On finitary approximation properties of groups and their applications

Andreas Thom
Overview

1. Equations over groups
2. Finitary approximation properties of groups
3. Approximation by finite groups
4. Stability and examples of non-Frobenius approximable groups
How to solve a polynomial equation?

It is easy to see that \(p(t) = t^2 - 2 \) has no solution in \(\mathbb{Q} \). But there exists a solution in the field \(\mathbb{Q}[\sqrt{2}] \). In general, for any non-constant polynomial, there exists a finite field extension \(\mathbb{Q} \subset K \), such that \(p(t) = 0 \) can be solved in \(K \).

1. Consider a simple quotient \(\mathbb{Q}[t]/\langle p(t) \rangle \rightarrow K \). The image of \(t \) will satisfy the equation \(p(t) = 0 \) in \(K \).

2. Embed \(\mathbb{Q} \subset \mathbb{C} \), study the continuous map \(p: \mathbb{C} \rightarrow \mathbb{C} \), and use a topological argument to see that there exists \(\alpha \in \mathbb{C} \), such that \(p(\alpha) = 0 \).
How to solve a polynomial equation?

It is easy to see that \(p(t) = t^2 - 2 \) has no solution in \(\mathbb{Q} \).
How to solve a polynomial equation?

It is easy to see that \(p(t) = t^2 - 2 \) has no solution in \(\mathbb{Q} \). But there exists a solution in the field \(\mathbb{Q}[^2] \).
How to solve a polynomial equation?

It is easy to see that $p(t) = t^2 - 2$ has no solution in \mathbb{Q}. But there exists a solution in the field $\mathbb{Q}[^2]$. In general, for any non-constant polynomial, there exists a finite field extension $\mathbb{Q} \subset K$, such that $p(t) = 0$ can be solved in K.
It is easy to see that $p(t) = t^2 - 2$ has no solution in \mathbb{Q}. But there exists a solution in the field $\mathbb{Q}[^\sqrt{2}]$. In general, for any non-constant polynomial, there exists a finite field extension $\mathbb{Q} \subset K$, such that $p(t) = 0$ can be solved in K.

1. Consider a simple quotient $\mathbb{Q}[t]/\langle p(t) \rangle \twoheadrightarrow K$. The image of t will satisfy the equation $p(t) = 0$ in K.
How to solve a polynomial equation?

It is easy to see that $p(t) = t^2 - 2$ has no solution in \mathbb{Q}. But there exists a solution in the field $\mathbb{Q}[^2]$. In general, for any non-constant polynomial, there exists a finite field extension $\mathbb{Q} \subset K$, such that $p(t) = 0$ can be solved in K.

1. Consider a simple quotient $\mathbb{Q}[t]/\langle p(t) \rangle \rightarrow K$. The image of t will satisfy the equation $p(t) = 0$ in K.

2. Embed $\mathbb{Q} \subset \mathbb{C}$, study the continuous map $p: \mathbb{C} \rightarrow \mathbb{C}$, and use a topological argument to see that there exists $\alpha \in \mathbb{C}$, such that $p(\alpha) = 0$.
How to solve a polynomial equation?

It is easy to see that \(p(t) = t^2 - 2 \) has no solution in \(\mathbb{Q} \). But there exists a solution in the field \(\mathbb{Q}[\sqrt{2}] \). In general, for any non-constant polynomial, there exists a finite field extension \(\mathbb{Q} \subset K \), such that \(p(t) = 0 \) can be solved in \(K \).

1. Consider a simple quotient \(\mathbb{Q}[t]/\langle p(t) \rangle \rightarrow K \). The image of \(t \) will satisfy the equation \(p(t) = 0 \) in \(K \).

2. Embed \(\mathbb{Q} \subset \mathbb{C} \), study the continuous map \(p: \mathbb{C} \rightarrow \mathbb{C} \), and use a topological argument to see that there exists \(\alpha \in \mathbb{C} \), such that \(p(\alpha) = 0 \).
Equations over groups – the one variable case

Definition

Let Γ be a group and let $g_1, \ldots, g_n \in \Gamma$, $\varepsilon_1, \ldots, \varepsilon_n \in \mathbb{Z}$.

We say that the equation $w(t) = g_1^t \varepsilon_1 g_2^t \varepsilon_2 \ldots g_n^t \varepsilon_n$ has a solution in Γ if there exists $h \in \Gamma$ such that $w(h) = e$.

The equation has a solution over Γ if there is an extension $\Gamma \leq \Lambda$ and there is some $h \in \Lambda$ such that $w(h) = e$ in Λ.

The study of equations like this goes back to: Bernhard H. Neumann, Adjunction of elements to groups, J. London Math. Soc. 18 (1943), 411.
Equations over groups – the one variable case

Definition
Let Γ be a group and let $g_1, \ldots, g_n \in \Gamma$, $\varepsilon_1, \ldots, \varepsilon_n \in \mathbb{Z}$. We say that the equation $w(t) = g_1 t^{\varepsilon_1} g_2 t^{\varepsilon_2} \cdots g_n t^{\varepsilon_n}$ has a solution in Γ if there exists $h \in \Gamma$ such that $w(h) = e$. The equation has a solution over Γ if there is an extension $\Gamma \leq \Lambda$ and there is some $h \in \Lambda$ such that $w(h) = e$ in Λ. The study of equations like this goes back to Bernhard H. Neumann, Adjunction of elements to groups, J. London Math. Soc. 18 (1943), 411.
Equations over groups – the one variable case

Definition
Let Γ be a group and let $g_1, \ldots, g_n \in \Gamma$, $\varepsilon_1, \ldots, \varepsilon_n \in \mathbb{Z}$. We say that the equation

$$w(t) = g_1 t^{\varepsilon_1} g_2 t^{\varepsilon_2} g_3 \cdots g_n t^{\varepsilon_n}$$

has a solution in Γ if there exists $h \in \Gamma$ such that $w(h) = e$. The equation has a solution over Γ if there is an extension $\Gamma \leq \Lambda$ and there is some $h \in \Lambda$ such that $w(h) = e$ in Λ. The study of equations like this goes back to Bernhard H. Neumann, *Adjunction of elements to groups*, J. London Math. Soc. 18 (1943), 411.
Equations over groups – the one variable case

Definition
Let Γ be a group and let $g_1, \ldots, g_n \in \Gamma$, $\varepsilon_1, \ldots, \varepsilon_n \in \mathbb{Z}$. We say that the equation

$$w(t) = g_1 t^{\varepsilon_1} g_2 t^{\varepsilon_2} g_3 \ldots g_n t^{\varepsilon_n}$$

has a solution in Γ if there exists $h \in \Gamma$ such that $w(h) = e$.

The equation has a solution over Γ if there is an extension $\Gamma \leq \Lambda$ and there is some $h \in \Lambda$ such that $w(h) = e$ in Λ.

The study of equations like this goes back to: Bernhard H. Neumann, Adjunction of elements to groups, J. London Math. Soc. 18 (1943), 411.
Equations over groups – the one variable case

Definition
Let \(\Gamma \) be a group and let \(g_1, \ldots, g_n \in \Gamma, \, \varepsilon_1, \ldots, \varepsilon_n \in \mathbb{Z} \). We say that the equation

\[
 w(t) = g_1 t^{\varepsilon_1} g_2 t^{\varepsilon_2} g_3 \ldots g_n t^{\varepsilon_n}
\]

has a solution in \(\Gamma \) if there exists \(h \in \Gamma \) such that \(w(h) = e \).

The equation has a solution over \(\Gamma \) if there is an extension \(\Gamma \leq \Lambda \) and there is some \(h \in \Lambda \) such that \(w(h) = e \) in \(\Lambda \).

The study of equations like this goes back to:

Example
If $a, b \in \Gamma$, then $w(t) = atbt^{-1}$ cannot be solved over Γ unless the orders of a and b agree.
Example
If \(a, b \in \Gamma \), then \(w(t) = atbt^{-1} \) cannot be solved over \(\Gamma \) unless the orders of \(a \) and \(b \) agree.

Indeed, if such a \(t \) exists, then

\[
a^{-1} = tbt^{-1}.
\]
Example

If \(a, b \in \Gamma \), then \(w(t) = atbt^{-1} \) cannot be solved over \(\Gamma \) unless the orders of \(a \) and \(b \) agree.

Indeed, if such a \(t \) exists, then

\[
a^{-1} = tb^{-1}.
\]

Example

The equation \(w(t) = tat^{-1}ata^{-1}t^{-1}a^{-2} \) cannot be solved over \(\mathbb{Z}/p\mathbb{Z} = \langle a \rangle \).
Example
If $a, b \in \Gamma$, then $w(t) = atbt^{-1}$ cannot be solved over Γ unless the orders of a and b agree.

Indeed, if such a t exists, then

$$a^{-1} = tbt^{-1}.$$

Example
The equation $w(t) = t^{-1}ata^{-1}t^{-1}a^{-2}$ cannot be solved over $\mathbb{Z}/p\mathbb{Z} = \langle a \rangle$.

Indeed, if $w(t) = 1$, then

$$a^2 = (tat^{-1})a(tat^{-1})^{-1}$$

and a conjugate of a (namely tat^{-1}) would conjugate a to a^2.
Example

If \(a, b \in \Gamma \), then \(w(t) = atbt^{-1} \) cannot be solved over \(\Gamma \) unless the orders of \(a \) and \(b \) agree.

Indeed, if such a \(t \) exists, then

\[
a^{-1} = tbt^{-1}.
\]

Example

The equation \(w(t) = tat^{-1} ata^{-1} t^{-1} a^{-2} \) cannot be solved over \(\mathbb{Z}/p\mathbb{Z} = \langle a \rangle \).

Indeed, if \(w(t) = 1 \), then

\[
a^2 = (tat^{-1})a(tat^{-1})^{-1}
\]

and a conjugate of \(a \) (namely \(tat^{-1} \)) would conjugate \(a \) to \(a^2 \). But the automorphism of \(\mathbb{Z}/p\mathbb{Z} \) which sends 1 to 2 has order dividing \(p - 1 \) and hence the order is co-prime to \(p \).
Definition
We say that the equation \(w(t) = g_1 t^{\varepsilon_1} g_2 t^{\varepsilon_2} g_3 \ldots g_n t^{\varepsilon_n} \) is non-singular if \(\sum_{i=1}^{n} \varepsilon_i \neq 0 \).
Definition
We say that the equation $w(t) = g_1 t^{\varepsilon_1} g_2 t^{\varepsilon_2} g_3 \ldots g_n t^{\varepsilon_n}$ is non-singular if $\sum_{i=1}^{n} \varepsilon_i \neq 0$.

Conjecture (Kervaire, 1960s)
If $w(t)$ is non-singular, then $w(t)$ has a solution over Γ.

Theorem (Klyachko, 1993)
If Γ is torsionfree and $w(t)$ is non-singular, then $w(t)$ can be solved over Γ.

Definition
We say that the equation \(w(t) = g_1 t^{\varepsilon_1} g_2 t^{\varepsilon_2} g_3 \ldots g_n t^{\varepsilon_n} \) is non-singular if \(\sum_{i=1}^{n} \varepsilon_i \neq 0 \).

Conjecture (Kervaire, 1960s)
If \(w(t) \) is non-singular, then \(w(t) \) has a solution over \(\Gamma \).

Theorem (Klyachko, 1993)
If \(\Gamma \) is torsionfree and \(w(t) \) is non-singular, then \(w(t) \) can be solved over \(\Gamma \).

Definition
We say that the equation \(w(t) = g_1 t^{\varepsilon_1} g_2 t^{\varepsilon_2} g_3 \ldots g_n t^{\varepsilon_n} \) is non-singular if \(\sum_{i=1}^{n} \varepsilon_i \neq 0 \).

Conjecture (Kervaire, 1960s)
If \(w(t) \) is non-singular, then \(w(t) \) has a solution over \(\Gamma \).

Theorem (Klyachko, 1993)
If \(\Gamma \) is torsionfree and \(w(t) \) is non-singular, then \(w(t) \) can be solved over \(\Gamma \).

The algebraic/combinatorial approach

Why is this complicated?
The algebraic/combinatorial approach

Why is this complicated? Just consider:

\[\Gamma \rightarrow \frac{\Gamma \ast \langle t \rangle}{\langle w(t) \rangle}. \]
The algebraic/combinatorial approach

Why is this complicated? Just consider:

\[\Gamma \rightarrow \frac{\Gamma \ast \langle t \rangle}{\langle \langle w(t) \rangle \rangle}. \]

But nobody can show easily that this homomorphism is injective.
The algebraic/combinatorial approach

Why is this complicated? Just consider:

\[\Gamma \rightarrow \frac{\Gamma * \langle t \rangle}{\langle \langle w(t) \rangle \rangle} \]

But nobody can show easily that this homomorphism is injective. In fact, injectivity is equivalent to existence of a solution over \(\Gamma \).
The algebraic/combinatorial approach

Why is this complicated? Just consider:

\[\Gamma \rightarrow \frac{\Gamma \ast \langle t \rangle}{\langle \langle w(t) \rangle \rangle} \]

But nobody can show easily that this homomorphism is injective. In fact, injectivity is equivalent to existence of a solution over \(\Gamma \).

The Kervaire conjecture originates from low dimensional topology, where certain geometric operations on knot complements amount to the attachment of an "arc" and a "disc".
The algebraic/combinatorial approach

Why is this complicated? Just consider:

$$\Gamma \rightarrow \frac{\Gamma \ast \langle t \rangle}{\langle \langle w(t) \rangle \rangle}.$$

But nobody can show easily that this homomorphism is injective. In fact, injectivity is equivalent to existence of a solution over Γ.

The Kervaire conjecture originates from low dimensional topology, where certain geometric operations on knot complements amount to the attachment of an "arc" and a "disc".

The resulting effect on fundamental groups is exactly

$$\Gamma \sim \frac{\Gamma \ast \langle t \rangle}{\langle \langle w(t) \rangle \rangle}.$$
However, using topological methods one can show:

Theorem (Gerstenhaber-Rothaus, 1962)

Any non-singular equation in $U(n)$ can be solved in $U(n)$.
However, using topological methods one can show:

Theorem (Gerstenhaber-Rothaus, 1962)

*Any non-singular equation in $U(n)$ can be solved in $U(n)$.***

Proof.
Consider the word map $w: U(n) \to U(n)$, $w(t) = g_1 t^{\varepsilon_1} \ldots g_n t^{\varepsilon_n}$. Since $U(n)$ is connected, each g_i can be moved continuously to 1. Thus, this map is homotopic to $t \mapsto t \sum \varepsilon_i$, which has non-trivial degree as a map of topological manifolds. Indeed, a generic matrix has exactly d_n preimages with $d_n = |\sum \varepsilon_i|$. Hence, the map w must be surjective. Each pre-image of 1 gives a solution of the equation $w(t) = 1$.
However, using topological methods one can show:

Theorem (Gerstenhaber-Rothaus, 1962)

Any non-singular equation in $U(n)$ can be solved in $U(n)$.

Proof.

Consider the word map $w : U(n) \to U(n)$, $w(t) = g_1 t^{\epsilon_1} \cdots g_n t^{\epsilon_n}$. Since $U(n)$ is connected, each g_i can be moved continuously to 1_n. Thus, this map is homotopic to $t \mapsto t \sum \epsilon_i g_i$, which has non-trivial degree as a map of topological manifolds. Indeed, a generic matrix has exactly d_n preimages with $d_n = |\sum \epsilon_i|$. Hence, the map w must be surjective. Each pre-image of 1_n gives a solution of the equation $w(t) = 1_n$.
However, using topological methods one can show:

Theorem (Gerstenhaber-Rothaus, 1962)

Any non-singular equation in $U(n)$ can be solved in $U(n)$.

Proof.
Consider the word map $w: U(n) \to U(n)$, $w(t) = g_1 t^{\epsilon_1} \ldots g_n t^{\epsilon_n}$.

Since $U(n)$ is connected, each g_i can be moved continuously to 1_n.

Thus, this map is homotopic to $t \mapsto t\sum \epsilon_i$,
However, using topological methods one can show:

Theorem (Gerstenhaber-Rothaus, 1962)

Any non-singular equation in $U(n)$ can be solved in $U(n)$.

Proof.
Consider the word map $w : U(n) \to U(n)$, $w(t) = g_1 t^{\varepsilon_1} \ldots g_n t^{\varepsilon_n}$.
Since $U(n)$ is connected, each g_i can be moved continuously to 1_n.
Thus, this map is homotopic to $t \mapsto t^{\sum i \varepsilon_i}$, which has non-trivial degree as a map of topological manifolds.
However, using topological methods one can show:

Theorem (Gerstenhaber-Rothaus, 1962)

*Any non-singular equation in $U(n)$ can be solved in $U(n)$.***

Proof.
Consider the word map $w : U(n) \to U(n)$, $w(t) = g_1 t^{\varepsilon_1} \cdots g_n t^{\varepsilon_n}$. Since $U(n)$ is connected, each g_i can be moved continuously to 1_n. Thus, this map is homotopic to $t \mapsto t \sum_i \varepsilon_i$, which has non-trivial degree as a map of topological manifolds. Indeed, a generic matrix has exactly d^n preimages with $d := |\sum_i \varepsilon_i|$.
However, using topological methods one can show:

Theorem (Gerstenhaber-Rothaus, 1962)

Any non-singular equation in $U(n)$ can be solved in $U(n)$.

Proof.

Consider the word map $w: U(n) \to U(n), w(t) = g_1 t^{\varepsilon_1} \ldots g_n t^{\varepsilon_n}$. Since $U(n)$ is connected, each g_i can be moved continuously to 1_n. Thus, this map is homotopic to $t \mapsto t\sum_i \varepsilon_i$, which has non-trivial degree as a map of topological manifolds. Indeed, a generic matrix has exactly d^n preimages with $d := |\sum_i \varepsilon_i|$. Hence, the map w must be surjective.
However, using topological methods one can show:

Theorem (Gerstenhaber-Rothaus, 1962)

Any non-singular equation in $U(n)$ can be solved in $U(n)$.

Proof.
Consider the word map $w : U(n) \to U(n)$, $w(t) = g_1 t^{\varepsilon_1} \cdots g_n t^{\varepsilon_n}$. Since $U(n)$ is connected, each g_i can be moved continuously to 1_n. Thus, this map is homotopic to $t \mapsto t \sum_i \varepsilon_i$, which has non-trivial degree as a map of topological manifolds. Indeed, a generic matrix has exactly d^n preimages with $d := |\sum_i \varepsilon_i|$. Hence, the map w must be surjective. Each pre-image of 1_n gives a solution of the equation $w(t) = 1_n$. \qed
Corollary (Gerstenhaber-Rothaus, 1962)

Any non-singular equation with coefficients in a finite group Γ can be solved over Γ.

In fact, they can be solved in a finite extension $\Gamma \leq \Lambda$.

The same argument works for any group that is residually finite or, more generally, suitably approximated by unitary groups. Such groups are called Connes-embeddable, as they are embeddable into certain metric ultraproducts of unitary groups.

Corollary (Pestov, 2009)

Any Connes-embeddable group Γ satisfies Kervaire’s Conjecture.

Question (Connes, 1978)

Do all groups have this approximation property?
Corollary (Gerstenhaber-Rothaus, 1962)

Any non-singular equation with coefficients in a finite group Γ can be solved over Γ. In fact, they can be solved in a finite extension $\Gamma \leq \Lambda$.

Corollary (Pestov, 2009)

Any Connes-embeddable group Γ satisfies Kervaire's Conjecture.

Question (Connes, 1978)

Do all groups have this approximation property?
Corollary (Gerstenhaber-Rothaus, 1962)

Any non-singular equation with coefficients in a finite group Γ can be solved over Γ. In fact, they can be solved in a finite extension $\Gamma \leq \Lambda$.

The same argument works for any group that is residually finite.
Corollary (Gerstenhaber-Rothaus, 1962)

Any non-singular equation with coefficients in a finite group Γ can be solved over Γ. In fact, they can be solved in a finite extension $\Gamma \leq \Lambda$.

The same argument works for any group that is residually finite or, more generally, suitably approximated by unitary groups.
Corollary (Gerstenhaber-Rothaus, 1962)

Any non-singular equation with coefficients in a finite group Γ can be solved over Γ. In fact, they can be solved in a finite extension $\Gamma \leq \Lambda$.

The same argument works for any group that is residually finite or, more generally, suitably approximated by unitary groups.

Such groups are called Connes-embeddable, as they are embeddable into certain metric ultraproducts of unitary groups.
Corollary (Gerstenhaber-Rothaus, 1962)
Any non-singular equation with coefficients in a finite group Γ can be solved over Γ. In fact, they can be solved in a finite extension $\Gamma \leq \Lambda$.

The same argument works for any group that is residually finite or, more generally, suitably approximated by unitary groups.

Such groups are called Connes-embeddable, as they are embeddable into certain metric ultraproducts of unitary groups.

Corollary (Pestov, 2009)
Any Connes-embeddable group Γ satisfies Kervaire’s Conjecture.
Corollary (Gerstenhaber-Rothaus, 1962)
Any non-singular equation with coefficients in a finite group Γ can be solved over Γ. In fact, they can be solved in a finite extension $\Gamma \leq \Lambda$.

The same argument works for any group that is residually finite or, more generally, suitably approximated by unitary groups.

Such groups are called Connes-embeddable, as they are embeddable into certain metric ultraproducts of unitary groups.

Corollary (Pestov, 2009)
Any Connes-embeddable group Γ satisfies Kervaire’s Conjecture.

Question (Connes, 1978)
Do all groups have this approximation property?
Corollary (Gerstenhaber-Rothaus, 1962)

Any non-singular equation with coefficients in a finite group Γ can be solved over Γ. In fact, they can be solved in a finite extension $\Gamma \leq \Lambda$.

The same argument works for any group that is residually finite or, more generally, suitably approximated by unitary groups.

Such groups are called Connes-embeddable, as they are embeddable into certain metric ultraproducts of unitary groups.

Corollary (Pestov, 2009)

Any Connes-embeddable group Γ satisfies Kervaire’s Conjecture.

Question (Connes, 1978)

Do all groups have this approximation property?
Equations over groups – many equations and variables

Let $w_1, w_2, \ldots, w_k \in \mathbb{F}_n \ast G$, and denote by $\varepsilon(w_1), \ldots, \varepsilon(w_k) \in \mathbb{F}_n$ their images under the natural homomorphism $\varepsilon: \mathbb{F}_n \ast G \rightarrow \mathbb{F}_n$.
Let $w_1, w_2, \ldots, w_k \in \mathbb{F}_n * G$, and denote by $\varepsilon(w_1), \ldots, \varepsilon(w_k) \in \mathbb{F}_n$ their images under the natural homomorphism $\varepsilon: \mathbb{F}_n * G \to \mathbb{F}_n$.

Question

Under what conditions on $\varepsilon(w_1), \ldots, \varepsilon(w_k)$ is the homomorphism

$$\varphi: G \to \frac{\mathbb{F}_n * G}{\langle\langle w_1, w_2, \ldots, w_k \rangle\rangle}$$

injective?
Equations over groups – many equations and variables

Let $w_1, w_2, \ldots, w_k \in F_n \ast G$, and denote by $\varepsilon(w_1), \ldots, \varepsilon(w_k) \in F_n$ their images under the natural homomorphism $\varepsilon: F_n \ast G \to F_n$.

Question

Under what conditions on $\varepsilon(w_1), \ldots, \varepsilon(w_k)$ is the homomorphism

$$\varphi: G \to \frac{F_n \ast G}{\langle \langle w_1, w_2, \ldots, w_k \rangle \rangle}$$

injective? Equivalently, we ask when the equations w_1, \ldots, w_k be solved simultaneously in a group containing G?
Equations over groups – many equations and variables

Let $w_1, w_2, \ldots, w_k \in \mathbb{F}_n \ast G$, and denote by $\varepsilon(w_1), \ldots, \varepsilon(w_k) \in \mathbb{F}_n$ their images under the natural homomorphism $\varepsilon: \mathbb{F}_n \ast G \to \mathbb{F}_n$.

Question

Under what conditions on $\varepsilon(w_1), \ldots, \varepsilon(w_k)$ is the homomorphism

$$
\varphi: G \to \frac{\mathbb{F}_n \ast G}{\langle\langle w_1, w_2, \ldots, w_k \rangle\rangle}
$$

injective? Equivalently, we ask when the equations w_1, \ldots, w_k be solved simultaneously in a group containing G?

Question

Consider $X \subset Y \to Y/X$, with Y/X two-dimensional. When is $\pi_1(X) \to \pi_1(Y)$ injective?
Conjecture (with Klyachko, 2015)

It is possible to solve one equation $w \in \mathbb{F}_n \ast G$, when $\varepsilon(w) \neq 1$.
Conjecture (with Klyachko, 2015)
It is possible to solve one equation $w \in \mathbb{F}_n * G$, when $\varepsilon(w) \neq 1$.

Theorem (with Klyachko, 2015)
The conjecture holds, when $\varepsilon(w) \not\in [\mathbb{F}_n, [\mathbb{F}_n, \mathbb{F}_n]]$.
Conjecture (with Klyachko, 2015)
It is possible to solve one equation $w \in \mathbb{F}_n \ast G$, when $\varepsilon(w) \neq 1$.

Theorem (with Klyachko, 2015)
The conjecture holds, when $\varepsilon(w) \not\in [\mathbb{F}_n, [\mathbb{F}_n, \mathbb{F}_n]]$.

The conjecture was recently proved by Martin Nitsche in general
Conjecture (with Klyachko, 2015)
It is possible to solve one equation $w \in \mathbb{F}_n * G$, when $\varepsilon(w) \neq 1$.

Theorem (with Klyachko, 2015)
The conjecture holds, when $\varepsilon(w) \not\in [\mathbb{F}_n, [\mathbb{F}_n, \mathbb{F}_n]]$.

The conjecture was recently proved by Martin Nitsche in general and in joint work, we can prove much more:

Theorem (with Nitsche, 2018)
Let G be a Connes-embeddable group and let $w_1, \ldots, w_k \in \mathbb{F}_n * G$.
Conjecture (with Klyachko, 2015)
It is possible to solve one equation $w \in \mathbb{F}_n * G$, when $\varepsilon(w) \neq 1$.

Theorem (with Klyachko, 2015)
The conjecture holds, when $\varepsilon(w) \not\in [\mathbb{F}_n, [\mathbb{F}_n, \mathbb{F}_n]]$.

The conjecture was recently proved by Martin Nitsche in general and in joint work, we can prove much more:

Theorem (with Nitsche, 2018)
Let G be a Connes-embeddable group and let $w_1, \ldots, w_k \in \mathbb{F}_n * G$. If the presentation complex of the presentation

$$Q = \langle x_1, \ldots, x_n \mid \varepsilon(w_1), \ldots, \varepsilon(w_k) \rangle$$

admits a covering with trivial second homology
Conjecture (with Klyachko, 2015)
It is possible to solve one equation $w \in \mathbb{F}_n \ast G$, when $\varepsilon(w) \neq 1$.

Theorem (with Klyachko, 2015)
The conjecture holds, when $\varepsilon(w) \not\in [\mathbb{F}_n, [\mathbb{F}_n, \mathbb{F}_n]]$.

The conjecture was recently proved by Martin Nitsche in general and in joint work, we can prove much more:

Theorem (with Nitsche, 2018)
Let G be a Connes-embeddable group and let $w_1, \ldots, w_k \in \mathbb{F}_n \ast G$. If the presentation complex of the presentation
\[
Q = \langle x_1, \ldots, x_n \mid \varepsilon(w_1), \ldots, \varepsilon(w_k) \rangle
\]
admits a covering with trivial second homology, then the system w_1, \ldots, w_n is solvable in a group containing G.
When does the theorem apply?

Question

When does the presentation complex of the presentation $Q = \langle x_1, \ldots, x_n \mid \varepsilon(w_1), \ldots, \varepsilon(w_k) \rangle$ admit a covering with trivial second homology?
Question

When does the presentation complex of the presentation
\[Q = \langle x_1, \ldots, x_n \mid \varepsilon(w_1), \ldots, \varepsilon(w_k) \rangle \]
admit a covering with trivial second homology?

- We have \(k \leq n \) and the presentation complex has itself trivial second homology. This happens when the \((n \times k)\)-matrix, whose \((i, j)\)-entry is the signed number of occurrences of the letter \(x_i \) in \(\varepsilon(w_j) \), has rank \(k \).
When does the theorem apply?

Question

When does the presentation complex of the presentation \(Q = \langle x_1, \ldots, x_n \mid \varepsilon(w_1), \ldots, \varepsilon(w_k) \rangle \) admit a covering with trivial second homology?

- We have \(k \leq n \) and the presentation complex has itself trivial second homology. This happens when the \((n \times k)\)-matrix, whose \((i,j)\)-entry is the signed number of occurrences of the letter \(x_i \) in \(\varepsilon(w_j) \), has rank \(k \).

- When the presentation complex is aspherical. Note that in this case the number of equations \(k \) can be larger than the number of variables.
When does the theorem apply?

Question

When does the presentation complex of the presentation $Q = \langle x_1, \ldots, x_n \mid \varepsilon(w_1), \ldots, \varepsilon(w_k) \rangle$ admit a covering with trivial second homology?

- We have $k \leq n$ and the presentation complex has itself trivial second homology. This happens when the $(n \times k)$-matrix, whose (i, j)-entry is the signed number of occurrences of the letter x_i in $\varepsilon(w_j)$, has rank k.

- When the presentation complex is aspherical. Note that in this case the number of equations k can be larger than the number of variables.

- The case when $k = n - 1$ and $\beta_1^{(2)}(Q) = 0$, i.e. the first ℓ^2-Betti number of the group Q vanishes.
Finitary approximation properties of groups

Let C be a class of finite/compact metric groups, where the metric $d: G \times G \to [0,1]$ is assumed to be bi-invariant, i.e. $d(g,h) = d(fg,fh) = d(gf,hf)$ for all $f, g, h \in G$.

Definition

A group is said to be C-approximable if for any finite subset $S \subseteq G$ and $\varepsilon > 0$ there is a mapping $\varphi: S \to H$ with $H \in C$ such that

1. if $g, h, gh \in S$, then $d(\varphi(g), \varphi(h), \varphi(gh)) < \varepsilon$;
2. for $g \in S \setminus \{1\}$ we have $d(\varphi(g), 1_H) \geq 1/2$.

The map φ is called an (S, ε)-homomorphism.
Let \mathcal{C} be a class of finite/compact metric groups, where the metric $d : G \times G \to [0, 1]$ is assumed to be bi-invariant, i.e.

$$d(g, h) = d(fg, fh) = d(gf, hf) \quad \text{for all} \quad f, g, h \in G.$$
Let C be a class of finite/compact metric groups, where the metric $d: G \times G \to [0, 1]$ is assumed to be bi-invariant, i.e.

$$d(g, h) = d(fg, fh) = d(gf, hf) \quad \text{for all} \quad f, g, h \in G.$$

Definition
A group is said to be C-approximable if for any finite subset $S \subseteq G$ and $\varepsilon > 0$ there is a mapping $\varphi : S \to H$ with $H \in C$ such that

1. if $g, h, gh \in S$, then $d(\varphi(g), \varphi(h), \varphi(gh)) < \varepsilon$;
2. for $g \in S \setminus \{1\}$ we have $d(\varphi(g), 1_H) \geq 1/2$.

The map φ is called an (S, ε)-homomorphism.
Finitary approximation properties of groups

Let C be a class of finite/compact metric groups, where the metric $d : G \times G \to [0, 1]$ is assumed to be bi-invariant, i.e.

$$d(g, h) = d(fg, fh) = d(gf, hf) \quad \text{for all} \quad f, g, h \in G.$$

Definition

A groups is said to be C-approximable if for any finite subset $S \subseteq G$ and $\varepsilon > 0$ there is a mapping $\varphi : S \to H$ with $H \in C$ such that

- if $g, h, gh \in S$, then $d(\varphi(g)\varphi(h), \varphi(gh)) < \varepsilon$;
Let C be a class of finite/compact metric groups, where the metric $d: G \times G \to [0, 1]$ is assumed to be bi-invariant, i.e.

$$d(g, h) = d(fg, fh) = d(gf, hf) \quad \text{for all } f, g, h \in G.$$

Definition

A group is said to be C-approximable if for any finite subset $S \subseteq G$ and $\varepsilon > 0$ there is a mapping $\varphi: S \to H$ with $H \in C$ such that

- if $g, h, gh \in S$, then $d(\varphi(g)\varphi(h), \varphi(gh)) < \varepsilon$;
- for $g \in S \setminus \{1\}$ we have $d(\varphi(g), 1_H) \geq 1/2$.

The map φ is called an (S, ε)-homomorphism.
Let \mathcal{C} be a class of finite/compact metric groups, where the metric $d : G \times G \to [0, 1]$ is assumed to be bi-invariant, i.e.

$$d(g, h) = d(fg, fh) = d(gf, hf) \quad \text{for all} \quad f, g, h \in G.$$

Definition

A group is said to be \mathcal{C}-approximable if for any finite subset $S \subseteq G$ and $\varepsilon > 0$ there is a mapping $\varphi : S \to H$ with $H \in \mathcal{C}$ such that

- if $g, h, gh \in S$, then $d(\varphi(g)\varphi(h), \varphi(gh)) < \varepsilon$;
- for $g \in S \setminus \{1\}$ we have $d(\varphi(g), 1_H) \geq 1/2$.

The map φ is called an (S, ε)-homomorphism.
Approximation by finite groups

Example
Groups, which are approximable
 ▶ by finite groups are called weakly sofic,
Approximation by finite groups

Example

Groups, which are approximable

- by finite groups are called weakly sofic,
- by symmetric groups are called sofic, and
Approximation by finite groups

Example
Groups, which are approximable
 ▶ by finite groups are called weakly sofic,
 ▶ by symmetric groups are called sofic, and
 ▶ by finite groups of Lie type are called linear sofic.
Approximation by finite groups

Example

Groups, which are approximable
- by finite groups are called weakly sofic,
- by symmetric groups are called sofic, and
- by finite groups of Lie type are called linear sofic.

Question (Gromov)

Are all groups sofic?
Approximation by finite groups

Example

Groups, which are approximable
- by finite groups are called weakly sofic,
- by symmetric groups are called sofic, and
- by finite groups of Lie type are called linear sofic.

Question (Gromov)
Are all groups sofic?

Examples of sofic groups:
- residually finite groups and amenable groups,
Approximation by finite groups

Example
Groups, which are approximable
- by finite groups are called weakly sofic,
- by symmetric groups are called sofic, and
- by finite groups of Lie type are called linear sofic.

Question (Gromov)
Are all groups sofic?

Examples of sofic groups:
- residually finite groups and amenable groups,
- inverse and direct limits of sofic groups,
Approximation by finite groups

Example

Groups, which are approximable
- by finite groups are called weakly sofic,
- by symmetric groups are called sofic, and
- by finite groups of Lie type are called linear sofic.

Question (Gromov)

Are all groups sofic?

Examples of sofic groups:
- residually finite groups and amenable groups,
- inverse and direct limits of sofic groups,
- direct and free products of sofic groups,
Approximation by finite groups

Example
Groups, which are approximable
- by finite groups are called weakly sofic,
- by symmetric groups are called sofic, and
- by finite groups of Lie type are called linear sofic.

Question (Gromov)
Are all groups sofic?

Examples of sofic groups:
- residually finite groups and amenable groups,
- inverse and direct limits of sofic groups,
- direct and free products of sofic groups,
- subgroups and certain extensions of sofic groups.
Approximation by finite groups

Example
Groups, which are approximable
- by finite groups are called weakly sofic,
- by symmetric groups are called sofic, and
- by finite groups of Lie type are called linear sofic.

Question (Gromov)
Are all groups sofic?

Examples of sofic groups:
- residually finite groups and amenable groups,
- inverse and direct limits of sofic groups,
- direct and free products of sofic groups,
- subgroups and certain extensions of sofic groups.
Approximation by unitary groups

Consider the group $U(n)$ with metrics

\[\|u\|_{\text{HS}} = \sqrt{\frac{1}{n} \sum_{i,j=1}^{n} |u_{ij}|^2} \]

Hilbert-Schmidt norm,

\[\|u\|_{\text{Frob}} = \sqrt{\sum_{i,j=1}^{n} |u_{ij}|^2} \]

the Frobenius norm,

and

\[\|u\|_{\text{op}} \]

the operator norm.

Groups approximable w.r.t. (i)-(iii) are called Connes-embeddable, Frobenius-approximable, and MF, respectively.

Lemma

Sofic groups are Connes-embeddable.

Question (Connes, Kirchberg, etc.)

Are all groups Connes-embeddable? Are all groups MF?
Approximation by unitary groups

Consider the group $U(n)$ with metrics

(i) $\|u\|_{\text{HS}} = \sqrt{\frac{1}{n} \sum_{i,j=1}^{n} |u_{ij}|^2}$, Hilbert-Schmidt norm,
Approximation by unitary groups

Consider the group \(U(n) \) with metrics

(i) \(\|u\|_{\text{HS}} = \sqrt{\frac{1}{n} \sum_{i,j=1}^{n} |u_{ij}|^2} \), Hilbert-Schmidt norm,

(ii) \(\|u\|_{\text{Frob}} = \sqrt{\sum_{i,j=1}^{n} |u_{ij}|^2} \), the Frobenius norm,
Approximation by unitary groups

Consider the group $U(n)$ with metrics

(i) $\|u\|_{\text{HS}} = \sqrt{\frac{1}{n} \sum_{i,j=1}^{n} |u_{ij}|^2}$, Hilbert-Schmidt norm,

(ii) $\|u\|_{\text{Frob}} = \sqrt{\sum_{i,j=1}^{n} |u_{ij}|^2}$, the Frobenius norm, and

(iii) $\|u\|_{\text{op}}$, the operator norm.
Approximation by unitary groups

Consider the group $U(n)$ with metrics

(i) $\|u\|_{\text{HS}} = \sqrt{\frac{1}{n} \sum_{i,j=1}^{n} |u_{ij}|^2}$, Hilbert-Schmidt norm,

(ii) $\|u\|_{\text{Frob}} = \sqrt{\sum_{i,j=1}^{n} |u_{ij}|^2}$, the Frobenius norm, and

(iii) $\|u\|_{\text{op}}$, the operator norm.

Groups approximable w.r.t. (i)-(iii) are called Connes-embeddable, Frobenius-approximable, and MF, respectively.
Approximation by unitary groups

Consider the group $U(n)$ with metrics

(i) $\|u\|_{\text{HS}} = \sqrt{\frac{1}{n} \sum_{i,j=1}^{n} |u_{ij}|^2}$, Hilbert-Schmidt norm,

(ii) $\|u\|_{\text{Frob}} = \sqrt{\sum_{i,j=1}^{n} |u_{ij}|^2}$, the Frobenius norm, and

(iii) $\|u\|_{\text{op}}$, the operator norm.

Groups approximable w.r.t. (i)-(iii) are called Connes-embeddable, Frobenius-approximable, and MF, respectively.

Lemma

Sofic groups are Connes-embeddable.
Approximation by unitary groups

Consider the group $U(n)$ with metrics

(i) $\|u\|_{\text{HS}} = \sqrt{\frac{1}{n} \sum_{i,j=1}^{n} |u_{ij}|^2}$, Hilbert-Schmidt norm,

(ii) $\|u\|_{\text{Frob}} = \sqrt{\sum_{i,j=1}^{n} |u_{ij}|^2}$, the Frobenius norm, and

(iii) $\|u\|_{\text{op}}$, the operator norm.

Groups approximable w.r.t. (i)-(iii) are called Connes-embeddable, Frobenius-approximable, and MF, respectively.

Lemma

Sofic groups are Connes-embeddable.

Question (Connes, Kirchberg, etc.)

Are all groups Connes-embeddable? Are all groups MF?
Link to metric ultraproducts

Definition (metric ultraproduct)

Let \mathcal{U} an ultrafilter on \mathbb{N} and $(H_i, d_i)_{i \in \mathbb{N}}$ a family of metric groups.

The metric ultraproduct $(H_{\mathcal{U}}, \ell)$ is defined as the product $\prod_{i \in I} H_i$ modulo the normal subgroup $N_{\mathcal{U}} := \{ (n_i) \in H | \lim_{\mathcal{U}} d_i(n_i, 1_{H_i}) = 0 \}$.

The metric ℓ is defined by $d([h_i], [g_i]) := \lim_{\mathcal{U}} d_i(h_i, g_i)$.

Proposition

A countable group is C-approximable if and only if it embeds (as a discrete group) into a metric ultraproduct of groups from C.
Link to metric ultraproducts

Definition (metric ultraproduct)
Let \mathcal{U} an ultrafilter on \mathbb{N} and $(H_i, d_i)_{i \in \mathbb{N}}$ a family of metric groups. The metric ultraproduct

$$(H_\mathcal{U}, \ell) = \prod_{\mathcal{U}} (H_i, d_i)$$

is defined as the product $\prod_{i \in I} H_i$ modulo the normal subgroup

$N_\mathcal{U} := \{(n_i) \in H \mid \lim_{\mathcal{U}} d_i(n_i, 1_{H_i}) = 0\}$.
Definition (metric ultraproduct)

Let \mathcal{U} an ultrafilter on \mathbb{N} and $(H_i, d_i)_{i \in \mathbb{N}}$ a family of metric groups. The metric ultraproduct

$$(H_\mathcal{U}, \ell) = \prod_\mathcal{U} (H_i, d_i)$$

is defined as the product $\prod_{i \in I} H_i$ modulo the normal subgroup

$$\mathcal{N}_\mathcal{U} := \{(n_i) \in H \mid \lim_\mathcal{U} d_i(n_i, 1_{H_i}) = 0\}.$$

The metric ℓ is defined by $d([h_i], [g_i]) := \lim_\mathcal{U} d_i(h_i, g_i)$.

Proposition

A countable group is C-approximable if and only if it embeds (as a discrete group) into a metric ultraproduct of groups from C.

Link to metric ultraproducts
Definition (metric ultraprodut)

Let \mathcal{U} an ultrafilter on \mathbb{N} and $(H_i, d_i)_{i \in \mathbb{N}}$ a family of metric groups. The metric ultraproduct

$$(H_\mathcal{U}, \ell) = \prod_\mathcal{U} (H_i, d_i)$$

is defined as the product $\prod_{i \in I} H_i$ modulo the normal subgroup

$$N_\mathcal{U} := \{(n_i) \in H \mid \lim_{\mathcal{U}} d_i(n_i, 1_{H_i}) = 0\}.$$

The metric ℓ is defined by $d([h_i], [g_i]) := \lim_{\mathcal{U}} d_i(h_i, g_i)$.

Proposition

A countable group is \mathcal{C}-approximable if and only if it embeds (as a discrete group) into a metric ultraproduct of groups from \mathcal{C}.

Link to metric ultraproducts
On Sol-approximable groups

Let Sol be the class of finite solvable groups.
On \textbf{Sol}-approximable groups

Let \textbf{Sol} be the class of finite solvable groups.

Question (Glebsky, 2016)
Are all (discrete) groups \textbf{Sol}-approximable?
On \textbf{Sol}-approximable groups

Let \textbf{Sol} be the class of finite solvable groups.

\textbf{Question (Glebsky, 2016)}
Are all (discrete) groups \textbf{Sol}-approximable?

\textbf{Answer:} No!

\textbf{Theorem (with Nikolov and Schneider, 2017)}
Every non-trivial finitely generated \textbf{Sol}-approximable has a non-trivial abelian quotient.

\textbf{Remark}
It follows that a finite group is \textbf{Sol}-approximable iff it is solvable.

Finite generation is crucial here. Indeed, there exist countably infinite locally finite-\mathfrak{p} groups which are perfect and even characteristically simple. But they are \textbf{Sol}-approximable.
On \textbf{Sol}-approximable groups

Let \textbf{Sol} be the class of finite solvable groups.

\textbf{Question} (Glebsky, 2016)
Are all (discrete) groups \textbf{Sol}-approximable?

\textbf{Answer:} No!

\textbf{Theorem} (with Nikolov and Schneider, 2017)

Every non-trivial finitely generated \textbf{Sol}-approximable has a non-trivial abelian quotient.
On Sol-approximable groups

Let Sol be the class of finite solvable groups.

Question (Glebsky, 2016)
Are all (discrete) groups Sol-approximable?

Answer: No!

Theorem (with Nikolov and Schneider, 2017)

Every non-trivial finitely generated Sol-approximable has a non-trivial abelian quotient.

Remark
It follows that a finite group is Sol-approximable iff it is solvable.
On \textbf{Sol}-approximable groups

Let \textbf{Sol} be the class of finite solvable groups.

Question (Glebsky, 2016)
Are all (discrete) groups \textbf{Sol}-approximable?

\textbf{Answer:} No!

Theorem (with Nikolov and Schneider, 2017)
Every non-trivial finitely generated \textbf{Sol}-approximable has a non-trivial abelian quotient.

Remark
It follows that a finite group is \textbf{Sol}-approximable iff it is solvable.

Finite generation is crucial here. Indeed, there exist countably infinite locally finite-p groups which are perfect and even characteristically simple. But they are \textbf{Sol}-approximable.
Approximability of topological groups

Question (Doucha, 2016)
Which connected Lie groups embed topologically into a metric ultraproduct of finite groups, i.e. are \textbf{Fin}-approximable?
Approximability of topological groups

Question (Doucha, 2016)
Which connected Lie groups embed topologically into a metric ultraproduct of finite groups, i.e. are Fin-approximable?

Question (Zilber, 2012)
Which Lie groups are quotients of products of finite groups.

Theorem (with Nikolov and Schneider, 2017)
Any such Lie group has abelian identity component.

Question (Pillay, 2016)
Has any compactification of a pseudo-finite group an abelian identity component?

Theorem (with Nikolov and Schneider, 2017)
The answer to Pillay's question is yes.
Approximability of topological groups

Question (Doucha, 2016)
Which connected Lie groups embed topologically into a metric ultraproduct of finite groups, i.e. are \textbf{Fin}-approximable?

Question (Zilber, 2012)
Which Lie groups are quotients of products of finite groups.

Theorem (with Nikolov and Schneider, 2017)
Any such Lie group has abelian identity component.
Approximability of topological groups

Question (Doucha, 2016)
Which connected Lie groups embed topologically into a metric ultraproduct of finite groups, i.e. are Fin-approximable?

Question (Zilber, 2012)
Which Lie groups are quotients of products of finite groups.

Theorem (with Nikolov and Schneider, 2017)
Any such Lie group has abelian identity component.

Question (Pillay, 2016)
Has any compactification of a pseudo-finite group an abelian identity component?
Approximability of topological groups

Question (Doucha, 2016)
Which connected Lie groups embed topologically into a metric ultraproduct of finite groups, i.e. are Fin-approximable?

Question (Zilber, 2012)
Which Lie groups are quotients of products of finite groups.

Theorem (with Nikolov and Schneider, 2017)
Any such Lie group has abelian identity component.

Question (Pillay, 2016)
Has any compactification of a pseudo-finite group an abelian identity component?

Theorem (with Nikolov and Schneider, 2017)
The answer to Pillay’s question is yes.
Main ingredient for the proofs:

Theorem (Nikolov–Segal, 2011)

Let h_1, \ldots, h_r be a symmetric generating set of the finite group H. Then

$$[H, H] = \left(\prod_{i=1}^{r} [H, h_i] \right)^e,$$

where $e \in \mathbb{N}$ only depends on r.

Corollary

When H is a quotient of a product of finite groups, then for all $g, h \in H$ and $N \in \mathbb{Z}$ we have

$$[g^N, h^N] \in ([H, g][H, g^{-1}][H, h][H, h^{-1}])^e.$$
Main ingredient for the proofs:

Theorem (Nikolov–Segal, 2011)

Let h_1, \ldots, h_r be a symmetric generating set of the finite group H. Then

$$[H, H] = \left(\prod_{i=1}^{r} [H, h_i] \right)^e,$$

where $e \in \mathbb{N}$ only depends on r.

Corollary

When H is a quotient of a product of finite groups, then for all $g, h \in H$ and $N \in \mathbb{Z}$ we have

$$[g^N, h^N] \in ([H, g][H, g^{-1}][H, h][H, h^{-1}])^e.$$
Proof of the theorems

Let L be a Lie group and $L \subset H_\mathcal{U}$ be an embedding into a metric ultraproduct.
Proof of the theorems

Let L be a Lie group and $L \subset H_\mathcal{U}$ be an embedding into a metric ultraproduct. Let $a, b \in L$ be in the image of the exponential map, so there exist one-parameter subgroups $\varphi, \psi : \mathbb{R} \to L$ such that $a = \varphi(1)$ and $b = \psi(1)$.

By continuity take $N \in \mathbb{N}$ large enough such that $g = \varphi(1/N)$ and $h = \psi(1/N)$ are ε-close to 1.

Now, $[a, b] = [g_N, h_N] \in ([H, g][H, g^{-1}][H, h][h^{-1}])^e$, and hence $[a, b]$ is ε-close to 1.

This proves the claim.
Proof of the theorems

Let L be a Lie group and $L \subset H_\mathcal{U}$ be an embedding into a metric ultrapproduct. Let $a, b \in L$ be in the image of the exponential map, so there exist one-parameter subgroups $\varphi, \psi : \mathbb{R} \to L$ such that $a = \varphi(1)$ and $b = \psi(1)$. By continuity take $N \in \mathbb{N}$ large enough such that $g = \varphi(1/N)$ and $h = \psi(1/N)$ are ε-close to 1.

Now, $[a, b] = [gN, hN] \in ([H, g][H, g^{-1}][H, h][h^{-1}])^e$, and hence $[a, b]$ is 8ε-close to 1. This proves the claim.
Proof of the theorems

Let \(L \) be a Lie group and \(L \subset H_\mathcal{U} \) be an embedding into a metric ultraproduct. Let \(a, b \in L \) be in the image of the exponential map, so there exist one-parameter subgroups \(\varphi, \psi : \mathbb{R} \to L \) such that \(a = \varphi(1) \) and \(b = \psi(1) \).

By continuity take \(N \in \mathbb{N} \) large enough such that \(g = \varphi(1/N) \) and \(h = \psi(1/N) \) are \(\varepsilon \)-close to 1.

Now,

\[
[a, b] = [g^N, h^N] \in ([H, g][H, g^{-1}][H, h][H, h^{-1}])^e,
\]
Proof of the theorems

Let L be a Lie group and $L \subset H_U$ be an embedding into a metric ultraproduct. Let $a, b \in L$ be in the image of the exponential map, so there exist one-parameter subgroups $\varphi, \psi : \mathbb{R} \to L$ such that $a = \varphi(1)$ and $b = \psi(1)$.

By continuity take $N \in \mathbb{N}$ large enough such that $g = \varphi(1/N)$ and $h = \psi(1/N)$ are ε-close to 1.

Now,

$$[a, b] = [g^N, h^N] \in ([H, g][H, g^{-1}][H, h][H, h^{-1}])^e,$$

and hence $[a, b]$ is $8e\varepsilon$-close to 1.
Proof of the theorems

Let L be a Lie group and $L \subset H_U$ be an embedding into a metric ultraproduct. Let $a, b \in L$ be in the image of the exponential map, so there exist one-parameter subgroups $\varphi, \psi : \mathbb{R} \to L$ such that $a = \varphi(1)$ and $b = \psi(1)$.

By continuity take $N \in \mathbb{N}$ large enough such that $g = \varphi(1/N)$ and $h = \psi(1/N)$ are ε-close to 1.

Now,

$$[a, b] = [g^N, h^N] \in ([H, g][H, g^{-1}][H, h][H, h^{-1}])^e,$$

and hence $[a, b]$ is $8e\varepsilon$-close to 1. This proves the claim.
Stability I

Definition
A group G is called C-stable, when for all $\varepsilon > 0$, there exists $\delta > 0$, such that every δ-homomorphism from G to a group in C is ε-close to a homomorphism.

Recall, an IRS on G is a conjugation-invariant probability measure on the compact space of subgroups of G (see the talk of Gelander).

Theorem (with Becker and Lubotzky, 2017)
An amenable group is sofic-stable if and only if all IRS are limits of finite-index IRS. This happens for example for polycyclic groups, but not for all residually finite groups.

Corollary (Arzhantseva-Paunescu, 2014)
Almost commuting permutations are close to commuting permutations.
Stability I

Definition
A group G is called \mathcal{C}-stable, when for all $\varepsilon > 0$, there exists $\delta > 0$, such that every δ-homomorphism from G to a group in \mathcal{C} is ε-close to a homomorphism.
Stability I

Definition
A group G is called \mathcal{C}-stable, when for all $\varepsilon > 0$, there exists $\delta > 0$, such that every δ-homomorphism from G to a group in \mathcal{C} is ε-close to a homomorphism.

Recall, an IRS on G is a conjugation-invariant probability measure on the compact space of subgroups of G (see the talk of Gelander).
Stability I

Definition
A group \(G \) is called \(C \)-stable, when for all \(\varepsilon > 0 \), there exists \(\delta > 0 \), such that every \(\delta \)-homomorphism from \(G \) to a group in \(C \) is \(\varepsilon \)-close to a homomorphism.

Recall, an IRS on \(G \) is a conjugation-invariant probability measure on the compact space of subgroups of \(G \) (see the talk of Gelander).

Theorem (with Becker and Lubotzky, 2017)
An amenable group is sofic-stable if and only if all IRS are limits of finite-index IRS. This happens for example for polycyclic groups, but not for all residually finite groups.
Stability I

Definition
A group G is called C-stable, when for all $\varepsilon > 0$, there exists $\delta > 0$, such that every δ-homomorphism from G to a group in C is ε-close to a homomorphism.

Recall, an IRS on G is a conjugation-invariant probability measure on the compact space of subgroups of G (see the talk of Gelander).

Theorem (with Becker and Lubotzky, 2017)
An amenable group is sofic-stable if and only if all IRS are limits of finite-index IRS. This happens for example for polycyclic groups, but not for all residually finite groups.

Corollary (Arzhantseva-Paunescu, 2014)
Almost commuting permutations are close to commuting permutations.
Theorem (with de Chiffre, Glebsky, and Lubotzky, 2017)

A group is Frobenius-stable if it is \(2\)-Kazhdan, i.e.

\[H_2(G, H) = 0, \]

for all unitary representations \(\pi: G \to U(H)\).

Corollary

There exist groups which are not Frobenius-approximable.

Proof. Finitely generated groups which are Frobenius-approximable and Frobenius-stable are residually finite. We prove that some non-residually finite central extensions of \(p\)-adic lattices are \(2\)-Kazhdan. Thus, they cannot be Frobenius-approximable.
Theorem (with de Chiffre, Glebsky, and Lubotzky, 2017)

A group is Frobenius-stable if it is 2-Kazhdan, i.e.

$$H^2(G, \mathcal{H}) = 0,$$

for all unitary representations $\pi : G \to U(\mathcal{H})$.

Corollary

There exist groups which are not Frobenius-approximable.

Proof.

Finitely generated groups which are Frobenius-approximable and Frobenius-stable are residually finite. We prove that some non-residually finite central extensions of p-adic lattices are 2-Kazhdan. Thus, they cannot be Frobenius-approximable.
Theorem (with de Chiffre, Glebsky, and Lubotzky, 2017)
A group is Frobenius-stable if it is 2-Kazhdan, i.e.

\[H^2(G, \mathcal{H}) = 0, \]

for all unitary representations \(\pi : G \to U(\mathcal{H}) \).

Corollary
There exist groups which are not Frobenius-approximable.
Stability II

Theorem (with de Chiffre, Glebsky, and Lubotzky, 2017)

A group is Frobenius-stable if it is 2-Kazhdan, i.e.

\[H^2(G, \mathcal{H}) = 0, \]

for all unitary representations \(\pi : G \rightarrow U(\mathcal{H}) \).

Corollary

There exist groups which are not Frobenius-approximable.

Proof.

Finitely generated groups which are Frobenius-approximable and Frobenius-stable are residually finite. We prove that some non-residually finite central extensions of \(p \)-adic lattices are 2-Kazhdan. Thus, they cannot be Frobenius-approximable. \(\square \)
Idea of the proof of the theorem:

If $\Gamma = \langle X \mid R \rangle$ is a finitely presented group and $\varphi : X \to U(n)$ be a map, we set

$$\text{def}(\varphi) = \max_{r \in R} \| \varphi(r) - 1_n \|.$$
Idea of the proof of the theorem:

If $\Gamma = \langle X \mid R \rangle$ is a finitely presented group and $\varphi : X \to U(n)$ be a map, we set

$$\text{def}(\varphi) = \max_{r \in R} \| \varphi(r) - 1_n \|.$$

Given a sequence of maps $\varphi_n : X \to U(n)$, with $\text{def}(\varphi_n) \to 0$, we consider

$$c(g, h) := \left[\varphi_n(g) \varphi_n(h) - \varphi(gh) \right] \in \prod_{n \to U} M_n(C).$$

This defines a 2-cocycle on Γ with values in a metric ultraproduct of Banach spaces. In case of the Frobenius-norm, the ultra-product is a Hilbert space and vanishing of the 2-cocycle helps to improve the sequence $(\varphi_n)_n$. More precisely, we find another sequence $(\psi_n)_n$ such that

$$\text{dist}(\varphi_n, \psi_n) = O(\text{def}(\varphi_n))$$

and

$$\text{def}(\psi_n) = o(\text{def}(\varphi_n)).$$
Idea of the proof of the theorem:

If $\Gamma = \langle X \mid R \rangle$ is a finitely presented group and $\varphi : X \to U(n)$ be a map, we set

$$\text{def}(\varphi) = \max_{r \in R} \| \varphi(r) - 1_n \|.$$

Given a sequence of maps $\varphi_n : X \to U(n)$, with $\text{def}(\varphi_n) \to 0$, we consider

$$c(g, h) := \left[\frac{\varphi_n(g)\varphi_n(h) - \varphi(gh)}{\text{def}(\varphi_n)} \right] \in \prod_{n \to U} M_n(\mathbb{C}).$$
Idea of the proof of the theorem:

If $\Gamma = \langle X \mid R \rangle$ is a finitely presented group and $\varphi: X \to U(n)$ be a map, we set

$$\text{def}(\varphi) = \max_{r \in R} \| \varphi(r) - 1_n \|.$$

Given a sequence of maps $\varphi_n: X \to U(n)$, with $\text{def}(\varphi_n) \to 0$, we consider

$$c(g, h) := \left[\frac{\varphi_n(g)\varphi_n(h) - \varphi(gh)}{\text{def}(\varphi_n)} \right] \in \prod_{n \to U} M_n(\mathbb{C}).$$

This defines a 2-cocycle on Γ with values in a metric ultraproduct of Banach spaces. In case of the Frobenius-norm, the ultra-product is a Hilbert space.
Idea of the proof of the theorem:

If $\Gamma = \langle X \mid R \rangle$ is a finitely presented group and $\varphi : X \to U(n)$ be a map, we set

$$\text{def}(\varphi) = \max_{r \in R} \| \varphi(r) - 1_n \|.$$

Given a sequence of maps $\varphi_n : X \to U(n)$, with $\text{def}(\varphi_n) \to 0$, we consider

$$c(g, h) := \left[\frac{\varphi_n(g)\varphi_n(h) - \varphi(gh)}{\text{def}(\varphi_n)} \right] \in \prod_{n \to \mathcal{U}} M_n(\mathbb{C}).$$

This defines a 2-cocycle on Γ with values in a metric ultraproduct of Banach spaces. In case of the Frobenius-norm, the ultra-product is a Hilbert space and vanishing of the 2-cocycle helps to improve the sequence $(\varphi_n)_n$.
Idea of the proof of the theorem:

If $\Gamma = \langle X \mid R \rangle$ is a finitely presented group and $\varphi : X \to U(n)$ be a map, we set

$$\text{def}(\varphi) = \max_{r \in R} \|\varphi(r) - 1_n\|.$$

Given a sequence of maps $\varphi_n : X \to U(n)$, with $\text{def}(\varphi_n) \to 0$, we consider

$$c(g, h) := \left[\frac{\varphi_n(g)\varphi_n(h) - \varphi(gh)}{\text{def}(\varphi_n)} \right] \in \prod_{n \to U} M_n(\mathbb{C}).$$

This defines a 2-cocycle on Γ with values in a metric ultraproduct of Banach spaces. In case of the Frobenius-norm, the ultra-product is a Hilbert space and vanishing of the 2-cocycle helps to improve the sequence $(\varphi_n)_n$. More precisely, we find another sequence $(\psi_n)_n$.
Idea of the proof of the theorem:

If $\Gamma = \langle X \mid R \rangle$ is a finitely presented group and $\varphi : X \to U(n)$ be a map, we set

$$\text{def}(\varphi) = \max_{r \in R} \| \varphi(r) - 1_n \|.$$

Given a sequence of maps $\varphi_n : X \to U(n)$, with $\text{def}(\varphi_n) \to 0$, we consider

$$c(g, h) := \left[\frac{\varphi_n(g)\varphi_n(h) - \varphi(gh)}{\text{def}(\varphi_n)} \right] \in \prod_{n \to \mathcal{U}} M_n(\mathbb{C}).$$

This defines a 2-cocycle on Γ with values in a metric ultraproduct of Banach spaces. In case of the Frobenius-norm, the ultra-product is a Hilbert space and vanishing of the 2-cocycle helps to improve the sequence $(\varphi_n)_n$. More precisely, we find another sequence $(\psi_n)_n$ such that

$$\text{dist}(\varphi_n, \psi_n) = O(\text{def}(\varphi_n))$$
Idea of the proof of the theorem:

If $\Gamma = \langle X \mid R \rangle$ is a finitely presented group and $\varphi : X \to U(n)$ be a map, we set

$$\text{def}(\varphi) = \max_{r \in R} \| \varphi(r) - 1_n \|.$$

Given a sequence of maps $\varphi_n : X \to U(n)$, with $\text{def}(\varphi_n) \to 0$, we consider

$$c(g, h) := \left[\frac{\varphi_n(g)\varphi_n(h) - \varphi(gh)}{\text{def}(\varphi_n)} \right] \in \prod_{n \to \mathcal{U}} M_n(\mathbb{C}).$$

This defines a 2-cocycle on Γ with values in a metric ultraproduct of Banach spaces. In case of the Frobenius-norm, the ultra-product is a Hilbert space and vanishing of the 2-cocycle helps to improve the sequence $(\varphi_n)_n$. More precisely, we find another sequence $(\psi_n)_n$ such that

$$\text{dist}(\varphi_n, \psi_n) = O(\text{def}(\varphi_n)) \quad \text{and} \quad \text{def}(\psi_n) = o(\text{def}(\varphi_n)).$$
Thank you for your attention!