Stable Homotopy Refinements and Khovanov homology

Robert Lipshitz1 and Sucharit Sarkar2

International Congress of Mathematics
Rio de Janeiro, Brazil, August 2018

Special thanks to our collaborator Tyler Lawson, whose perspective is reflected throughout.

1 RL was supported by NSF CAREER Grant DMS-1642067 and NSF FRG Grant DMS-1560783
2 SS was supported by NSF CAREER Grant DMS-1643401 and NSF FRG Grant DMS-1563615
Part 1: Stable homotopy refinements
Part 1: Stable homotopy refinements

- Morse homology
Part 1: Stable homotopy refinements

- Morse homology
- Floer homology and categorification
Part 1: Stable homotopy refinements

- Morse homology
- Floer homology and categorification
- The Cohen-Jones-Segal question
Part 1: Stable homotopy refinements

• Morse homology
• Floer homology and categorification
• The Cohen-Jones-Segal question
• A theorem of Carlsson’s
Part 1: Stable homotopy refinements

- Morse homology
- Floer homology and categorification
- The Cohen-Jones-Segal question
- A theorem of Carlsson’s
- Applications of spatial refinements
Part 1: Stable homotopy refinements

- Morse homology
- Floer homology and categorification
- The Cohen-Jones-Segal question
- A theorem of Carlsson’s
- Applications of spatial refinements
- General strategies for spatial refinements
Part 1: Stable homotopy refinements

- Morse homology
- Floer homology and categorification
- The Cohen-Jones-Segal question
- A theorem of Carlsson’s
- Applications of spatial refinements
- General strategies for spatial refinements
- Flow categories and realization
Morse homology

\[\chi(M) = \sum_{p \in \text{Crit}(f)} (-1)^{\text{ind}(p)} = (-1)^{\text{ind}(a)} + (-1)^{\text{ind}(b)} + (-1)^{\text{ind}(c)} + (-1)^{\text{ind}(d)} = 1 + (-1) + 1 + 1 = 2. \]

Categorify

\[C_n(M; f) = \mathbb{Z} \langle p \in \text{Crit}(f) \mid \text{ind}(p) = n \rangle \]

\[\partial : C_n(M; f) \to C_{n-1}(M; f) \]

\[\partial(p) = \sum_{\text{ind}(q) = n-1} \# M(p, q) \]

signed count of flowlines of \(-\vec{\nabla} f\) from \(p\) to \(q\)
Morse homology

\[\chi(M) = \sum_{p \in \text{Crit}(f)} (-1)^{\text{ind}(p)} \]
\[= (-1)^{\text{ind}(a)} + (-1)^{\text{ind}(b)} + (-1)^{\text{ind}(c)} + (-1)^{\text{ind}(d)} \]
\[= 1 + (-1) + 1 + 1 = 2. \]
Morse homology

\[\chi(M) = \sum_{p \in \text{Crit}(f)} (-1)^{\text{ind}(p)} \]
\[= (-1)^{\text{ind}(a)} + (-1)^{\text{ind}(b)} + (-1)^{\text{ind}(c)} + (-1)^{\text{ind}(d)} \]
\[= 1 + (-1) + 1 + 1 = 2. \]

Categorify

\[C_n(M; f) = \mathbb{Z}\langle p \in \text{Crit}(f) \mid \text{ind}(p) = n \rangle \]

\[\partial: C_n(M; f) \rightarrow C_{n-1}(M; f) \]

\[\partial(p) = \sum_{\text{ind}(q) = n-1} [\#M(p, q)]q. \]

signed count of flowlines of \(-\nabla f\) from \(p\) to \(q\)
Morse homology

\[\chi(M) = \sum_{p \in \text{Crit}(f)} (-1)^{\text{ind}(p)} \]
\[= (-1)^{\text{ind}(a)} + (-1)^{\text{ind}(b)} + (-1)^{\text{ind}(c)} + (-1)^{\text{ind}(d)} \]
\[= 1 + (-1) + 1 + 1 = 2. \]

Categorify

\[C_n(M; f) = \mathbb{Z}\langle p \in \text{Crit}(f) \mid \text{ind}(p) = n \rangle \]
\[\partial: C_n(M; f) \to C_{n-1}(M; f) \]
\[\partial(p) = \sum_{\text{ind}(q)=n-1} [\# \mathcal{M}(p, q)]q. \]

signed count of flowlines of \(-\nabla f \) from \(p \) to \(q \)
Morse homology

\[\chi(M) = \sum_{p \in \text{Crit}(f)} (-1)^{\text{ind}(p)} \]

\[= (-1)^{\text{ind}(a)} + (-1)^{\text{ind}(b)} + (-1)^{\text{ind}(c)} + (-1)^{\text{ind}(d)} \]

\[= 1 + (-1) + 1 + 1 = 2. \]

Categorify

\[C_n(M; f) = \mathbb{Z}\langle p \in \text{Crit}(f) \mid \text{ind}(p) = n \rangle \]

\[\partial: C_n(M; f) \rightarrow C_{n-1}(M; f) \]

\[\partial(p) = \sum_{\text{ind}(q) = n-1} [\#M(p, q)]q. \]

signed count of flowlines of \(-\nabla f\) from \(p\) to \(q\)
Morse homology

\[\chi(M) = \sum_{p \in \text{Crit}(f)} (-1)^{\text{ind}(p)} \]
\[= (-1)^{\text{ind}(a)} + (-1)^{\text{ind}(b)} + (-1)^{\text{ind}(c)} + (-1)^{\text{ind}(d)} \]
\[= 1 + (-1) + 1 + 1 = 2. \]

Categorify

\[C_n(M; f) = \mathbb{Z}\langle p \in \text{Crit}(f) \mid \text{ind}(p) = n \rangle \]
\[\partial: C_n(M; f) \rightarrow C_{n-1}(M; f) \]
\[\partial(p) = \sum_{\text{ind}(q)=n-1} \#M(p,q)q. \]

signed count of flowlines of $-\nabla f$ from p to q
Morse homology

\[\chi(M) = \sum_{p \in \text{Crit}(f)} (-1)^{\text{ind}(p)} \]

\[= (-1)^{\text{ind}(a)} + (-1)^{\text{ind}(b)} + (-1)^{\text{ind}(c)} + (-1)^{\text{ind}(d)} \]

\[= 1 + (-1) + 1 + 1 = 2. \]

Categorify

\[C_n(M; f) = \mathbb{Z}\langle p \in \text{Crit}(f) \mid \text{ind}(p) = n \rangle \]

\[\partial: C_n(M; f) \to C_{n-1}(M; f) \]

\[\partial(p) = \sum_{\text{ind}(q) = n-1} [\#\mathcal{M}(p,q)]q. \]

signed count of flowlines of \(-\nabla f\) from \(p\) to \(q\)
Morse homology

\[\chi(M) = \sum_{p \in \text{Crit}(f)} (-1)^{\text{ind}(p)} \]

\[= (-1)^{\text{ind}(a)} + (-1)^{\text{ind}(b)} + (-1)^{\text{ind}(c)} + (-1)^{\text{ind}(d)} \]

\[= 1 + (-1) + 1 + 1 = 2. \]

\[C_n(M; f) = \mathbb{Z}\langle p \in \text{Crit}(f) \mid \text{ind}(p) = n \rangle \]

\[\partial : C_n(M; f) \to C_{n-1}(M; f) \]

\[\partial(p) = \sum_{\text{ind}(q) = n-1} [\# \mathcal{M}(p, q)] q. \]

Homology

\[\mathbb{Z} \quad 0 \quad \mathbb{Z} \]

signed count of flowlines of \(-\nabla f\) from \(p\) to \(q\)
Floer homology and categorification

<table>
<thead>
<tr>
<th>Floer ’88</th>
<th>Lagrangian Floer homology</th>
<th>$\xrightarrow{\chi}$ Intersection number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Floer ’88</td>
<td>Instanton Floer homology</td>
<td>$\xrightarrow{\chi}$ Casson invariant</td>
</tr>
</tbody>
</table>
Floer homology and categorification

<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Type</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Floer '88</td>
<td>Lagrangian Floer homology</td>
<td>$\chi \rightarrow$ Intersection number</td>
</tr>
<tr>
<td>Floer '88</td>
<td>Instanton Floer homology</td>
<td>$\chi \rightarrow$ Casson invariant</td>
</tr>
<tr>
<td>Ozsváth-Szabó '01</td>
<td>Heegaard Floer homology</td>
<td>$\chi \rightarrow$ Turaev torsion</td>
</tr>
<tr>
<td>Hutchings '02</td>
<td>Embedded contact homology</td>
<td>$\chi \rightarrow$ Turaev torsion</td>
</tr>
<tr>
<td>Kronheimer-Mrowka '07</td>
<td>Monopole Floer homology</td>
<td>$\chi \rightarrow$ Turaev torsion</td>
</tr>
<tr>
<td></td>
<td>Homology Type</td>
<td>Representation</td>
</tr>
<tr>
<td>---</td>
<td>-----------------------------------</td>
<td>---------------</td>
</tr>
<tr>
<td>Floer ’88</td>
<td>Lagrangian Floer homology</td>
<td>χ</td>
</tr>
<tr>
<td>Floer ’88</td>
<td>Instanton Floer homology</td>
<td>χ</td>
</tr>
<tr>
<td>Ozsváth-Szabó ’01</td>
<td>Heegaard Floer homology</td>
<td>χ</td>
</tr>
<tr>
<td>Hutchings ’02</td>
<td>Embedded contact homology</td>
<td>χ</td>
</tr>
<tr>
<td>Kronheimer-Mrowka ’07</td>
<td>Monopole Floer homology</td>
<td>χ</td>
</tr>
<tr>
<td>Ozsváth-Szabó Rasmussen ’03</td>
<td>Knot Floer homology</td>
<td>χ</td>
</tr>
</tbody>
</table>
Floer homology and categorification

<table>
<thead>
<tr>
<th>Author</th>
<th>Type</th>
<th>χ</th>
<th>Associated Mathematical Object</th>
</tr>
</thead>
<tbody>
<tr>
<td>Floer '88</td>
<td>Lagrangian Floer homology</td>
<td>χ</td>
<td>Intersection number</td>
</tr>
<tr>
<td>Floer '88</td>
<td>Instanton Floer homology</td>
<td>χ</td>
<td>Casson invariant</td>
</tr>
<tr>
<td>Ozsváth-Szabó '01</td>
<td>Heegaard Floer homology</td>
<td>χ</td>
<td>Turaev torsion</td>
</tr>
<tr>
<td>Hutchings '02</td>
<td>Embedded contact homology</td>
<td>χ</td>
<td>Turaev torsion</td>
</tr>
<tr>
<td>Kronheimer-Mrowka '07</td>
<td>Monopole Floer homology</td>
<td>χ</td>
<td>Turaev torsion</td>
</tr>
<tr>
<td>Ozsváth-Szabó Rasmussen '03</td>
<td>Knot Floer homology</td>
<td>χ</td>
<td>Alexander polynomial</td>
</tr>
<tr>
<td>Khovanov '99</td>
<td>\mathfrak{sl}_2 Khovanov homology</td>
<td>χ</td>
<td>Jones polynomial</td>
</tr>
<tr>
<td>Khovanov-Rozansky '08</td>
<td>HOMFLY-PT homology</td>
<td>χ</td>
<td>HOMFLY-PT polynomial</td>
</tr>
</tbody>
</table>
Floer homology and categorification

<table>
<thead>
<tr>
<th>Date</th>
<th>Type</th>
<th>Description</th>
<th>χ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Floer '88</td>
<td>Lagrangian Floer homology</td>
<td>Intersection number</td>
<td></td>
</tr>
<tr>
<td>Floer '88</td>
<td>Instanton Floer homology</td>
<td>Casson invariant</td>
<td></td>
</tr>
<tr>
<td>Ozsváth-Szabó '01</td>
<td>Heegaard Floer homology</td>
<td>Turaev torsion</td>
<td></td>
</tr>
<tr>
<td>Hutchings '02</td>
<td>Embedded contact homology</td>
<td>Turaev torsion</td>
<td></td>
</tr>
<tr>
<td>Kronheimer-Mrowka '07</td>
<td>Monopole Floer homology</td>
<td>Turaev torsion</td>
<td></td>
</tr>
<tr>
<td>Ozsváth-Szabó Rasmussen '03</td>
<td>Knot Floer homology</td>
<td>Alexander polynomial</td>
<td></td>
</tr>
<tr>
<td>Khovanov '99</td>
<td>\mathfrak{sl}_2 Khovanov homology</td>
<td>Jones polynomial</td>
<td></td>
</tr>
<tr>
<td>Khovanov-Rozansky '08</td>
<td>HOMFLY-PT homology</td>
<td>HOMFLY-PT polynomial</td>
<td></td>
</tr>
<tr>
<td>Seidel-Smith '06</td>
<td>Symplectic Khovanov homology</td>
<td>Knot determinant</td>
<td></td>
</tr>
</tbody>
</table>

(and many others...)
The Cohen-Jones-Segal realization question

Question. (Cohen-Jones-Segal) Are these Floer homologies the homologies of naturally associated spaces?
Seems not have a natural cup product, so perhaps a spectrum (or, sometimes, pro-spectrum) instead of space?
The Cohen-Jones-Segal realization question

Question. (Cohen-Jones-Segal) Are these Floer homologies the homologies of naturally associated spaces? Seems not have a natural cup product, so perhaps a spectrum (or, sometimes, pro-spectrum) instead of space?

Spatial Refinement Problem. Given a chain complex C_* with distinguished basis, arising in an interesting way, construct a CW spectrum X with $C_{\text{cell}}^*(X) \cong C_*$ with the distinguished basis given by the cells.
A theorem of Carlsson’s

Question. Is there a universal way of refining chain complexes, i.e.,

\[C^* \text{cell} \]

\[\text{CW spectra} \rightarrow \text{Chain complexes} \]

\[\text{?} \]

\[C^* \]
A theorem of Carlsson’s

Question. Is there a universal way of refining chain complexes, i.e.,

\[C^\text{cell}_* \]

\[\text{CW spectra} \rightarrow \text{Chain complexes} \]

\[? \]

Theorem. No.

Proof.

- (Carlsson ’81) Let \(G = \mathbb{Z}/2 \times \mathbb{Z}/2 \). There is a \(\mathbb{Z}[G] \)-module \(P \) which is not the homology of any \(G \)-equivariant (Moore) space.
- \(P \) is the homology of a chain complex over \(\mathbb{Z}[G] \).
Applications of spatial refinements

• Spectra have more information than chain complexes:
 • Steenrod operations on cohomology,
 • Homotopy groups, K-theory, . . .
• Maps between spectra have much more information than maps between groups.
• Even maps between spheres are interesting.
• For group actions on spaces, there are meaningful notions of fixed sets, and localization theorems on equivariant cohomology (Smith theory).
Applications of spatial refinements

- Spectra have more information than chain complexes:
 - Steenrod operations on cohomology,
 - Homotopy groups, K-theory, …
Applications of spatial refinements

• Spectra have more information than chain complexes:
 • Steenrod operations on cohomology,
 • Homotopy groups, K-theory, . . .

• Maps between spectra have much more information than maps between groups.
 • Even maps between spheres are interesting.
Applications of spatial refinements

- Spectra have more information than chain complexes:
 - Steenrod operations on cohomology,
 - Homotopy groups, K-theory, ...

- Maps between spectra have much more information than maps between groups.
 - Even maps between spheres are interesting.

- For group actions on spaces, there are meaningful notions of fixed sets, and localization theorems on equivariant cohomology (Smith theory).
General strategies for spatial refinements

- Cohen-Jones-Segal '95 gave a general procedure using higher-dimensional moduli spaces.
- Manolescu '03, Kronheimer-Manolescu used finite-dimensional approximation (following Furuta and Bauer) and the Conley index to refine Seiberg-Witten Floer homology.
- Kragh used finite-dimensional approximation (following Viterbo) to realize the Viterbo transfer for Lagrangians in cotangent bundles as a map of spectra.
- Hu-Kriz-Kriz '16, Lawson-Lipshitz-Sarkar used functors from the Burnside category to spaces to refine Khovanov homology. One could try to factor through other categories, as well.
General strategies for spatial refinements

- Cohen-Jones-Segal ’95 gave a general procedure using higher-dimensional moduli spaces.

- Manolescu ’03, Kronheimer-Manolescu used finite-dimensional approximation (following Furuta and Bauer) and the Conley index to refine Seiberg-Witten Floer homology.

- Kragh used finite-dimensional approximation (following Viterbo) to realize the Viterbo transfer for Lagrangians in cotangent bundles as a map of spectra.

- Hu-Kriz-Kriz ’16, Lawson-Lipshitz-Sarkar used functors from the Burnside category to spaces to refine Khovanov homology. One could try to factor through other categories, as well.
General strategies for spatial refinements

- Cohen-Jones-Segal ’95 gave a general procedure using higher-dimensional moduli spaces.
- Manolescu ’03, Kronheimer-Manolescu used finite-dimensional approximation (following Furuta and Bauer) and the Conley index to refine Seiberg-Witten Floer homology.
- Kragh used finite-dimensional approximation (following Viterbo) to realize the Viterbo transfer for Lagrangians in cotangent bundles as a map of spectra.
- Hu-Kriz-Kriz ’16, Lawson-Lipshitz-Sarkar used functors from the Burnside category to spaces to refine Khovanov homology. One could try to factor through other categories, as well.
General strategies for spatial refinements

- Cohen-Jones-Segal ’95 gave a general procedure using higher-dimensional moduli spaces.
- Manolescu ’03, Kronheimer-Manolescu used finite-dimensional approximation (following Furuta and Bauer) and the Conley index to refine Seiberg-Witten Floer homology.
- Kragh used finite-dimensional approximation (following Viterbo) to realize the Viterbo transfer for Lagrangians in cotangent bundles as a map of spectra.
- Hu-Kriz-Kriz ’16, Lawson-Lipshitz-Sarkar used functors from the Burnside category to spaces to refine Khovanov homology. One could try to factor through other categories, as well.
General strategies for spatial refinements

- Cohen-Jones-Segal '95 gave a general procedure using higher-dimensional moduli spaces.
- Manolescu '03, Kronheimer-Manolescu used finite-dimensional approximation (following Furuta and Bauer) and the Conley index to refine Seiberg-Witten Floer homology.
- Kragh used finite-dimensional approximation (following Viterbo) to realize the Viterbo transfer for Lagrangians in cotangent bundles as a map of spectra.
- Hu-Kriz-Kriz '16, Lawson-Lipshitz-Sarkar used functors from the Burnside category to spaces to refine Khovanov homology. One could try to factor through other categories, as well.
Flow categories and their realizations

A framed flow category is a way of encoding the moduli space of flows in Morse theory or Floer theory. Cohen-Jones-Segal turn a framed flow category into a CW spectrum.
Flow categories and their realizations

A framed flow category is a way of encoding the moduli space of flows in Morse theory or Floer theory. Cohen-Jones-Segal turn a framed flow category into a CW spectrum.
Flow categories and their realizations

A *framed flow category* is a way of encoding the moduli space of flows in Morse theory or Floer theory. Cohen-Jones-Segal turn a framed flow category into a CW spectrum.
Flow categories and their realizations

A framed flow category is a way of encoding the moduli space of flows in Morse theory or Floer theory. Cohen-Jones-Segal turn a framed flow category into a CW spectrum.

\[
\begin{array}{cccc}
\text{Object} & \text{Grading} \\
\hline
a & 0 \\
b & 1 \\
c & 2 \\
d & 2 \\
\end{array}
\]

Morphisms
\[\text{Hom}(c, b) = \{\alpha\}, \text{Hom}(d, b) = \{\beta\}, \text{Hom}(b, a) = \{\gamma, \delta\}\]
Flow categories and their realizations

A framed flow category is a way of encoding the moduli space of flows in Morse theory or Floer theory. Cohen-Jones-Segal turn a framed flow category into a CW spectrum.
Flow categories and their realizations

A *framed flow category* is a way of encoding the moduli space of flows in Morse theory or Floer theory. Cohen-Jones-Segal turn a framed flow category into a CW spectrum.

<table>
<thead>
<tr>
<th>Object</th>
<th>Grading</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>0</td>
</tr>
<tr>
<td>b</td>
<td>1</td>
</tr>
<tr>
<td>c</td>
<td>2</td>
</tr>
<tr>
<td>d</td>
<td>2</td>
</tr>
</tbody>
</table>

Morphisms

Hom(c, b) = $\{\alpha\}$, Hom(d, b) = $\{\beta\}$, Hom(b, a) = $\{\gamma, \delta\}$

Hom(c, a) = $\langle\alpha, \delta\rangle$ $\langle\alpha, \gamma\rangle$
Flow categories and their realizations

A **framed flow category** is a way of encoding the moduli space of flows in Morse theory or Floer theory. Cohen-Jones-Segal turn a framed flow category into a CW spectrum.

A framed flow category consists of objects and morphisms. The objects are labeled as a, b, c, and d. The grading of each object is given in the table below:

<table>
<thead>
<tr>
<th>Object</th>
<th>Grading</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>0</td>
</tr>
<tr>
<td>b</td>
<td>1</td>
</tr>
<tr>
<td>c</td>
<td>2</td>
</tr>
<tr>
<td>d</td>
<td>2</td>
</tr>
</tbody>
</table>

The morphisms between objects are described as follows:

- $\text{Hom}(c, b) = \{\alpha\}$
- $\text{Hom}(d, b) = \{\beta\}$
- $\text{Hom}(b, a) = \{\gamma, \delta\}$
- $\text{Hom}(c, a) = \{(\alpha, \delta), (\alpha, \gamma)\}$
- $\text{Hom}(d, a) = \{(\beta, \delta), (\beta, \gamma)\}$
Flow categories and their realizations

A **framed flow category** is a way of encoding the moduli space of flows in Morse theory or Floer theory. Cohen-Jones-Segal turn a framed flow category into a CW spectrum.

Object Grading

<table>
<thead>
<tr>
<th>Object</th>
<th>Grading</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>0</td>
</tr>
<tr>
<td>b</td>
<td>1</td>
</tr>
<tr>
<td>c</td>
<td>2</td>
</tr>
<tr>
<td>d</td>
<td>2</td>
</tr>
</tbody>
</table>

Morphisms

\[
\begin{align*}
\text{Hom}(c, b) &= \{\alpha\}, \quad \text{Hom}(d, b) = \{\beta\}, \quad \text{Hom}(b, a) = \{\gamma, \delta\} \\
\text{Hom}(c, a) &= (\alpha, \delta) (\alpha, \gamma), \quad \text{Hom}(d, a) = (\beta, \delta) (\beta, \gamma)
\end{align*}
\]

(And some framing data.)
Flow categories and their realizations

A framed flow category is a way of encoding the moduli space of flows in Morse theory or Floer theory. Cohen-Jones-Segal turn a framed flow category into a CW spectrum.

Object Grading

<table>
<thead>
<tr>
<th>Object</th>
<th>Grading</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>0</td>
</tr>
<tr>
<td>b</td>
<td>1</td>
</tr>
<tr>
<td>c</td>
<td>2</td>
</tr>
<tr>
<td>d</td>
<td>2</td>
</tr>
</tbody>
</table>

Morphisms

$\Hom(c, b) = \{\alpha\}$, $\Hom(d, b) = \{\beta\}$, $\Hom(b, a) = \{\gamma, \delta\}$

$\Hom(c, a) = \langle \alpha, \delta \rangle \langle \alpha, \gamma \rangle$, $\Hom(d, a) = \langle \beta, \delta \rangle \langle \beta, \gamma \rangle$

(And some framing data.)

\[
\{\ast\} \amalg \bigoplus_{x \in \text{Ob}} D^{\text{gr}(x)+N} / \sim
\]
Flow categories and their realizations

A *framed flow category* is a way of encoding the moduli space of flows in Morse theory or Floer theory. Cohen-Jones-Segal turn a framed flow category into a CW spectrum.

A table showing the object grading:

<table>
<thead>
<tr>
<th>Object</th>
<th>Grading</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>0</td>
</tr>
<tr>
<td>b</td>
<td>1</td>
</tr>
<tr>
<td>c</td>
<td>2</td>
</tr>
<tr>
<td>d</td>
<td>2</td>
</tr>
</tbody>
</table>

Morphisms:

- $\text{Hom}(c, b) = \{\alpha\}$, $\text{Hom}(d, b) = \{\beta\}$, $\text{Hom}(b, a) = \{\gamma, \delta\}$
- $\text{Hom}(c, a) = (\alpha, \delta)$, $\text{Hom}(d, a) = (\beta, \delta)$

(And some framing data.)

$\left\{ \ast \right\} \amalg \coprod_{x \in \text{Ob}} D^{\text{gr}(x)+N} / \sim$
Flow categories and their realizations

A **framed flow category** is a way of encoding the moduli space of flows in Morse theory or Floer theory. Cohen-Jones-Segal turn a framed flow category into a CW spectrum.

<table>
<thead>
<tr>
<th>Object</th>
<th>Grading</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>0</td>
</tr>
<tr>
<td>b</td>
<td>1</td>
</tr>
<tr>
<td>c</td>
<td>2</td>
</tr>
<tr>
<td>d</td>
<td>2</td>
</tr>
</tbody>
</table>

Morphisms

- $\text{Hom}(c, b) = \{\alpha\}$, $\text{Hom}(d, b) = \{\beta\}$, $\text{Hom}(b, a) = \{\gamma, \delta\}$
- $\text{Hom}(c, a) = (\alpha, \delta)$, $\text{Hom}(d, a) = (\beta, \delta)$

(And some framing data.)

$\bigl(\{\ast\} \amalg \amalg_{x \in \text{Ob}} D_{d, a}^{\text{gr}(x)+N}\bigr) / \sim$
Flow categories and their realizations

A framed flow category is a way of encoding the moduli space of flows in Morse theory or Floer theory. Cohen-Jones-Segal turn a framed flow category into a CW spectrum.

<table>
<thead>
<tr>
<th>Object</th>
<th>Grading</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>0</td>
</tr>
<tr>
<td>b</td>
<td>1</td>
</tr>
<tr>
<td>c</td>
<td>2</td>
</tr>
<tr>
<td>d</td>
<td>2</td>
</tr>
</tbody>
</table>

Morphisms

$\text{Hom}(c, b) = \{\alpha\}$, $\text{Hom}(d, b) = \{\beta\}$, $\text{Hom}(b, a) = \{\gamma, \delta\}$

$\text{Hom}(c, a) = (\alpha, \delta)$, $\text{Hom}(d, a) = (\beta, \delta)$, $\text{Hom}(d, a) = (\beta, \gamma)$

(And some framing data.)
Flow categories and their realizations

A **framed flow category** is a way of encoding the moduli space of flows in Morse theory or Floer theory. Cohen-Jones-Segal turn a framed flow category into a CW spectrum.

<table>
<thead>
<tr>
<th>Object</th>
<th>Grading</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>0</td>
</tr>
<tr>
<td>b</td>
<td>1</td>
</tr>
<tr>
<td>c</td>
<td>2</td>
</tr>
<tr>
<td>d</td>
<td>2</td>
</tr>
</tbody>
</table>

Morphisms

$\text{Hom}(c, b) = \{\alpha\}$, $\text{Hom}(d, b) = \{\beta\}$, $\text{Hom}(b, a) = \{\gamma, \delta\}$

$\text{Hom}(c, a) = (\alpha, \delta)$, $\text{Hom}(d, a) = (\beta, \delta)$, $\text{Hom}(\alpha, \gamma)$

(And some framing data.)
Flow categories and their realizations

A **framed flow category** is a way of encoding the moduli space of flows in Morse theory or Floer theory. Cohen-Jones-Segal turn a framed flow category into a CW spectrum.

<table>
<thead>
<tr>
<th>Object</th>
<th>Grading</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>0</td>
</tr>
<tr>
<td>b</td>
<td>1</td>
</tr>
<tr>
<td>c</td>
<td>2</td>
</tr>
<tr>
<td>d</td>
<td>2</td>
</tr>
</tbody>
</table>

Morphisms

\[\text{Hom}(c, b) = \{\alpha\}, \text{Hom}(d, b) = \{\beta\}, \text{Hom}(b, a) = \{\gamma, \delta\} \]

\[\text{Hom}(c, a) = \{\alpha, \delta\}, \text{Hom}(d, a) = \{\beta, \delta\} \]

(And some framing data.)
Flow categories and their realizations

A framed flow category is a way of encoding the moduli space of flows in Morse theory or Floer theory. Cohen-Jones-Segal turn a framed flow category into a CW spectrum.

<table>
<thead>
<tr>
<th>Object</th>
<th>Grading</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>0</td>
</tr>
<tr>
<td>b</td>
<td>1</td>
</tr>
<tr>
<td>c</td>
<td>2</td>
</tr>
<tr>
<td>d</td>
<td>2</td>
</tr>
</tbody>
</table>

Morphisms

$\text{Hom}(c, b) = \{\alpha\}$, $\text{Hom}(d, b) = \{\beta\}$, $\text{Hom}(b, a) = \{\gamma, \delta\}$

$\text{Hom}(c, a) = \{\alpha, \delta\}$, $\text{Hom}(d, a) = \{\beta, \delta\}$

(And some framing data.)

$$\{\ast\} \coprod \coprod_{x \in \text{Ob}} D^{\text{gr}(x)+N} / \sim \cong S^1 \vee S^3 = \Sigma(S^2_+).$$
Part 2: Khovanov homology and homotopy
Part 2: Khovanov homology and homotopy

- State sums and the Jones polynomial
Part 2: Khovanov homology and homotopy

- State sums and the Jones polynomial
- The Khovanov cube
Part 2: Khovanov homology and homotopy

- State sums and the Jones polynomial
- The Khovanov cube
- Applications of Khovanov homology
Part 2: Khovanov homology and homotopy

- State sums and the Jones polynomial
- The Khovanov cube
- Applications of Khovanov homology
- Structure of Khovanov homotopy type
Part 2: Khovanov homology and homotopy

- State sums and the Jones polynomial
- The Khovanov cube
- Applications of Khovanov homology
- Structure of Khovanov homotopy type
- The Khovanov Burnside functor
Part 2: Khovanov homology and homotopy

- State sums and the Jones polynomial
- The Khovanov cube
- Applications of Khovanov homology
- Structure of Khovanov homotopy type
- The Khovanov Burnside functor
- Extensions
Part 2: Khovanov homology and homotopy

- State sums and the Jones polynomial
- The Khovanov cube
- Applications of Khovanov homology
- Structure of Khovanov homotopy type
- The Khovanov Burnside functor
- Extensions
- Applications
Part 2: Khovanov homology and homotopy

- State sums and the Jones polynomial
- The Khovanov cube
- Applications of Khovanov homology
- Structure of Khovanov homotopy type
- The Khovanov Burnside functor
- Extensions
- Applications
- Some open questions
State sums and the Jones polynomial

Knot K
State sums and the Jones polynomial

Knot K

Cube of resolutions (Kauffman '87)
State sums and the Jones polynomial

Knot K

Cube of resolutions (Kauffman ‘87)

State sum

$V_K(q) = \pm q^n \sum_{v \in \{0,1\}^c} (-q)^{|v|} (q + q^{-1})^{k(v)}$
State sums and the Jones polynomial

Knot K

Cube of resolutions (Kauffman '87)

$$V_K(q) = \pm q^n \sum_{v \in \{0,1\}^c} (-q)^{|v|} (q + q^{-1})^{k(v)}$$
State sums and the Jones polynomial

Knot K

Cube of resolutions (Kauffman '87)

$\begin{align*}
\sum_{v \in \{0,1\}^c} & (-q)^{|v|} (q + q^{-1})^{k(v)} \\
& (-q)^1(q + q^{-1})^3 \\
& (-q)^2(q + q^{-1})^2 \\
& (-q)^0(q + q^{-1})^2 \\
& (-q)^1(q + q^{-1})^1 \\
\end{align*}$

$V_K(q) = \pm q^n \sum_{v \in \{0,1\}^c} (-q)^{|v|} (q + q^{-1})^{k(v)}$
State sums and the Jones polynomial

Knot K

Cube of resolutions (Kauffman '87)

\[
(-q)^1(q + q^{-1})^3 \\
(-q)^2(q + q^{-1})^2 \\
(-q)^0(q + q^{-1})^2 \\
(-q)^1(q + q^{-1})^1
\]

State sum

\[
V_K(q) = \pm q^n \sum_{v \in \{0,1\}^c} (-q)^{|v|}(q + q^{-1})^{k(v)} = q + q^{-1}
\]
The Khovanov cube
(Khovanov '99)
The Khovanov cube
(Khovanov '99)

Khovanov Frobenius algebra

\[V = \mathbb{Z}[x]/(x^2) \]
The Khovanov cube
(Khovanov '99)

Khovanov Frobenius algebra (1 + 1 TQFT)

\[\text{circle} \rightarrow V = \mathbb{Z}[x]/(x^2) \]
The Khovanov cube
(Khovanov '99)

Khovanov Frobenius algebra (1 + 1 TQFT)

\[\text{circle} \rightarrow V = \mathbb{Z}[x]/(x^2) \]
\[\text{II} \rightarrow \otimes \]
The Khovanov cube
(Khovanov '99)

Khovanov Frobenius algebra (1 + 1 TQFT)

- circle \rightarrow $V = \mathbb{Z}[x]/(x^2)$
- $\mathbb{P} \rightarrow \otimes$
- merge \rightarrow multiplication $m: V \otimes V \rightarrow V$
The Khovanov cube
(Khovanov '99)

Khovanov Frobenius algebra (1 + 1 TQFT)

- circle $\mapsto V = \mathbb{Z}[x]/(x^2)$
- $\mathbb{I} \mapsto \otimes$
- merge \mapsto multiplication $m: V \otimes V \to V$
- split \mapsto comultiplication $\Delta: V \to V \otimes V$
 - $1 \mapsto 1 \otimes x + x \otimes 1$
 - $x \mapsto x \otimes x$
The Khovanov cube
(Khovanov '99)

Khovanov Frobenius algebra \((1+1 \text{ TQFT})\)

- circle \(\longrightarrow V = \mathbb{Z}[x]/(x^2)\)
- II \(\longrightarrow \otimes\)
- merge \(\longrightarrow\) multiplication \(m: V \otimes V \rightarrow V\)
- split \(\longrightarrow\) comultiplication \(\Delta: V \rightarrow V \otimes V\)

\[
\begin{align*}
1 & \mapsto 1 \otimes x + x \otimes 1 \\
 x & \mapsto x \otimes x
\end{align*}
\]
The Khovanov cube
(Khovanov '99)

Khovanov Frobenius algebra \((1 + 1 \text{TQFT})\)

- circle \(\rightarrow V = \mathbb{Z}[x]/(x^2)\)
- \(\square \rightarrow \otimes\)
- merge \(\rightarrow\) multiplication \(m : V \otimes V \rightarrow V\)
- split \(\rightarrow\) comultiplication \(\Delta : V \rightarrow V \otimes V\)

\[1 \mapsto 1 \otimes x + x \otimes 1\]
\[x \mapsto x \otimes x\]
The Khovanov cube
(Khovanov '99)

Khovanov Frobenius algebra \((1 + 1 \text{ TQFT})\)

- circle \(\rightarrow V = \mathbb{Z}[x]/(x^2)\)
- \(\text{II} \rightarrow \otimes\)
- merge \(\rightarrow\) multiplication \(m: V \otimes V \rightarrow V\)
- split \(\rightarrow\) comultiplication \(\Delta: V \rightarrow V \otimes V\)
 \(1 \mapsto 1 \otimes x + x \otimes 1\)
 \(x \mapsto x \otimes x\)

TQFT

\[
\begin{align*}
V \otimes V & \xrightarrow{m \otimes \text{Id}} V \otimes V \\
\text{Id} \otimes \Delta & \downarrow \Delta \\
V \otimes V & \xrightarrow{m} V \\
\end{align*}
\]

Total complex

\[
\begin{align*}
V \otimes V & \xrightarrow{[-m \text{ Id} \otimes \Delta]} V \oplus (V \otimes V \otimes V) \\
& \xrightarrow{[m \otimes \text{Id}]} V \otimes V \\
\end{align*}
\]
The Khovanov cube
(Khovanov '99)

Khovanov Frobenius algebra \((1 + 1 \text{ TQFT})\)

- circle \(\rightarrow V = \mathbb{Z}[x]/(x^2)\)
- \(\text{II} \rightarrow \otimes\)
- merge \(\rightarrow\) multiplication \(m: V \otimes V \rightarrow V\)
- split \(\rightarrow\) comultiplication \(\Delta: V \rightarrow V \otimes V\)
 \[
 1 \mapsto 1 \otimes x + x \otimes 1 \\
 x \mapsto x \otimes x
 \]

\[
\begin{array}{ccc}
V \otimes V \otimes V & \xrightarrow{m \otimes \text{Id}} & V \otimes V \\
\text{Id} \otimes \Delta & \uparrow & \Delta \\
V \otimes V & \xrightarrow{m} & V
\end{array}
\]

\[
V \otimes V \xrightarrow{[-m, \text{Id} \otimes \Delta]} V \oplus (V \otimes V \otimes V) \xrightarrow{[m \otimes \text{Id}]} V \otimes V
\]

Homology:

\[
\begin{array}{ccc}
0 & \mathbb{Z}^2 & 0
\end{array}
\]
Famous applications of Khovanov homology

\[g_4(K) = 2(\mu - \lambda + 1) \]

• Example. \[g_4(T_{p,q}) = g_3(T_{p,q}) = \mu(T_{p,q}) = (p-1)(q-1) \]

(Torus knot case conjectured by Milnor in '68, proved by Kronheimer and Mrowka in '93 using instanton gauge theory.)

Theorem. (Kronheimer-Mrowka '10) If \(\operatorname{rank}(\text{Kh}(K)) = 2 \), then \(K \) is the unknot.

• Proof uses instanton gauge theory.

Old conjecture. If \(\nu(K) = q + q - 1 \), then \(K \) is the unknot.

\[u(T_{5,68}) = 134 \]
Famous applications of Khovanov homology

Theorem. (Rasmussen ’04) If K is a positive knot, then

$$g_4(K) = g_3(K) = \frac{n - k + 1}{2}.$$

- **Example.** $g_4(T_{p,q}) = g_3(T_{p,q}) = u(T_{p,q}) = \frac{(p-1)(q-1)}{2}$.

 (Torus knot case conjectured by Milnor in ’68, proved by Kronheimer and Mrowka in ’93 using instanton gauge theory.)
Famous applications of Khovanov homology

Theorem. (Rasmussen ’04) If K is a positive knot, then

$$g_4(K) = g_3(K) = \frac{n - k + 1}{2}.$$

• **Example.** $g_4(T_{p,q}) = g_3(T_{p,q}) = u(T_{p,q}) = \frac{(p-1)(q-1)}{2}$.

(Torus knot case conjectured by Milnor in ’68, proved by Kronheimer and Mrowka in ’93 using instanton gauge theory.)

Theorem. (Kronheimer-Mrowka ’10) If $\text{rank}(Kh(K)) = 2$, then K is the unknot.

• Proof uses instanton gauge theory.

• **Old conjecture.** If $V_K(q) = q + q^{-1}$, then K is the unknot.

$u(T_{5,68}) = 134$.
Formal structure of Khovanov homotopy type

Link diagram L \quad Finite CW spectrum $X^j_{Kh}(L), j \in \mathbb{Z}$ \quad Khovanov homology $Kh^{i,j}(L)$
Formal structure of Khovanov homotopy type

Link diagram L \rightarrow Finite CW spectrum $X^j_{Kh}(L), j \in \mathbb{Z}$ \rightarrow Khovanov homology $Kh^{i,j}(L)$

Reidemeister moves $L \rightarrow L'$ \rightarrow Weak equivalences $X^j_{Kh}(L) \simeq X^j_{Kh}(L')$ \rightarrow Khovanov isomorphism $Kh^{i,j}(L) \simeq Kh^{i,j}(L')$
Formal structure of Khovanov homotopy type

- **Link diagram** L → **Finite CW spectrum** $X^j_{Kh}(L), j \in \mathbb{Z}$ → **Khovanov homology** $Kh^{i,j}(L)$
- **Reidemeister moves** $L \rightarrow L'$ → **Weak equivalences** $X^j_{Kh}(L) \simeq X^j_{Kh}(L')$ → **Khovanov isomorphism** $Kh^{i,j}(L) \simeq Kh^{i,j}(L')$
- **Cobordism** $L \rightarrow L'$ (movie presentation) → **Cellular map** $X^j_{Kh}(L) \leftarrow X^j_{Kh}(L')$ → **Usual cobordism map** $Kh^{i,j}(L) \rightarrow Kh^{i,j}(L')$

Corollary. (Lipshitz-Sarkar '12) There are Steenrod operations on Khovanov homology which are natural with respect to cobordism maps.

Theorem. (Lipshitz-Sarkar '12) There is an explicit combinatorial formula for the Steenrod square Sq^2:

$$Kh^{i,j}(K; \mathbb{Z}/2) \rightarrow Kh^{i+2,j}(K; \mathbb{Z}/2).$$

Theorem. (Seed '12) There are knots K, K' with $Kh^{i,j}(K) \cong Kh^{i,j}(K')$ ($\forall i,j$) but $X^j_{Kh}(K) \not\simeq X^j_{Kh}(K').$

Theorem. (Lawson-Lipshitz-Sarkar '15) For any $k > 0$ there is a (non-prime) knot K so that $Sq^k: Kh^{i,j}(K; \mathbb{Z}/2) \rightarrow Kh^{i+k,j}(K; \mathbb{Z}/2)$ is non-zero.
Formal structure of Khovanov homotopy type

- Link diagram L \rightarrow Finite CW spectrum $X^j_{Kh}(L), j \in \mathbb{Z}$ \rightarrow Khovanov homology $Kh^{i,j}(L)$

- Reidemeister moves $L \rightarrow L'$ \rightarrow Weak equivalences $X^j_{Kh}(L) \simeq X^j_{Kh}(L')$ \rightarrow Khovanov isomorphism $Kh^{i,j}(L) \simeq Kh^{i,j}(L')$

- Cobordism $L \rightarrow L'$ (movie presentation) \rightarrow Cellular map $X^j_{Kh}(L) \leftarrow X^j_{Kh}(L')$ \rightarrow Usual cobordism map $Kh^{i,j}(L) \rightarrow Kh^{i,j}(L')$

Corollary. (Lipshitz-Sarkar ’12) There are Steenrod operations on Khovanov homology which are natural with respect to cobordism maps.
Formal structure of Khovanov homotopy type

- **Link diagram** L \xrightarrow{} **Finite CW spectrum** $X^j_{Kh}(L)$, $j \in \mathbb{Z}$ \xrightarrow{} **Khovanov homology** $Kh^{i,j}(L)$

- **Reidemeister moves** $L \rightarrow L'$ \xrightarrow{} **Weak equivalences** $X^j_{Kh}(L) \simeq X^j_{Kh}(L')$ \xrightarrow{} **Khovanov isomorphism** $Kh^{i,j}(L) \simeq Kh^{i,j}(L')$

- **Cobordism** $L \rightarrow L'$ (movie presentation) \xrightarrow{} **Cellular map** $X^j_{Kh}(L) \leftarrow X^j_{Kh}(L')$ \xrightarrow{} **Usual cobordism map** $Kh^{i,j}(L) \rightarrow Kh^{i,j'}(L')$

Corollary. (Lipshitz-Sarkar '12) There are Steenrod operations on Khovanov homology which are natural with respect to cobordism maps.

Theorem. (Lipshitz-Sarkar '12) There is an explicit combinatorial formula for the Steenrod square Sq^2: $Kh^{i,j}(K;\mathbb{Z}/2) \rightarrow Kh^{i+2,j}(K;\mathbb{Z}/2)$.
Formal structure of Khovanov homotopy type

- **Link diagram L** \rightarrow **Finite CW spectrum $X^j_{Kh}(L), j \in \mathbb{Z}$** \rightarrow **Khovanov homology $Kh^{i,j}(L)$**

- **Reidemeister moves $L \rightarrow L'$** \rightarrow **Weak equivalences $X^j_{Kh}(L) \simeq X^j_{Kh}(L')$** \rightarrow **Khovanov isomorphism $Kh^{i,j}(L) \simeq Kh^{i,j}(L')$**

- **Cobordism $L \rightarrow L'$ (movie presentation)** \rightarrow **Cellular map $X^j_{Kh}(L) \leftarrow X^j_{Kh}(L')$** \rightarrow **Usual cobordism map $Kh^{i,j}(L) \rightarrow Kh^{i,j'}(L')$**

Corollary. (Lipshitz-Sarkar ’12) There are Steenrod operations on Khovanov homology which are natural with respect to cobordism maps.

Theorem. (Lipshitz-Sarkar ’12) There is an explicit combinatorial formula for the Steenrod square $Sq^2: Kh^{i,j}(K; \mathbb{Z}/2) \rightarrow Kh^{i+2,j}(K; \mathbb{Z}/2)$.

Theorem. (Seed ’12) There are knots K, K' with $Kh^{i,j}(K) \simeq Kh^{i,j}(K')$ ($\forall i, j$) but $X^j_{Kh}(K) \not\simeq X^j_{Kh}(K')$.

Formal structure of Khovanov homotopy type

- Link diagram L → Finite CW spectrum $X^j_{Kh}(L), j \in \mathbb{Z}$ → Khovanov homology $Kh^i,j(L)$
- Reidemeister moves $L \rightarrow L'$
- Weak equivalences $X^j_{Kh}(L) \simeq X^j_{Kh}(L')$ → Khovanov isomorphism $Kh^i,j(L) \cong Kh^i,j(L')$
- Cobordism $L \rightarrow L'$ (movie presentation)
- Cellular map $X^j_{Kh}(L) \leftarrow X^j_{Kh}(L')$ → Usual cobordism map $Kh^i,j(L) \rightarrow Kh^i,j'(L')$

Corollary. (Lipshitz-Sarkar '12) There are Steenrod operations on Khovanov homology which are natural with respect to cobordism maps.

Theorem. (Lipshitz-Sarkar '12) There is an explicit combinatorial formula for the Steenrod square $Sq^2: Kh^i,j(K; \mathbb{Z}/2) \rightarrow Kh^{i+2,j}(K; \mathbb{Z}/2)$.

Theorem. (Seed '12) There are knots K, K' with $Kh^i,j(K) \cong Kh^i,j(K')$ (∀i, j) but $X^j_{Kh}(K) \ncong X^j_{Kh}(K')$.

Theorem. (Lawson-Lipshitz-Sarkar '15) For any $k > 0$ there is a (non-prime) knot K so that $Sq^k: Kh^i,j(K; \mathbb{Z}/2) \rightarrow Kh^{i+k,j}(K; \mathbb{Z}/2)$ is non-zero.
The Burnside category

The Burnside category was used by Hu-Kriz-Kriz to refine Khovanov homology.

There are functors B^P,

$\text{Spectra} \to \text{X/Sets}/x \in X \text{S}$

Elmendorf-Mandell K-theory

cf. Barratt-Priddy-Quillen theorem

Can describe the map $B \to \text{Spectra}$ more explicitly, via Pontryagin-Thom construction (cf. Lawson-Lipshitz-Sarkar).

The Burnside category B (of the trivial group) has:

- Objects finite sets X
- $\text{Hom}(X,Y)$ finite correspondences $X \rightarrow Y$
- Composition fiber products
- $2\text{Hom}(A,B)$ bijections $X \rightarrow Y \rightarrow A \rightarrow B$
The Burnside category

- The Burnside category was used by Hu-Kriz-Kriz to refine Khovanov homology.
The Burnside category

- The Burnside category was used by Hu-Kriz-Kriz to refine Khovanov homology.

The *Burnside category* \mathcal{B} (of the trivial group) has:
- Objects finite sets X
The Burnside category

- The Burnside category was used by Hu-Kriz-Kriz to refine Khovanov homology.

The *Burnside category* \(\mathcal{B} \) (of the trivial group) has:
- Objects finite sets \(X \)
- \(\text{Hom}(X,Y) \) finite correspondences

\[
\begin{array}{ccc}
A \\
\downarrow \\
X & \rightarrow & Y
\end{array}
\]

- Composition fiber products
The Burnside category

- The Burnside category was used by Hu-Kriz-Kriz to refine Khovanov homology.

The Burnside category \(B \) (of the trivial group) has:
- Objects finite sets \(X \)
- \(\text{Hom}(X,Y) \) finite correspondences
- Composition fiber products
- \(2\text{Hom}(A,B) \) bijections
The Burnside category

- The Burnside category was used by Hu-Kriz-Kriz to refine Khovanov homology.

- There are functors

\[
\begin{array}{ccc}
\mathcal{B} & \longrightarrow & \text{Spectra} \\
X & \longrightarrow & \bigvee_{x \in X} S
\end{array}
\]

The **Burnside category** \(\mathcal{B} \) (of the trivial group) has:

- Objects finite sets \(X \)
- \(\text{Hom}(X, Y) \) finite correspondences

- Composition fiber products
- \(2\text{Hom}(A, B) \) bijections
The Burnside category

- The Burnside category was used by Hu-Kriz-Kriz to refine Khovanov homology.

- There are functors

\[
\begin{align*}
\mathcal{B} & \longrightarrow \mathcal{P}_{\text{ermu}} \longrightarrow \text{Spectra} \\
X & \longmapsto \text{Sets}/X \longmapsto \bigvee_{x \in X} S
\end{align*}
\]

The Burnside category \(\mathcal{B} \) (of the trivial group) has:

- Objects finite sets \(X \)
- \(\text{Hom}(X, Y) \) finite correspondences

- Composition fiber products
- \(2\text{Hom}(A, B) \) bijections
The Burnside category

- The Burnside category was used by Hu-Kriz-Kriz to refine Khovanov homology.
- There are functors

\[
\begin{align*}
\mathcal{B} & \longrightarrow \mathcal{P}_{\text{eru}} & \longrightarrow \mathcal{S} & \text{pectra} \\
X & \longleftarrow \text{Sets}/X & \bigvee_{x \in X} & \mathcal{S}
\end{align*}
\]

- The Burnside category \(\mathcal{B} \) (of the trivial group) has:
 - Objects finite sets \(X \)
 - Hom\((X, Y) \) finite correspondences
 - Composition fiber products
 - \(2\text{Hom}(A, B) \) bijections

Elmendorf-Mandell K-theory
cf. Barratt-Priddy-Quillen theorem
The Burnside category

- The Burnside category was used by Hu-Kriz-Kriz to refine Khovanov homology.

- There are functors:

 $\mathcal{B} \xrightarrow{\text{Perm}} \mathcal{P} \xrightarrow{\text{Sets}} \mathcal{Spectra}$

 $X \xrightarrow{\text{Sets}/X} \bigvee_{x \in X} S$

- Can describe the map $\mathcal{B} \to \mathcal{Spectra}$ more explicitly, via Pontryagin-Thom construction (cf. Lawson-Lipshitz-Sarkar).

The *Burnside category* \mathcal{B} (of the trivial group) has:

- Objects finite sets X
- $\text{Hom}(X, Y)$ finite correspondences

- Composition fiber products
- $2\text{Hom}(A, B)$ bijections
Cube shaped diagrams

\[
\begin{array}{ccc}
C_{01} & \xrightarrow{f_1} & C_{11} \\
\uparrow f_0 & & \uparrow f_1 \\
C_{00} & \xrightarrow{f_0} & C_{10}
\end{array}
\]
Cube shaped diagrams

\[
\begin{array}{ccc}
C_{01} & \xrightarrow{f_{01}} & C_{11} \\
f_0 & \uparrow & \uparrow f_1 \\
C_{00} & \xrightarrow{f_{00}} & C_{10}
\end{array}
\]

Cone

\[
\begin{array}{ccc}
\text{Cone}(f_0) & \xrightarrow{f_0[1] \oplus f_{01}} & \text{Cone}(f_1) \\
\end{array}
\]

Cone

\[
\begin{array}{ccc}
\text{Cone}(f_0[1] \oplus f_{01})
\end{array}
\]

\[\sim=\]
Cube shaped diagrams

\[
\begin{align*}
C_{01} \xrightarrow{f_1} & C_{11} \\
C_{00} \xrightarrow{f_0} & C_{10}
\end{align*}
\]

\[
\begin{align*}
f_0 \uparrow & \quad \uparrow f_1 \\
C_{00} & \xrightarrow{f_0} C_{10}
\end{align*}
\]

\[
\begin{align*}
\text{Cone} & \quad \text{Cone}(f_0) \xrightarrow{f_0[1] \oplus f_1} \text{Cone}(f_1)
\end{align*}
\]

\[
\begin{align*}
\text{Cone} \quad \text{Cone}(f_{01}) \xrightarrow{f_{01}[1] \oplus f_1} \text{Cone}(f_{11})
\end{align*}
\]

\[
\begin{align*}
\text{Cone} \quad \text{Cone}(f_{00}[1] \oplus f_{11})
\end{align*}
\]

\[
\begin{align*}
Z_{01} & \leftarrow g_{11} \quad Z_{11} \\
Z_{00} & \leftarrow g_{00} \quad Z_{10}
\end{align*}
\]

\[
\begin{align*}
g_0 \downarrow & \quad \downarrow g_1 \\
Z_{00} & \xleftarrow{g_0} Z_{10}
\end{align*}
\]

\[
\begin{align*}
f_0 \uparrow & \quad \uparrow f_1 \\
C_{00} & \xrightarrow{f_0} C_{10}
\end{align*}
\]
Cube shaped diagrams

\[
\begin{array}{c}
C_{01} \xrightarrow{f_1} C_{11} \\
f_{0\bullet} \uparrow \quad \uparrow f_{1\bullet} \\
C_{00} \xrightarrow{f_{0\bullet}} C_{10}
\end{array}
\]

\[
\begin{array}{c}
C^* \\
\text{Cone}
\end{array}
\]

\[
\begin{array}{cc}
\text{Cone}(f_{0\bullet}) & \xrightarrow{f_{0\bullet}[1] \oplus f_{1\bullet}} \text{Cone}(f_{1\bullet}) \\
\text{C}^* & \text{C}_{\bullet}
\end{array}
\]

\[
\begin{array}{cc}
\text{Cone}(g_{0\bullet}) & \xleftarrow{g_{0\bullet}[1]} \text{Cone}(g_{1\bullet}) \\
\text{C}^* & \text{C}_{\bullet}
\end{array}
\]

Can totalize all at once, using homotopy colimits.
Works if diagrams are merely homotopy coherent.
Cube shaped diagrams

\[
\begin{align*}
C_{01} & \xrightarrow{f_{01}} C_{11} \\
f_0 & \uparrow \quad \uparrow f_{1} \\
C_{00} & \xrightarrow{f_{0}} C_{10}
\end{align*}
\]

\[
\begin{align*}
\text{Cone} & \quad \xrightarrow{C^*} \\
\text{Cone}(f_{0}) & \xrightarrow{f_{0}[1] \oplus f_{1}} \text{Cone}(f_{1})
\end{align*}
\]

\[
\begin{align*}
\text{Cone}(g_{0}) & \leftarrow \text{Cone}(g_{1}) \\
\text{Cone}(g_{0} \cup \text{Cone}(g_{1}))
\end{align*}
\]

\[
\begin{align*}
Z_{01} & \xleftarrow{g_{01}} Z_{11} \\
g_{0} & \downarrow \quad \downarrow g_{1} \\
Z_{00} & \xleftarrow{g_{0}} Z_{10}
\end{align*}
\]

\[
\begin{align*}
\text{Cone} & \quad \xrightarrow{C^*} \\
\text{Cone}(g_{0}) & \xrightarrow{g_{0} \cup \text{Cone}(g_{1})}
\end{align*}
\]

- Can totalize all at once, using homotopy colimits.
- Works if diagrams are merely homotopy coherent.
Cube shaped diagrams

\[
\begin{align*}
C_{01} & \xrightarrow{f_1} C_{11} \\
C_{00} & \xrightarrow{f_0} C_{10} \\
\end{align*}
\]

\[
\begin{align*}
f_0 \uparrow & \quad \uparrow f_1 \\
C_{00} & \xrightarrow{f_0} C_{10} \\
\end{align*}
\]

\[
\begin{align*}
C^* & \quad C^* \\
\end{align*}
\]

\[
\begin{align*}
C^* & \quad C^* \\
\end{align*}
\]

\[
\begin{align*}
C_{01} & \leftarrow Z_{01} \xleftarrow{g_1} Z_{11} \\
Z_{00} & \xleftarrow{g_0} Z_{10} \\
\end{align*}
\]

\[
\begin{align*}
\text{EM} & \quad \text{EM} \\
\end{align*}
\]

\[
\begin{align*}
X_{01} & \xleftarrow{A_1} X_{11} \\
A_{0} & \xleftarrow{A_0} X_{10} \\
X_{00} & \xleftarrow{A_0} X_{10} \\
\end{align*}
\]

- Can totalize all at once, using homotopy colimits.
- Works if diagrams are merely homotopy coherent.
Can totalize all at once, using homotopy colimits.

Works if diagrams are merely homotopy coherent.
Cube shaped diagrams

\[
\begin{align*}
C_{01} & \xrightarrow{f_{1\bullet}} C_{11} \\
C_{00} & \xrightarrow{f_{0\bullet}} C_{10} \\
\text{Cone} & \xrightarrow{\text{Cone}(f_{0\bullet})} \text{Cone}(f_{1\bullet}) \\
\text{Cone}(f_{0\bullet}[1] \oplus f_{1\bullet}) & \xrightarrow{\text{Cone}(g_{0\bullet})} \text{Cone}(g_{1\bullet}) \\
\end{align*}
\]

\[
\begin{align*}
Z_{01} & \xleftarrow{g_{1\bullet}} Z_{11} \\
Z_{00} & \xleftarrow{g_{0\bullet}} Z_{10} \\
\text{EM} & \xleftarrow{\text{Cone}(g_{0\bullet})} \text{Cone}(g_{1\bullet}) \\
\text{Cone}(g_{0\bullet} \cup \text{Cone}(g_{1\bullet})) & \xrightarrow{\text{Cone}(g_{0\bullet} \cup \text{Cone}(g_{1\bullet}))} \\
\end{align*}
\]

- Can totalize all at once, using homotopy colimits.
- Works if diagrams are merely homotopy coherent.
The Khovanov-Burnside functor
The Khovanov-Burnside functor

Objects:
$$\text{Hom}(\pi_0(K_v), \{1, x\}) = \{1, x\}$$

$$\pi_0(K_u) \to \pi_0(K_v)$$

$$s^{-1}(y) \cap t^{-1}(z), y \in \{1, x\}, z \in \{1, x\}$$

Set of generators of the kernel of $$H_1(B) \to H_1(B \cap \{0, 1\} \times \mathbb{R})$$

2-morphisms: ...
The Khovanov-Burnside functor

- Objects: Hom(π₀(K⁺), {1, x}) = {1, x}π₀(K⁺)
The Khovanov-Burnside functor

- **Objects**: $\text{Hom}(\pi_0(K_v), \{1, x\}) = \{1, x\} \pi_0(K_v)$

- **Morphisms**: correspondence

- **2-morphisms**: ...
The Khovanov-Burnside functor

- Objects: $\text{Hom}(\pi_0(K_v), \{1, x\}) = \{1, x\} \pi_0(K_v)$

- Morphisms: correspondence $\{1, x\} \pi_0(K_u) \to \{1, x\} \pi_0(K_v)$
The Khovanov-Burnside functor

• Objects: \(\text{Hom}(\pi_0(K_v), \{1, x\}) = \{1, x\} \pi_0(K_v) \)

\[
\begin{array}{c}
1 \otimes 1 \\
1 \otimes x \\
x \otimes 1 \\
x \otimes x \\
\end{array}
\]

• Morphisms: correspondence \(\{1, x\} \pi_0(K_u) \rightarrow \{1, x\} \pi_0(K_v) \)

\[
s^{-1}(y) \cap t^{-1}(z), y \in \{1, x\} \pi_0(K_u), z \in \{1, x\} \pi_0(K_v)
\]
The Khovanov-Burnside functor

- **Objects:** \(\text{Hom}(\pi_0(K_v), \{1, x\}) = \{1, x\}^{\pi_0(K_v)} \)

- **Morphisms:** correspondence \(\{1, x\}^{\pi_0(K_u)} \to \{1, x\}^{\pi_0(K_v)} \)

\[s^{-1}(y) \cap t^{-1}(z), y \in \{1, x\}^{\pi_0(K_u)}, z \in \{1, x\}^{\pi_0(K_v)} \]

\[\text{genus} = 0, |\{y(C) = 1\}| + |\{z(C) = x\}| = 1 \]

\[\mapsto \{\text{pt}\} \]
The Khovanov-Burnside functor

- **Objects:** \(\text{Hom}(\pi_0(K_v), \{1, x\}) = \{1, x\} \pi_0(K_v) \)

- **Morphisms:** correspondence \(\{1, x\} \pi_0(K_u) \rightarrow \{1, x\} \pi_0(K_v) \)

\[
s^{-1}(y) \cap t^{-1}(z), y \in \{1, x\} \pi_0(K_u), z \in \{1, x\} \pi_0(K_v)
\]

\[
\text{genus} = 0, |\{y(C) = 1\}| + |\{z(C) = x\}| = 1
\]

\[
\mapsto \{\text{pt}\}
\]
The Khovanov-Burnside functor

- Objects: $\text{Hom}(\pi_0(K_v), \{1, x\}) = \{1, x\} \pi_0(K_v)$

 \[
 \begin{bmatrix}
 1 \otimes 1 \\
 1 \otimes x \\
 x \otimes 1 \\
 x \otimes x
 \end{bmatrix}
 \]

- Morphisms: correspondence $\{1, x\} \pi_0(K_u) \rightarrow \{1, x\} \pi_0(K_v)$

 \[
 s^{-1}(y) \cap t^{-1}(z), y \in \{1, x\} \pi_0(K_u), z \in \{1, x\} \pi_0(K_v)
 \]

 genus = 0, $|\{y(C) = 1\}| + |\{z(C) = x\}| = 1$

 $\mapsto \{\text{pt}\}$

 genus = 1, $|\{y(C) = 1\}| + |\{z(C) = x\}| = 0$

 Set of generators of the kernel of

 $\mapsto H^1(B) \rightarrow H^1(B \cap \{0, 1\} \times \mathbb{R})$
The Khovanov-Burnside functor

- **Objects:** \(\text{Hom}(\pi_0(K_v), \{1, x\}) = \{1, x\}^{\pi_0(K_v)} \)

- **Morphisms:** correspondence \(\{1, x\}^{\pi_0(K_u)} \rightarrow \{1, x\}^{\pi_0(K_v)} \)

 \[s^{-1}(y) \cap t^{-1}(z), y \in \{1, x\}^{\pi_0(K_u)}, z \in \{1, x\}^{\pi_0(K_v)} \]

 genus = 0, \(|\{y(C) = 1\}| + |\{z(C) = x\}| = 1\)

 \(\mapsto\) \{pt\}

 genus = 1, \(|\{y(C) = 1\}| + |\{z(C) = x\}| = 0\)

 Set of generators of the kernel of

 \(\mapsto H^1(B) \rightarrow H^1(B \cap \{0, 1\} \times \mathbb{R})\)

 Purple curve \(\mapsto +1\)

 Purple curve \(\mapsto -1\)
The Khovanov-Burnside functor

• Objects: $\text{Hom}(\pi_0(K_v), \{1, x\}) = \{1, x\} \pi_0(K_v)$

$$\begin{array}{c}
1 \otimes 1 \\
1 \otimes x \\
x \otimes 1 \\
x \otimes x
\end{array}$$

• Morphisms: correspondence $\{1, x\} \pi_0(K_u) \rightarrow \{1, x\} \pi_0(K_v)$

$$s^{-1}(y) \cap t^{-1}(z), y \in \{1, x\} \pi_0(K_u), z \in \{1, x\} \pi_0(K_v)$$

- genus = 0, $|\{y(C) = 1\}| + |\{z(C) = x\}| = 1$
 $\rightarrow \{\text{pt}\}$
- genus = 1, $|\{y(C) = 1\}| + |\{z(C) = x\}| = 0$

 Set of generators of the kernel of
 $\rightarrow H^1(B) \rightarrow H^1(B \cap \{0, 1\} \times \mathbb{R})$

• 2-morphisms: \ldots

Purple curve $\mapsto +1$
Purple curve $\mapsto -1$
Extensions

• Lawson-Lipshitz-Sarkar: This definition of $\text{Kh}_{\mathcal{K}}$ due to Hu-Kriz-Kriz agrees with the original definition via flow categories due to Lipshitz-Sarkar.

• Jones-Lobb-Schütz, Lobb-Orson-Schütz: Many calculations, via moves to simplify flow categories.

• Lobb-Orson-Schütz, Willis: An extension to colored Khovanov homology.

• Jones-Lobb-Schütz: A conjectural extension to sl_n Khovanov-Rozansky homology for certain kinds of knots ("matched diagrams").

• Sarkar-Scaduto-Stoffregen: An extension to Ozsváth-Rasmussen-Szabó's odd Khovanov homology.

• Borodzik-Politarczyk-Silvero, Musyt: Extension to periodic knots.
Extensions

- Lawson-Lipshitz-Sarkar: This definition of $X_{Kh}(K)$ due to Hu-Kriz-Kriz agrees with the original definition via flow categories due to Lipshitz-Sarkar.
- Jones-Lobb-Schütz, Lobb-Orson-Schütz: Many calculations, via moves to simplify flow categories.
- Lobb-Orson-Schütz, Willis: An extension to colored Khovanov homology.
- Jones-Lobb-Schütz: A conjectural extension to sl_n Khovanov-Rozansky homology for certain kinds of knots (“matched diagrams”).
- Sarkar-Scaduto-Stoffregen: An extension to Ozsváth-Rasmussen-Szabó’s odd Khovanov homology.
- Borodzik-Politarczyk-Silvero, Musyt: Extension to periodic knots.
Extensions

- Lawson-Lipshitz-Sarkar: This definition of $X_{Kh}(K)$ due to Hu-Kriz-Kriz agrees with the original definition via flow categories due to Lipshitz-Sarkar.

- Jones-Lobb-Schütz, Lobb-Orson-Schütz: Many calculations, via moves to simplify flow categories.

- Sarkar-Scaduto-Stoffregen: An extension to Ozsváth-Rasmussen-Szabó's odd Khovanov homology.

- Borodzik-Politarczyk-Silvero, Musyt: Extension to periodic knots.
Extensions

• Lawson-Lipshitz-Sarkar: This definition of $X_{Kh}(K)$ due to Hu-Kriz-Kriz agrees with the original definition via flow categories due to Lipshitz-Sarkar.

• Jones-Lobb-Schütz, Lobb-Orson-Schütz: Many calculations, via moves to simplify flow categories.

• Lobb-Orson-Schütz, Willis: An extension to colored Khovanov homology.
Extensions

- Lawson-Lipshitz-Sarkar: This definition of $X_{Kh}(K)$ due to Hu-Kriz-Kriz agrees with the original definition via flow categories due to Lipshitz-Sarkar.

- Jones-Lobb-Schütz, Lobb-Orson-Schütz: Many calculations, via moves to simplify flow categories.

- Lobb-Orson-Schütz, Willis: An extension to colored Khovanov homology.

- Jones-Lobb-Schütz: A conjectural extension to \mathfrak{sl}_n Khovanov-Rozansky homology for certain kinds of knots (“matched diagrams”).
Extensions

• Lawson-Lipshitz-Sarkar: This definition of $X_{Kh}(K)$ due to Hu-Kriz-Kriz agrees with the original definition via flow categories due to Lipshitz-Sarkar.

• Jones-Lobb-Schütz, Lobb-Orson-Schütz: Many calculations, via moves to simplify flow categories.

• Lobb-Orson-Schütz, Willis: An extension to colored Khovanov homology.

• Jones-Lobb-Schütz: A conjectural extension to sl_n Khovanov-Rozansky homology for certain kinds of knots (“matched diagrams”).

• Sarkar-Scaduto-Stoffregen: An extension to Ozsváth-Rasmussen-Szabó’s odd Khovanov homology.
Extensions

- Lawson-Lipshitz-Sarkar: This definition of $X_{Kh}(K)$ due to Hu-Kriz-Kriz agrees with the original definition via flow categories due to Lipshitz-Sarkar.
- Jones-Lobb-Schütz, Lobb-Orson-Schütz: Many calculations, via moves to simplify flow categories.
- Lobb-Orson-Schütz, Willis: An extension to colored Khovanov homology.
- Jones-Lobb-Schütz: A conjectural extension to \mathfrak{sl}_n Khovanov-Rozansky homology for certain kinds of knots (“matched diagrams”).
- Sarkar-Scaduto-Stoffregen: An extension to Ozsváth-Rasmussen-Szabó’s odd Khovanov homology.
- Borodzik-Politarczyk-Silvero, Musyt: Extension to periodic knots.
Applications

• Lipshitz-Ng-Sarkar: A stable homotopy refinement of Plamenevskaya's transverse invariant, \(\Psi(K) \in \pi_0 s(\text{sl}(K)) \text{Kh}(K) \) = \([\text{sl}(K) \text{Kh}(K), S] \).

• Lipshitz-Sarkar: A refinement of Rasmussen's \(s \)-invariant,

• \(s \text{Sq}_2(K) \in \{ s(K), s(K) + 2 \} \).

• \(2g_4(K) \geq |s \text{Sq}_2(K)| \).

• Lawson-Lipshitz-Sarkar: For \(p, q > 0 \),

\[
2g_4(T_{p,q} \# 9_{42}) = 2g_4(T_{p,q}) + 2g_4(9_{42}) = (p-1)(q-1) + 1.
\]

\(9_{42} \ni (3, 5) \) $\gi 9_{42} \ni (3, 5) \# 9_{42}$

• Feller-Lewark-Lobb: Call \(K \) squeezed if it is a slice of a minimal-genus cobordism from \(T_{p,q} \) to \(T_{p',q'} \).

• \(s \text{Sq}_2 \) gives one of the few known obstructions to \(K \) being squeezed.
Applications

- Lipshitz-Ng-Sarkar: A stable homotopy refinement of Plamenevskaya’s transverse invariant,

\[\Psi(K) \in \pi_0^s(X_{K_{sl}}^s(K)) = [X_{K_{sl}}^s(K), \mathbb{S}] \]
Applications

• Lipshitz-Ng-Sarkar: A stable homotopy refinement of Plamenevskaya’s transverse invariant,

\[\Psi(K) \in \pi_s^0(X_{Kh}^{sl(K)}(K)) = [X_{Kh}^{sl(K)}(K), S] \]

• Lipshitz-Sarkar: A refinement of Rasmussen’s \(s \)-invariant,
 • \(s_{Sq}^2(K) \in \{ s(K), s(K) + 2 \} \).
 • \(2g_4(K) \geq |s_{Sq}^2(K)|. \)
Applications

• Lipshitz-Ng-Sarkar: A stable homotopy refinement of Plamenevskaya’s transverse invariant,

\[\Psi(K) \in \pi_0^s (X_{Kh}^{sl}(K)) = [X_{Kh}^{sl}(K), S] \]

• Lipshitz-Sarkar: A refinement of Rasmussen’s \(s \)-invariant,

 • \(s_{Sq^2}(K) \in \{ s(K), s(K) + 2 \} \).

 • \(2g_4(K) \geq |s_{Sq^2}(K)|. \)
Applications

- Lipshitz-Ng-Sarkar: A stable homotopy refinement of Plamenevskaya’s transverse invariant,

\[\Psi(K) \in \pi_s^0(X^{sl(K)}_{Kh}(K)) = [X^{sl(K)}_{Kh}(K), \mathbb{S}] \]

- Lipshitz-Sarkar: A refinement of Rasmussen’s \(s \)-invariant,

 - \(s_{\text{Sq}^2}(K) \in \{s(K), s(K) + 2\} \).

 - \(2g_4(K) \geq |s_{\text{Sq}^2}(K)| \).

- Lawson-Lipshitz-Sarkar: For \(p, q > 0 \),

\[g_4(T_{p,q} \# 9_{42}) = g_4(T_{p,q}) + g_4(9_{42}) = \frac{(p - 1)(q - 1)}{2} + 1. \]
Applications

• Lipshitz-Ng-Sarkar: A stable homotopy refinement of Plamenevskaya’s transverse invariant,
\[\Psi(K) \in \pi_s^0(X_{Kh}^{sl}(K)) = [X_{Kh}^{sl}(K), S] \]

• Lipshitz-Sarkar: A refinement of Rasmussen’s s-invariant,
 - \(s_{Sq^2}(K) \in \{ s(K), s(K) + 2 \} \).
 - \(2g_4(K) \geq |s_{Sq^2}(K)|. \)

• Lawson-Lipshitz-Sarkar: For \(p, q > 0 \),
\[g_4(T_{p,q} \# 9_{42}) = g_4(T_{p,q}) + g_4(9_{42}) = \frac{(p - 1)(q - 1)}{2} + 1. \]
Applications

- Lipshitz-Ng-Sarkar: A stable homotopy refinement of Plamenevskaya’s transverse invariant,

\[\Psi(K) \in \pi_s^0(X_{Kh}^{sl(K)}(K)) = [X_{Kh}^{sl(K)}(K), S] \]

- Lipshitz-Sarkar: A refinement of Rasmussen’s \(s \)-invariant,

 - \(s_{Sq^2}(K) \in \{ s(K), s(K) + 2 \} \).
 - \(2g_4(K) \geq |s_{Sq^2}(K)| \).

- Lawson-Lipshitz-Sarkar: For \(p, q > 0 \),

\[
g_4(T_{p,q} \# 9_{42}) = g_4(T_{p,q}) + g_4(9_{42}) = \frac{(p - 1)(q - 1)}{2} + 1.
\]
Applications

• Lipshitz-Ng-Sarkar: A stable homotopy refinement of Plamenevskaya’s transverse invariant,
 \[\Psi(K) \in \pi_0^s(X_{Kh}^{sl}(K)) = \lbrack X_{Kh}^{sl}(K), S \rbrack \]

• Lipshitz-Sarkar: A refinement of Rasmussen’s \(s \)-invariant,
 • \(s_{Sq^2}(K) \in \{ s(K), s(K) + 2 \} \).
 • \(2g_4(K) \geq |s_{Sq^2}(K)| \).

• Lawson-Lipshitz-Sarkar: For \(p, q > 0 \),
 \[g_4(T_{p,q} \# 9_{42}) = g_4(T_{p,q}) + g_4(9_{42}) = \frac{(p - 1)(q - 1)}{2} + 1. \]

• Feller-Lewark-Lobb: Call \(K \) squeezed if it is a slice of a minimal-genus cobordism from \(T_{p,q} \) to \(T_{-p',q'} \).
 • \(s_{Sq^2} \) gives one of the few known obstructions to \(K \) being squeezed.
Questions

• Are there refinements of Khovanov-Rozansky homologies? Khovanov-Rozansky’s HOMFLY-PT homology?
• Does $C_{\mathbb{P}^2}$ appear in the Khovanov spectrum of any link? More generally, do Chang spaces with no $\mathbb{Z}/2\mathbb{Z}$-summand in their cohomology appear?
• Is the Khovanov stable homotopy type natural under cobordisms? What about higher naturality for Khovanov chain complex or Khovanov homotopy type?
• Carry out Cohen-Jones-Segal’s program of refining Floer homology in general.
• Is there an intrinsic description of Floer (or Khovanov) stable homotopy types?
• (Many other open questions in the written version of this talk.)
Questions

• Are there refinements of \mathfrak{sl}_n Khovanov-Rozansky homologies? Khovanov-Rozansky’s HOMFLY-PT homology?
• Does $\mathbb{C}P^2$ appear in the Khovanov spectrum of any link? More generally, do Chang spaces with no $\mathbb{Z}/2\mathbb{Z}$-summand in their cohomology appear?
• Is the Khovanov stable homotopy type natural under cobordisms? What about higher naturality for Khovanov chain complex or Khovanov homotopy type?
• Carry out Cohen-Jones-Segal’s program of refining Floer homology in general.
• Is there an intrinsic description of Floer (or Khovanov) stable homotopy types?
• (Many other open questions in the written version of this talk.)
Questions

- Are there refinements of \mathfrak{sl}_n Khovanov-Rozansky homologies? Khovanov-Rozansky’s HOMFLY-PT homology?

- Does $\mathbb{C}P^2$ appear in the Khovanov spectrum of any link? More generally, do Chang spaces with no $\mathbb{Z}/2$-summand in their cohomology appear?

- Is the Khovanov stable homotopy type natural under cobordisms? What about higher naturality for Khovanov chain complex or Khovanov homotopy type?

- Carry out Cohen-Jones-Segal’s program of refining Floer homology in general.

- Is there an intrinsic description of Floer (or Khovanov) stable homotopy types?

- (Many other open questions in the written version of this talk.)
Questions

• Are there refinements of \mathfrak{sl}_n Khovanov-Rozansky homologies? Khovanov-Rozansky’s HOMFLY-PT homology?

• Does \mathbb{CP}^2 appear in the Khovanov spectrum of any link? More generally, do Chang spaces with no $\mathbb{Z}/2$-summand in their cohomology appear?

• Is the Khovanov stable homotopy type natural under cobordisms? What about higher naturality for Khovanov chain complex or Khovanov homotopy type?
Questions

- Are there refinements of \mathfrak{sl}_n Khovanov-Rozansky homologies? Khovanov-Rozansky’s HOMFLY-PT homology?

- Does \mathbb{CP}^2 appear in the Khovanov spectrum of any link? More generally, do Chang spaces with no $\mathbb{Z}/2$-summand in their cohomology appear?

- Is the Khovanov stable homotopy type natural under cobordisms? What about higher naturality for Khovanov chain complex or Khovanov homotopy type?

- Carry out Cohen-Jones-Segal’s program of refining Floer homology in general.
Questions

• Are there refinements of \(\mathfrak{sl}_n \) Khovanov-Rozansky homologies? Khovanov-Rozansky’s HOMFLY-PT homology?

• Does \(\mathbb{CP}^2 \) appear in the Khovanov spectrum of any link? More generally, do Chang spaces with no \(\mathbb{Z}/2 \)-summand in their cohomology appear?

• Is the Khovanov stable homotopy type natural under cobordisms? What about higher naturality for Khovanov chain complex or Khovanov homotopy type?

• Carry out Cohen-Jones-Segal’s program of refining Floer homology in general.

• Is there an intrinsic description of Floer (or Khovanov) stable homotopy types?
Questions

- Are there refinements of \mathfrak{sl}_n Khovanov-Rozansky homologies? Khovanov-Rozansky’s HOMFLY-PT homology?

- Does \mathbb{CP}^2 appear in the Khovanov spectrum of any link? More generally, do Chang spaces with no $\mathbb{Z}/2$-summand in their cohomology appear?

- Is the Khovanov stable homotopy type natural under cobordisms? What about higher naturality for Khovanov chain complex or Khovanov homotopy type?

- Carry out Cohen-Jones-Segal’s program of refining Floer homology in general.

- Is there an intrinsic description of Floer (or Khovanov) stable homotopy types?

- (Many other open questions in the written version of this talk.)
Thanks!

- We thank the many colleagues who have helped us learn this material, Mohammed Abouzaid, Ralph Cohen, Chris Douglas, Ciprian Manolescu, and many others...

- And most especially our collaborators on this project, Tyler Lawson and Lenhard Ng.

- Thanks also to the organizing committee for inviting us, our hosts for their hospitality, and all of you for listening.