkov conjectures (I)

Let $Q = (I, \Omega)$ be a quiver. Let $d \in \mathbb{N}^I$ be a dimension vector. For $k = \mathbb{F}_q$ a finite field, let $A_{Q,d,k}$ be the number of geometrically indecomposable representations of Q over k of dimension d.

Theorem (Kac, 81’, Hausel-Letellier-Rodriguez-Villegas 13’)

There exists a unique polynomial $A_{Q,d} \in \mathbb{Z}[t]$ such that for any k we have $A_{Q,d,k} = A_{Q,d}(|k|)$. Moreover, $A_{Q,d}(t) \in \mathbb{N}[t]$.

When Q has no edge loops, the lattice $L = (\mathbb{Z}^I, (,))$ is a Kac-Moody lattice (i.e. the root lattice of a Kac-Moody algebra). Moreover (Kac’s theorem)

$$A_{Q,d}(t) \neq 0 \iff d \text{ is a root of } L.$$
Kac and Okounkov conjectures (II)

Kac conjectured (and Hausel proved later) a beautiful interpretation of $A_{Q,d}(0)$ in terms of Kac-Moody Lie algebras.

Assume for simplicity that Q has no edge loops. Let \mathfrak{g}_Q be the Kac-Moody algebra associated to Q (i.e. with generalized Dynkin diagram equal to Q). It has a root space decomposition $\mathfrak{g}_Q = \mathfrak{h} \oplus \bigoplus_{d \in \Delta} \mathfrak{g}_Q^d$.

Theorem (Hausel 06', Kac conjecture 81')
For any $d \in \mathbb{N}_I$ we have $A_{Q,d}(0) = \dim(\mathfrak{g}_Q^d)$.

What about the whole polynomial $A_{Q,d}(t)$?
Maulik and Okounkov defined an \mathbb{N}-graded extension $\tilde{\mathfrak{g}}_Q$ of \mathfrak{g}_Q, using the geometry of Nakajima quiver varieties.

Conjecture (Okounkov)
For any $d \in \mathbb{N}_I$ we have $A_{Q,d}(t) = \dim Z(\tilde{\mathfrak{g}}_Q^d)$.
Kac and Okounkov conjectures (II)

Kac conjectured (and Hausel proved later) a beautiful interpretation of $A_{Q,d}(0)$ in terms of Kac-Moody Lie algebras. Assume for simplicity that Q has no edge loops. Let g_Q be the Kac-Moody algebra associated to L (i.e. with generalized Dynkin diagram equal to Q). It has a root space decomposition

$$g_Q = h \oplus \bigoplus_{d \in \Delta} g_Q[d].$$
Kac and Okounkov conjectures (II)

Kac conjectured (and Hausel proved later) a beautiful interpretation of $A_{Q,d}(0)$ in terms of Kac-Moody Lie algebras. Assume for simplicity that Q has no edge loops. Let g_Q be the Kac-Moody algebra associated to L (i.e. with generalized Dynkin diagram equal to Q). It has a root space decomposition

$$g_Q = \mathfrak{h} \oplus \bigoplus_{d \in \Delta} g_Q[d].$$

Theorem (Hausel 06’, Kac conjecture 81’)

*For any $d \in \mathbb{N}^I$ we have $A_{Q,d}(0) = \dim(g_Q[d])$.***
Kac conjectured (and Hausel proved later) a beautiful interpretation of $A_{Q,d}(0)$ in terms of Kac-Moody Lie algebras. Assume for simplicity that Q has no edge loops. Let g_Q be the Kac-Moody algebra associated to Q (i.e. with generalized Dynkin diagram equal to Q). It has a root space decomposition

$$g_Q = \mathfrak{h} \oplus \bigoplus_{d \in \Delta} g_Q[d].$$

Theorem (Hausel 06’, Kac conjecture 81’)

For any $d \in \mathbb{N}_I$ we have $A_{Q,d}(0) = \dim(g_Q[d])$.

What about the whole polynomial $A_{Q,d}(t)$?

Kac and Okounkov conjectures (II)
Kac and Okounkov conjectures (II)

Kac conjectured (and Hausel proved later) a beautiful interpretation of $A_{Q,d}(0)$ in terms of Kac-Moody Lie algebras. Assume for simplicity that Q has no edge loops. Let g_Q be the Kac-Moody algebra associated to L (i.e. with generalized Dynkin diagram equal to Q). It has a root space decomposition

$$g_Q = \mathfrak{h} \oplus \bigoplus_{d \in \Delta} g_Q[d].$$

Theorem (Hausel 06’, Kac conjecture 81’)

*For any $d \in \mathbb{N}^I$ we have $A_{Q,d}(0) = \dim(g_Q[d])$.***

What about the whole polynomial $A_{Q,d}(t)$? Maulik and Okounkov defined an \mathbb{N}-graded extension \tilde{g}_Q of g_Q, using the geometry of Nakajima quiver varieties.
Kac and Okounkov conjectures (II)

Kac conjectured (and Hausel proved later) a beautiful interpretation of $A_{Q,d}(0)$ in terms of Kac-Moody Lie algebras. Assume for simplicity that Q has no edge loops. Let \mathfrak{g}_Q be the Kac-Moody algebra associated to L (i.e. with generalized Dynkin diagram equal to Q). It has a root space decomposition

$$\mathfrak{g}_Q = \mathfrak{h} \oplus \bigoplus_{d \in \Delta} \mathfrak{g}_Q[d].$$

Theorem (Hausel 06’, Kac conjecture 81’)

For any $d \in \mathbb{N}^I$ we have $A_{Q,d}(0) = \dim(\mathfrak{g}_Q[d]).$

What about the whole polynomial $A_{Q,d}(t)$? Maulik and Okounkov defined an \mathbb{N}-graded extension $\tilde{\mathfrak{g}}_Q$ of \mathfrak{g}_Q, using the geometry of Nakajima quiver varieties.

Conjecture (Okounkov)

For any $d \in \mathbb{N}^I$ we have $A_{Q,d}(t) = \dim_{\mathbb{Z}}(\tilde{\mathfrak{g}}_Q[d]).$
Remarks (Hall algebras)

Remarks:

i) There is an extension of all of this to the setting of quivers with edge loops, for instance the quiver S_g with one vertex and g loops (T. Bozec).

ii) How do we construct the Kac-Moody algebra g_Q from the category Rep_FqQ of representations of the quiver Q?

\Rightarrow spherical Ringel-Hall algebra of Rep_FqQ (Ringel, Lusztig, Kashiwara, ...)

iii) How do we construct the graded extension \tilde{g}_Q from the category Rep_FqQ of representations of the quiver Q?

\Rightarrow (whole) Hall algebra of Rep_FqQ (S.-Bozec)

\Rightarrow Cohomological Hall algebra of T^*Rep_CQ (S.-Vasserot, Davison-Meinhardt)

\Rightarrow Maulik-Okounkov Yangian of Nakajima quiver varieties (Maulik-Okounkov)
Remarks (Hall algebras)

Remarks:

i) There is an extension of all of this to the setting of quivers with edge loops, for instance the quiver S_g with one vertex and g loops (T. Bozec)

ii) How do we construct the Kac-Moody algebra g_Q from the category $\text{Rep}_F q_Q$ of representations of the quiver Q?

\Rightarrow spherical Ringel-Hall algebra of $\text{Rep}_F q_Q$ (Ringel, Lusztig, Kashiwara, . . .)

\Rightarrow (whole) Hall algebra of $\text{Rep}_F q_Q$ (S.-Bozec)

\Rightarrow Cohomological Hall algebra of $T^* \text{Rep}_C Q$ (S.-Vasserot, Davison-Meinhardt)

\Rightarrow Maulik-Okounkov Yangian of Nakajima quiver varieties (Maulik-Okounkov)
Remarks (Hall algebras)

Remarks:

i) There is an extension of all of this to the setting of quivers with edge loops, for instance the quiver S_g with one vertex and g loops (T. Bozec)

ii) How do we construct the Kac-Moody algebra \mathfrak{g}_Q from the category $\text{Rep}_{F_q}Q$ of representations of the quiver Q?
Remarks (Hall algebras)

Remarks:

i) There is an extension of all of this to the setting of quivers with edge loops, for instance the quiver S_g with one vertex and g loops (T. Bozec)

ii) How do we construct the Kac-Moody algebra $\mathfrak{g}Q$ from the category $\text{Rep}_{\mathbb{F}_q} Q$ of representations of the quiver Q?

\[\rightsquigarrow\text{spherical Ringel-Hall algebra of } \text{Rep}_{\mathbb{F}_q} Q\] (Ringel, Lusztig, Kashiwara, . . .)
Remarks (Hall algebras)

Remarks :

i) There is an extension of all of this to the setting of quivers with edge loops, for instance the quiver S_g with one vertex and g loops (T. Bozec)

ii) How do we construct the Kac-Moody algebra \mathfrak{g}_Q from the category $\text{Rep}_{\mathbb{F}_q} Q$ of representations of the quiver Q ?

\leadsto spherical Ringel-Hall algebra of $\text{Rep}_{\mathbb{F}_q} Q$ (Ringel, Lusztig, Kashiwara, . . .)

iii) How do we construct the graded extension $\tilde{\mathfrak{g}}_Q$ from the category $\text{Rep}_{\mathbb{F}_q} Q$ of representations of the quiver Q ?
Remarks (Hall algebras)

Remarks:

i) There is an extension of all of this to the setting of quivers with edge loops, for instance the quiver S_g with one vertex and g loops (T. Bozec)

ii) How do we construct the Kac-Moody algebra \mathfrak{g}_Q from the category $\text{Rep}_{\mathbb{F}_q} Q$ of representations of the quiver Q?
 \[\rightsquigarrow\text{spherical Ringel-Hall algebra of } \text{Rep}_{\mathbb{F}_q} Q \text{ (Ringel, Lusztig, Kashiwara,\ldots)}\]

iii) How do we construct the graded extension $\widetilde{\mathfrak{g}}_Q$ from the category $\text{Rep}_{\mathbb{F}_q} Q$ of representations of the quiver Q?
 \[\rightsquigarrow \text{(whole) Hall algebra of } \text{Rep}_{\mathbb{F}_q} Q \text{ (S.-Bozec)}\]
Remarks (Hall algebras)

Remarks :

i) There is an extension of all of this to the setting of quivers with edge loops, for instance the quiver S_g with one vertex and g loops (T. Bozec)

ii) How do we construct the Kac-Moody algebra g_Q from the category $\text{Rep}_{\mathbb{F}_q} Q$ of representations of the quiver Q ?
 \leadsto spherical Ringel-Hall algebra of $\text{Rep}_{\mathbb{F}_q} Q$ (Ringel, Lusztig, Kashiwara,…)

iii) How do we construct the graded extension \tilde{g}_Q from the category $\text{Rep}_{\mathbb{F}_q} Q$ of representations of the quiver Q ?
 \leadsto (whole) Hall algebra of $\text{Rep}_{\mathbb{F}_q} Q$ (S.-Bozec)
 \leadsto Cohomological Hall algebra of $T^*\text{Rep}_{\mathbb{C}} Q$ (S.-Vasserot, Davison-Meinhardt)
Remarks (Hall algebras)

Remarks:

i) There is an extension of all of this to the setting of quivers with edge loops, for instance the quiver S_g with one vertex and g loops (T. Bozec)

ii) How do we construct the Kac-Moody algebra \mathfrak{g}_Q from the category $\text{Rep}_{\mathbb{F}_q} Q$ of representations of the quiver Q?

\mapsto spherical Ringel-Hall algebra of $\text{Rep}_{\mathbb{F}_q} Q$ (Ringel, Lusztig, Kashiwara, …)

iii) How do we construct the graded extension $\widetilde{\mathfrak{g}}_Q$ from the category $\text{Rep}_{\mathbb{F}_q} Q$ of representations of the quiver Q?

\mapsto (whole) Hall algebra of $\text{Rep}_{\mathbb{F}_q} Q$ (S.-Bozec)

\mapsto Cohomological Hall algebra of $T^* \text{Rep}_\mathbb{C} Q$ (S.-Vasserot, Davison-Meinhardt)

\mapsto Maulik-Okounkov Yangian of Nakajima quiver varieties (Maulik-Okounkov)
Heuristics

So, from the analogy between curves and quivers, we can expect that for any $g \geq 0$:

- There exists a natural Lie algebra \mathfrak{g} with a weight decomposition $\mathfrak{g} = \bigoplus_{(r,d) \in \mathbb{Z}^2} \mathfrak{g}[r,d]$ such that for any (r,d) we have $\dim(\mathfrak{g}[r,d]) = A_{\mathfrak{g},r}(0)$.

- There exists a natural Lie algebra in the category of $GSp(2g, \mathbb{Q}_l)$-modules $\tilde{\mathfrak{g}}$ with a weight decomposition $\tilde{\mathfrak{g}} = \bigoplus_{(r,d) \in \mathbb{Z}^2} \tilde{\mathfrak{g}}[r,d]$ such that for any (r,d) we have $\text{ch}(\tilde{\mathfrak{g}}[r,d]) = A_{\tilde{\mathfrak{g}},r}(0)$.

Moreover, (quantum deformations of) both of these Lie algebras should be realized as appropriate Hall algebras of a 'generic' curve of genus g (a joint project with F. Sala).
So, from the analogy between curves and quivers, we can expect that for any $g \geq 0$:

- There exists a natural Lie algebra \mathfrak{g}_g with a weight decomposition

$$\mathfrak{g}_g = \bigoplus_{(r,d) \in \mathbb{Z}^2} \mathfrak{g}_g[r,d]$$

such that for any (r,d) we have $\dim(\mathfrak{g}_g[r,d]) = A_{g,r}(0)$
So, from the analogy between curves and quivers, we can expect that for any $g \geq 0$:

- There exists a natural Lie algebra \mathfrak{g}_g with a weight decomposition

$$\mathfrak{g}_g = \bigoplus_{(r,d) \in \mathbb{Z}^2} \mathfrak{g}_g[r,d]$$

such that for any (r,d) we have $\dim(\mathfrak{g}_g[r,d]) = A_{g,r}(0)$

- There exists a natural Lie algebra in the category of $GSp(2g, \overline{\mathbb{Q}})$-modules $\tilde{\mathfrak{g}}_g$ with a weight decomposition

$$\tilde{\mathfrak{g}}_g = \bigoplus_{(r,d) \in \mathbb{Z}^2} \tilde{\mathfrak{g}}_g[r,d]$$

such that for any (r,d) we have $\text{ch}(\tilde{\mathfrak{g}}_g[r,d]) = A_{g,r}$
So, from the analogy between curves and quivers, we can expect that for any $g \geq 0$:

- There exists a natural Lie algebra \mathfrak{g}_g with a weight decomposition

$$\mathfrak{g}_g = \bigoplus_{(r,d) \in \mathbb{Z}^2} \mathfrak{g}_g[r,d]$$

such that for any (r,d) we have $\dim(\mathfrak{g}_g[r,d]) = A_{g,r}(0)$

- There exists a natural Lie algebra in the category of $GSp(2g, \overline{\mathbb{Q}}_l)$-modules $\tilde{\mathfrak{g}}_g$ with a weight decomposition

$$\tilde{\mathfrak{g}}_g = \bigoplus_{(r,d) \in \mathbb{Z}^2} \tilde{\mathfrak{g}}_g[r,d]$$

such that for any (r,d) we have $\text{ch}(\tilde{\mathfrak{g}}_g[r,d]) = A_{g,r}$

Moreover, (quantum deformations of) both of these Lie algebras should be realized as appropriate Hall algebras of a 'generic' curve of genus g (a joint project with F. Sala).
Let X be a smooth projective curve of genus g defined over \mathbb{F}_q. A function $f : \text{Bun}_{r,d}(X) \to \mathbb{C}$ is \textit{cuspidal} if it is orthogonal (with respect to the orbifold pairing) to any parabolically induced function. There is a similar notion of \textit{absolutely cuspidal} function.
Counting cuspidals

Let X be a smooth projective curve of genus g defined over \mathbb{F}_q. A function $f : Bun_{r,d}(X) \to \mathbb{C}$ is \textit{cuspidal} if it is orthogonal (with respect to the orbifold pairing) to any parabolically induced function. There is a similar notion of \textit{absolutely cuspidal} function.

Theorem (H. Yu 17', Deligne-Kontsevich conjecture)

There exists a polynomial $C_{g,r} \in R_g$ such that for any $d \in \mathbb{Z}$ we have

$$\dim(Fun^{\text{abs.cusp}}(Bun_{r,d}, \mathbb{C})) = C_{g,r}(Fr_X).$$
Let X be a smooth projective curve of genus g defined over \mathbb{F}_q. A function $f : \text{Bun}_{r,d}(X) \to \mathbb{C}$ is *cuspidal* if it is orthogonal (with respect to the orbifold pairing) to any parabolically induced function. There is a similar notion of *absolutely cuspidal* function.

Theorem (H. Yu 17’, Deligne-Kontsevich conjecture)

There exists a polynomial $C_{g,r} \in R_g$ such that for any $d \in \mathbb{Z}$ we have

$$\dim(\text{Fun}^{\text{abs},\text{cusp}}(\text{Bun}_{r,d}, \mathbb{C})) = C_{g,r}(Fr_X).$$

Moreover, $C_{g,r}$ is explicitly expressed as a polynomial in the $A_{g,s}$ for $s \leq r$.
Conjecture

For any r, d, consider the space of simple root vectors

$$\tilde{g}_g^{\text{simple}}[r, d] := \tilde{g}_g[r, d]/ \left(\sum_{s'+s''=r, d'+d''=d} [\tilde{g}_g[s', d'], \tilde{g}_g[s'', d'']] \right).$$

Then $ch(\tilde{g}_g^{\text{simple}}[r, d]) = C_{g, r}$. Of course, this conjecture implies in particular that $C_{g, r}$ is integral and positive.

A natural question: Is $C_{g, r}$ the cohomology of something? (a 'cuspidal' piece of $H^\ast(Higgs_{ss} r, d(X))$?)
Conjecture

For any \(r, d \), consider the space of simple root vectors

\[
\tilde{g}_{g}^{simple}[r, d] := \tilde{g}_{g}[r, d]/\left(\sum_{s'+s''=r, d'+d''=d} [\tilde{g}_{g}[s', d'], \tilde{g}_{g}[s'', d'']] \right).
\]

Then \(ch(\tilde{g}_{g}^{simple}[r, d]) = C_{g,r} \).

Of course, this conjecture implies in particular that \(C_{g,r} \) is integral and positive.
Conjecture

For any r, d, consider the space of simple root vectors

$$\tilde{g}^{simple}_{g}[r, d] := \tilde{g}_{g}[r, d] / \left(\sum_{s'+s''=r \atop d'+d''=d} [\tilde{g}_{g}[s', d'], \tilde{g}_{g}[s'', d'']] \right).$$

Then $ch(\tilde{g}^{simple}_{g}[r, d]) = C_{g,r}$.

Of course, this conjecture implies in particular that $C_{g,r}$ is integral and positive.

A natural question: Is $C_{g,r}$ the cohomology of something? (a 'cuspidal' piece of $H^*(Higgs^{ss}_{r,d}(X)$?)
THANK YOU
THANK YOU

and see you at the beach