Geometric structures and representations of discrete groups

Fanny Kassel

CNRS and IHÉS
General problem

Classify infinite discrete subgroups of $SL(n, \mathbb{R})$
General problem

Classify infinite discrete subgroups of $\text{SL}(n, \mathbb{R})$

1. Overview: lattices and other discrete subgroups
2. Deformations
3. Important class: Anosov subgroups
4. Geometry: convex cocompactness
5. Beyond Anosov subgroups
General problem

Classify infinite discrete subgroups of $\text{SL}(n, \mathbb{R})$

1. Overview: lattices and other discrete subgroups
2. Deformations
3. Important class: Anosov subgroups
4. Geometry: convex cocompactness
5. Beyond Anosov subgroups

Theorem (Danciger–Guéritaud–K. 2017; see also Zimmer 2017)

P_1-Anosov \iff strong projective convex cocompactness
Section 1

Discrete subgroups of $\text{SL}(n, \mathbb{R})$: overview
Case $n = 2$

Γ discrete subgroup of $SL(2, \mathbb{R})$
Case $n = 2$

\[
\Gamma \text{ discrete subgroup of } \text{SL}(2, \mathbb{R}) \leadsto \mathbb{H}^2/\Gamma \text{ hyperbolic surface (orbifold)}
\]
Case $n = 2$

Γ discrete subgroup of $\text{SL}(2, \mathbb{R}) \rightsquigarrow \mathbb{H}^2/\Gamma$ hyperbolic surface (orbifold)

Two models of \mathbb{H}^2

Unit disc
\[
\{ z \in \mathbb{C} \mid |z| < 1 \}
\]

$z \mapsto i \frac{1+z}{1-z}$

Upper half plane
\[
\{ z \in \mathbb{C} \mid \text{Im}(z) > 0 \} \]
Case \(n = 2 \)

\(\Gamma \) discrete subgroup of \(\text{SL}(2, \mathbb{R}) \) \(\hookrightarrow \mathbb{H}^2/\Gamma \) hyperbolic surface (orbifold)

Two models of \(\mathbb{H}^2 \)

Unit disc
\[\{ z \in \mathbb{C} | |z| < 1 \} \]

Upper half plane
\[\{ z \in \mathbb{C} | \text{Im}(z) > 0 \} \]

\(\text{SL}(2, \mathbb{R}) \) acts by Möbius transformations:
\[
\begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot z = \frac{az+b}{cz+d}
\]
Case $n = 2$

Γ discrete subgroup of $\text{SL}(2, \mathbb{R}) \rightsquigarrow \mathbb{H}^2/\Gamma$ hyperbolic surface (orbifold)

Uniformization Theorem (Poincaré, Koebe)

*Any compact Riemann surface of genus $g \geq 2$ is conformally equivalent to \mathbb{H}^2/Γ where Γ discrete subgroup of $\text{SL}(2, \mathbb{R})$.***

Two models of \mathbb{H}^2

- **Unit disc**
 \[
 \{ z \in \mathbb{C} \mid |z| < 1 \}
 \]

- **Upper half plane**
 \[
 \{ z \in \mathbb{C} \mid \text{Im}(z) > 0 \}
 \]

\[z \mapsto i \frac{1 + z}{1 - z}\]

SL$(2, \mathbb{R})$ acts by Möbius transformations:

\[
(\begin{pmatrix} a & b \\ c & d \end{pmatrix}) \cdot z = \frac{az + b}{cz + d}
\]
Case \(n = 2 \)

\(\Gamma \) discrete subgroup of \(\text{SL}(2, \mathbb{R}) \) \(\cong \mathbb{H}^2/\Gamma \) hyperbolic surface (orbifold)

Uniformization Theorem (Poincaré, Koebe)

Any compact Riemann surface of genus \(g \geq 2 \) is conformally equivalent to \(\mathbb{H}^2/\Gamma \) where \(\Gamma \) discrete subgroup of \(\text{SL}(2, \mathbb{R}) \).

E.g. \(\Gamma \) generated by \(a_1, b_1, a_2, b_2 \)

\(\cong \mathbb{H}^2/\Gamma \)
Case $n = 2$

Γ discrete subgroup of $\text{SL}(2, \mathbb{R}) \leadsto \mathbb{H}^2/\Gamma$ hyperbolic surface (orbifold)

Uniformization Theorem (Poincaré, Koebe)

Any compact Riemann surface of genus $g \geq 2$ is conformally equivalent to \mathbb{H}^2/Γ where Γ discrete subgroup of $\text{SL}(2, \mathbb{R})$.

E.g. Γ generated by a_1, b_1, a_2, b_2

$\leadsto \mathbb{H}^2/\Gamma$

Such a group Γ can be deformed inside $\text{SL}(2, \mathbb{R})$ while remaining discrete
Case $n = 2$

Γ discrete subgroup of $\text{SL}(2, \mathbb{R}) \rightsquigarrow \mathbb{H}^2/\Gamma$ hyperbolic surface (orbifold)

Uniformization Theorem (Poincaré, Koebe)

Any compact Riemann surface of genus $g \geq 2$ is conformally equivalent to \mathbb{H}^2/Γ where Γ discrete subgroup of $\text{SL}(2, \mathbb{R})$.

E.g. Γ generated by a_1, b_1, a_2, b_2

$\rightsquigarrow \mathbb{H}^2/\Gamma$

Such a group Γ can be deformed inside $\text{SL}(2, \mathbb{R})$ while remaining discrete

\rightsquigarrow deformation space $\simeq \mathbb{R}^{6g-6}$ ("Teichmüller space")
Case $n = 2$

Γ discrete subgroup of $\text{SL}(2, \mathbb{R}) \cong \mathbb{H}^2 / \Gamma$ hyperbolic surface (orbifold)
Case $n = 2$

Γ discrete subgroup of $SL(2, \mathbb{R}) \sim \mathbb{H}^2 / \Gamma$ hyperbolic surface (orbifold)
Case $n = 2$

Γ discrete subgroup of $\text{SL}(2, \mathbb{R}) \sim \mathbb{H}^2/\Gamma$ hyperbolic surface (orbifold)

Geometric classification
(“Fenchel–Nielsen coordinates”)

cusp

funnel
Case $n \geq 3$

Rigidity vs. deformability

Lattices of $G = \text{SL}(n, \mathbb{R})$

i.e. discrete subgroups Γ with $\text{Haar}(G/\Gamma) < +\infty$

exist (Borel, Harish-Chandra)

▶ locally rigid (Selberg, Weil, Garland–Raghunathan):

all small deformations are trivial (conjugations)

▶ superrigid (Margulis):

can be realized in essentially only one way

"Smaller" discrete subgroups of G

▶ e.g. isomorphic to nonabelian free group or $\pi_1($surface$)$

▶ may admit nontrivial deformations, under which they may remain discrete

⇝ study such deformable discrete subgroups
Case \(n \geq 3 \)

Rigidity \quad vs. \quad deformability
Case $n \geq 3$

Rigidity vs. deformability

Lattices of $G = \text{SL}(n, \mathbb{R})$

i.e. discrete subgroups Γ with $\text{Haar}(G/\Gamma) < +\infty$
Case $n \geq 3$

Rigidity vs. deformability

Lattices of $G = \text{SL}(n, \mathbb{R})$
i.e. discrete subgroups Γ with $\text{Haar}(G/\Gamma) < +\infty$

- exist (Borel, Harish-Chandra)
Case $n \geq 3$

Rigidity vs. deformability

Lattices of $G = \text{SL}(n, \mathbb{R})$
i.e. discrete subgroups Γ with $\text{Haar}(G/\Gamma) < +\infty$

- exist (Borel, Harish-Chandra)
- locally rigid (Selberg, Weil, Garland-Raghunathan):
 all small deformations are trivial (conjugations)
Case $n \geq 3$

Rigidity vs. deformability

Lattices of $G = \text{SL}(n, \mathbb{R})$
i.e. discrete subgroups Γ with $\text{Haar}(G/\Gamma) < +\infty$

- exist (Borel, Harish-Chandra)
- locally rigid (Selberg, Weil, Garland-Raghunathan): all small deformations are trivial (conjugations)
- superrigid (Margulis): can be realized in essentially only one way
Case $n \geq 3$

Rigidity vs. deformability

Lattices of $G = \text{SL}(n, \mathbb{R})$

i.e. discrete subgroups Γ with $\text{Haar}(G/\Gamma) < +\infty$

- exist (Borel, Harish-Chandra)
- locally rigid (Selberg, Weil, Garland-Raghunathan):
 all small deformations are trivial (conjugations)
- superrigid (Margulis):
 can be realized in essentially only one way

“Smaller” discrete subgroups of G may admit nontrivial deformations, under which they may remain discrete.
Case $n \geq 3$

Rigidity vs. deformability

Lattices of $G = \text{SL}(n, \mathbb{R})$

i.e. discrete subgroups Γ with $\text{Haar}(G/\Gamma) < +\infty$

- exist (Borel, Harish-Chandra)
- locally rigid (Selberg, Weil, Garland–Raghunathan):
 all small deformations are trivial (conjugations)
- superrigid (Margulis):
 can be realized in essentially only one way

“Smaller” discrete subgroups of G

- e.g. isomorphic to nonabelian free group or π_1(surface)
Case \(n \geq 3 \)

Rigidity vs. **deformability**

Lattices of \(G = \text{SL}(n, \mathbb{R}) \)
i.e. discrete subgroups \(\Gamma \) with \(\text{Haar}(G/\Gamma) < +\infty \)

- exist (Borel, Harish-Chandra)
- **locally rigid** (Selberg, Weil, Garland-Raghunathan): all small deformations are trivial (conjugations)
- **superrigid** (Margulis): can be realized in essentially only one way

“Smaller” discrete subgroups of \(G \)
- e.g. isomorphic to nonabelian free group or \(\pi_1(\text{surface}) \)
- may admit **nontrivial deformations**
Case \(n \geq 3 \)

Rigidity vs. deformability

Lattices of \(G = \text{SL}(n, \mathbb{R}) \)
i.e. discrete subgroups \(\Gamma \) with \(\text{Haar}(G/\Gamma) < +\infty \)
- exist (Borel, Harish-Chandra)
- locally rigid (Selberg, Weil, Garland-Raghunathan): all small deformations are trivial (conjugations)
- superrigid (Margulis): can be realized in essentially only one way

“Smaller” discrete subgroups of \(G \)
- e.g. isomorphic to nonabelian free group or \(\pi_1 \) (surface)
- may admit nontrivial deformations, under which they may remain discrete
Case $n \geq 3$

Rigidity vs. deformability

Lattices of $G = \text{SL}(n, \mathbb{R})$

i.e. discrete subgroups Γ with $\text{Haar}(G/\Gamma) < +\infty$

- exist (Borel, Harish-Chandra)
- locally rigid (Selberg, Weil, Garland-Raghunathan): all small deformations are trivial (conjugations)
- superrigid (Margulis): can be realized in essentially only one way

“Smaller” discrete subgroups of G

- e.g. isomorphic to nonabelian free group or π_1(surface)
- may admit nontrivial deformations, under which they may remain discrete

~ study such deformable discrete subgroups
E.g. free group playing ping pong on $\mathbb{P}(\mathbb{R}^3)$ (Tits, ...)

$\begin{pmatrix} t \\ t^{-1} \end{pmatrix} \in \text{SL}(3, \mathbb{R})$, $t \gg 1$

Observation:
Any reduced word in a, a^{-1}, b, b^{-1} sends the white region into the union of the four colored disks.

Consequence:
$\Gamma = \langle a, b \rangle$ nonabelian free group, discrete in $\text{SL}(3, \mathbb{R})$.

NB: Γ admits nontrivial deformations, under which it remains discrete.
E.g. free group playing ping pong on $\mathbb{P}(\mathbb{R}^3)$ (Tits, ...)

$$a = \begin{pmatrix} t \\ 1 \\ t^{-1} \end{pmatrix} \in \text{SL}(3, \mathbb{R})$$
E.g. free group playing ping pong on $\mathbb{P}(\mathbb{R}^3)$ (Tits, ...)

\[a = \begin{pmatrix} t & \ 1 & \ t^{-1} \end{pmatrix} \in \text{SL}(3, \mathbb{R}), \ t \gg 1 \]
E.g. free group playing ping pong on $\mathbb{P}(\mathbb{R}^3)$ (Tits, ...)

$$a = \begin{pmatrix} t & & \\ 1 & & \\ & t^{-1} & \end{pmatrix} \in \text{SL}(3, \mathbb{R}), \ t \gg 1$$

Observation: Any reduced word in a, a^{-1}, b, b^{-1} sends the white region into the union of the four colored disks.

Consequence: $\Gamma = \langle a, b \rangle$ nonabelian free group, discrete in $\text{SL}(3, \mathbb{R})$.

NB: Γ admits nontrivial deformations, under which it remains discrete.
E.g. free group playing ping pong on $\mathbb{P}(\mathbb{R}^3)$ (Tits, ...)

$$a = \begin{pmatrix} t & 1 \\ t^{-1} & 1 \end{pmatrix} \in SL(3, \mathbb{R}), \ t \gg 1$$
E.g. free group playing ping pong on $\mathbb{P}(\mathbb{R}^3)$ (Tits, ...)

\[a = \begin{pmatrix} t & 1 \\ & t^{-1} \end{pmatrix} \in \text{SL}(3, \mathbb{R}), \; t \gg 1 \]
E.g. free group playing ping pong on $\mathbb{P}(\mathbb{R}^3)$ (Tits, ...)

$$a = \begin{pmatrix} t & 1 \\ t^{-1} & 1 \end{pmatrix} \in \text{SL}(3, \mathbb{R}), \ t \gg 1$$

b conjugate of a in $\text{SL}(3, \mathbb{R})$

“transverse”

$\mathbb{P}(\mathbb{R}^3)$

$\mathcal{G} = \langle a, b \rangle$ nonabelian free group, discrete in $\text{SL}(3, \mathbb{R})$

\mathcal{G} admits nontrivial deformations, under which it remains discrete
E.g. free group playing ping pong on $\mathbb{P}(\mathbb{R}^3)$ (Tits, ...)

$$a = \begin{pmatrix} t & 1 \\ t^{-1} & 1 \end{pmatrix} \in \text{SL}(3, \mathbb{R}), \ t \gg 1$$

b conjugate of a in $\text{SL}(3, \mathbb{R})$

"transverse"

$\Gamma = \langle a, b \rangle$ nonabelian free group, discrete in $\text{SL}(3, \mathbb{R})$
E.g. free group playing ping pong on $\mathbb{P}(\mathbb{R}^3)$ (Tits, ...)

\[
a = \begin{pmatrix} t & 1 \\ t^{-1} & 1 \end{pmatrix} \in \text{SL}(3, \mathbb{R}), \ t \gg 1
\]

b conjugate of a in $\text{SL}(3, \mathbb{R})$

"transverse"

\[
x_a^0, x_a^+, x_b^-, x_b^+
\]

NB: Γ admits nontrivial deformations, under which it remains discrete.
E.g. free group playing ping pong on $\mathbb{P}(\mathbb{R}^3)$ (Tits, ...)

$$a = \begin{pmatrix} t & 1 \\ t^{-1} & 1 \end{pmatrix} \in \text{SL}(3, \mathbb{R}), \ t \gg 1$$

b conjugate of a in $\text{SL}(3, \mathbb{R})$

"transverse"

Observation: Any reduced word in a, a^{-1}, b, b^{-1} sends the white region into the union of the four colored disks.

Consequence: $\Gamma = \langle a, b \rangle$ nonabelian free group, discrete in $\text{SL}(3, \mathbb{R})$

$\text{NB:} \Gamma$ admits nontrivial deformations, under which it remains discrete
E.g. free group playing ping pong on $\mathbb{P}(\mathbb{R}^3)$ (Tits, ...)

$$a = \begin{pmatrix} t & 1 \\ t^{-1} & 1 \end{pmatrix} \in \text{SL}(3, \mathbb{R}), \ t \gg 1$$

b conjugate of a in $\text{SL}(3, \mathbb{R})$

"transverse"

Observation: Any reduced word in a, a^{-1}, b, b^{-1} sends the white region into the union of the four colored disks.
E.g. free group playing ping pong on $\mathbb{P}(\mathbb{R}^3)$ (Tits, ...)

$$a = \begin{pmatrix} t & 1 \\ t^{-1} & 1 \end{pmatrix} \in \text{SL}(3, \mathbb{R}), \ t \gg 1$$

b conjugate of a in $\text{SL}(3, \mathbb{R})$

"transverse"

Observation: Any reduced word in a, a^{-1}, b, b^{-1} sends the white region into the union of the four colored disks.

Consequence: $\Gamma = \langle a, b \rangle$ nonabelian free group,

$$\Gamma \text{ discrete in } \text{SL}(3, \mathbb{R})$$
E.g. free group playing ping pong on $\mathbb{P}(\mathbb{R}^3)$ (Tits, ...)

$$a = \begin{pmatrix} t & 1 \\ t^{-1} & & \end{pmatrix} \in \text{SL}(3, \mathbb{R}), \ t \gg 1$$

b conjugate of a in $\text{SL}(3, \mathbb{R})$

"transverse"

Observation: Any reduced word in a, a^{-1}, b, b^{-1} sends the white region into the union of the four colored disks.

Consequence:

$\Gamma = \langle a, b \rangle$ nonabelian free group, discrete in $\text{SL}(3, \mathbb{R})$

NB: Γ admits nontrivial deformations, under which it remains discrete
Section 2

From groups to representations
Deformations of discrete subgroups of $G = \text{SL}(n, \mathbb{R})$
Deformations of discrete subgroups of $G = \text{SL}(n, \mathbb{R})$

For an abstract finitely generated group Γ, find and study

\[\rho : \Gamma \to G \]

injective and discrete representations
Deformations of discrete subgroups of $G = \text{SL}(n, \mathbb{R})$

For an abstract finitely generated group Γ, find and study

- open sets of injective and discrete representations inside $\text{Hom}(\Gamma, G)$
Deformations of discrete subgroups of $G = \text{SL}(n, \mathbb{R})$

For an abstract finitely generated group Γ, find and study

open sets of injective and discrete representations inside $\text{Hom}(\Gamma, G)$

(often modulo conjugation by G).
Deformations of discrete subgroups of $G = \text{SL}(n, \mathbb{R})$

For an abstract finitely generated group Γ, find and study

$$\text{open sets of injective and discrete representations inside } \text{Hom}(\Gamma, G)$$

(often modulo conjugation by G).

Fundamental example:
$\Gamma = \pi_1(S)$ where S closed surface of genus ≥ 2

The Teichmüller space of S is

\[
\{\text{injective and discrete representations } \Gamma \to \text{SL}(2, \mathbb{R})\}/\text{SL}^\pm(2, \mathbb{R}).
\]
Examples of open sets of injective and discrete representations

\[\rho_0 : \Gamma = \pi_1(S) \to \text{inj} \to \text{disc}, \]

\[\text{SL}(2, \mathbb{R}) \to \text{G} = \text{SL}(n, \mathbb{R}) , \]

then deform in \(\text{G} \).

Standard embedding

Irreducible embedding

Theorem (Choi–Goldman 1993, Labourie 2006)

The whole connected component of \(\rho_0 \) in \(\text{Hom}(\Gamma, \text{G}) \) consists of injective and discrete rep's.

\[\text{Hitchin'92} \]

\[\Rightarrow \text{modulo conjugation}, \approx \mathbb{R} (n^2 - 1)(2g - 2) \]
Examples of open sets of injective and discrete representations

\[\rho_0 : \Gamma = \pi_1(S) \xrightarrow{\text{inj.}} \text{SL}(2, \mathbb{R}) \xrightarrow{\text{embedding}} G = \text{SL}(n, \mathbb{R}), \text{ then deform in } G \]
Examples of open sets of injective and discrete representations

\[\rho_0 : \Gamma = \pi_1(S) \overset{\text{inj.}}{\rightarrow} \overset{\text{disc.}}{\text{SL}(2, \mathbb{R})} \overset{\text{embedding}}{\rightarrow} G = \text{SL}(n, \mathbb{R}) \], then deform in \(G \)

Standard embedding

\[
\begin{pmatrix}
\text{SL}(2, \mathbb{R}) & 0 \\
0 & \text{Id}_{n-2}
\end{pmatrix}
\]
Examples of open sets of injective and discrete representations

\[\rho_0 : \Gamma = \pi_1(S) \overset{\text{inj.}}{\longrightarrow} \text{SL}(2, \mathbb{R}) \overset{\text{embedding}}{\longrightarrow} G = \text{SL}(n, \mathbb{R}) , \text{ then deform in } G \]

Standard embedding

\[
\begin{pmatrix}
\text{SL}(2, \mathbb{R}) & 0 \\
0 & \text{Id}_{n-2}
\end{pmatrix}
\]

Observation

\[\exists \text{ neighborhood of } \rho_0 \text{ in } \text{Hom}(\Gamma, G) \text{ consisting entirely of injective and discrete rep's.} \]
Examples of open sets of injective and discrete representations

\[\rho_0 : \Gamma = \pi_1(S) \xrightarrow{\text{inj.}} \text{SL}(2, \mathbb{R}) \xrightarrow{\text{embedding}} G = \text{SL}(n, \mathbb{R}), \text{ then deform in } G \]

Standard embedding

\[
\begin{pmatrix}
\text{SL}(2, \mathbb{R}) & 0 \\
0 & \text{Id}_{n-2}
\end{pmatrix}
\]

Irreducible embedding

\[
\begin{pmatrix}
\text{SL}(2, \mathbb{R}) & 0 \\
0 & \text{Id}_{n-2}
\end{pmatrix}
\]

Observation

\[\exists \text{ neighborhood of } \rho_0 \text{ in } \text{Hom}(\Gamma, G) \text{ consisting entirely of injective and discrete rep's.} \]
Examples of open sets of injective and discrete representations

\[\rho_0 : \Gamma = \pi_1(S) \xrightarrow{\text{inj.}} \text{SL}(2, \mathbb{R}) \xrightarrow{\text{embedding}} G = \text{SL}(n, \mathbb{R}), \text{ then deform in } G \]

\[\begin{pmatrix} \text{SL}(2, \mathbb{R}) & 0 \\ 0 & \text{Id}_{n-2} \end{pmatrix} \]

Standard embedding

Irreducible embedding

Theorem (Choi–Goldman 1993, Labourie 2006)

The whole connected component of \(\rho_0 \) in \(\text{Hom}(\Gamma, G) \) consists of injective and discrete rep’s.

Observation

\(\exists \) neighborhood of \(\rho_0 \) in \(\text{Hom}(\Gamma, G) \) consisting entirely of injective and discrete rep’s.
Examples of open sets of injective and discrete representations

\[\rho_0 : \Gamma = \pi_1(S) \xrightarrow{\text{inj.}} \text{SL}(2, \mathbb{R}) \xrightarrow{\text{embedding}} G = \text{SL}(n, \mathbb{R}), \text{ then deform in } G \]

Standard embedding

\[
\begin{pmatrix}
\text{SL}(2, \mathbb{R}) & 0 \\
0 & \text{Id}_{n-2}
\end{pmatrix}
\]

Irreducible embedding

Theorem (Choi–Goldman 1993, Labourie 2006)

The whole connected component of \(\rho_0 \) in \(\text{Hom}(\Gamma, G) \) consists of injective and discrete rep’s ("Hitchin representations").

Observation

\[\exists \text{ neighborhood of } \rho_0 \text{ in } \text{Hom}(\Gamma, G) \text{ consisting entirely of injective and discrete rep’s.} \]
Examples of open sets of injective and discrete representations

\[\rho_0 : \Gamma = \pi_1(S) \xrightarrow{\text{inj.}} \text{SL}(2, \mathbb{R}) \xrightarrow{\text{embedding}} G = \text{SL}(n, \mathbb{R}) \], then deform in \(G \)

Standard embedding

\[
\begin{pmatrix}
\text{SL}(2, \mathbb{R}) & 0 \\
0 & \text{Id}_{n-2}
\end{pmatrix}
\]

Irreducible embedding

Theorem (Choi–Goldman 1993, Labourie 2006)

The whole connected component of \(\rho_0 \) in \(\text{Hom}(\Gamma, G) \) consists of injective and discrete rep's ("Hitchin representations").

\[\sim \text{modulo conjugation, } \sim \mathbb{R}^{(n^2-1)(2g-2)} \] (Hitchin’92)

Observation

\(\exists \text{ neighborhood of } \rho_0 \text{ in } \text{Hom}(\Gamma, G) \text{ consisting entirely of injective and discrete rep's.} \)
Examples of open sets of injective and discrete representations

\[\rho_0 : \Gamma = \pi_1(S) \overset{\text{inj.}}{\to} \text{SL}(2, \mathbb{R}) \overset{\text{embedding}}{\to} G = \text{SL}(n, \mathbb{R}), \text{ then deform in } G \]

Standard embedding

\[
\begin{pmatrix}
\text{SL}(2, \mathbb{R}) & 0 \\
0 & \text{Id}_{n-2}
\end{pmatrix}
\]

Irreducible embedding

Theorem (Choi–Goldman 1993, Labourie 2006)

The whole connected component of \(\rho_0 \) in \(\text{Hom}(\Gamma, G) \) consists of injective and discrete rep's ("Hitchin representations").

\[\sim \) modulo conjugation, \(\sim \mathbb{R}^{(n^2-1)(2g-2)} \) (Hitchin’92)

Observation

\(\exists \) neighborhood of \(\rho_0 \) in \(\text{Hom}(\Gamma, G) \) consisting entirely of injective and discrete rep's.

"Higher Teichmüller space"

Theorem (Choi–Goldman 1993, Labourie 2006)

Any Hitchin representation \(\rho : \Gamma = \pi_1(S) \to \text{SL}(n, \mathbb{R}) \) is injective and discrete.

= continuous deformation of \(\rho_0 : \Gamma \xrightarrow{\text{inj.}} \text{SL}(2, \mathbb{R}) \xrightarrow{\text{irreducible}} \text{SL}(n, \mathbb{R}) \)
Theorem (Choi–Goldman 1993 for $n = 3$)

Any Hitchin representation $\rho : \Gamma = \pi_1(S) \to \text{SL}(n, \mathbb{R})$ is injective and discrete.

= continuous deformation of $\rho_0 : \Gamma \xrightarrow{\text{inj./disc.}} \text{SL}(2, \mathbb{R}) \xrightarrow{\text{irreducible}} \text{SL}(n, \mathbb{R})$

Proof for $n = 3$: geometry
Theorem (Choi–Goldman 1993 for $n = 3$)

Any Hitchin representation $\rho : \Gamma = \pi_1(S) \to \text{SL}(n, \mathbb{R})$ is injective and discrete.

\Rightarrow continuous deformation of $\rho_0 : \Gamma \xrightarrow{\text{inj.}} \text{SL}(2, \mathbb{R}) \xrightarrow{\text{irreducible}} \text{SL}(n, \mathbb{R})$

Proof for $n = 3$: geometry

$\rho_0(\Gamma) \subset \text{SO}(2, 1)$
Theorem (Choi-Goldman 1993 for $n = 3$)

Any Hitchin representation $\rho : \Gamma = \pi_1(S) \to \text{SL}(n, \mathbb{R})$ is injective and discrete.

= continuous deformation of $\rho_0 : \Gamma \xrightarrow{\text{inj.}} \text{SL}(2, \mathbb{R}) \xrightarrow{\text{irreducible}} \text{SL}(n, \mathbb{R})$

Proof for $n = 3$: geometry

$\rho_0(\Gamma) \subset \text{SO}(2, 1) \Rightarrow$ preserves

$\{[x] \in \mathbb{P}(<0) | x_1^2 + x_2^2 - x_3^2 < 0\}$
Theorem (Choi–Goldman 1993 for $n = 3$)

Any Hitchin representation $\rho : \Gamma = \pi_1(S) \to \text{SL}(n, \mathbb{R})$ is injective and discrete.

\[\begin{align*}
\text{continuous deformation of } \rho_0 : \Gamma \xrightarrow{\text{inj.}} \text{SL}(2, \mathbb{R}) \xleftarrow{\text{irreducible}} \text{SL}(n, \mathbb{R})
\end{align*} \]

Proof for $n = 3$: geometry

\[\rho_0(\Gamma) \subset \text{SO}(2, 1) \Rightarrow \text{preserves } \{ [x] \in \mathbb{P}(\mathbb{R}^3) | x_1^2 + x_2^2 - x_3^2 < 0 \} \]

\[\rho \text{ preserves a properly convex open set in } \mathbb{P}(\mathbb{R}^3) \]
Theorem (Choi-Goldman 1993 for $n = 3$)

Any Hitchin representation $\rho : \Gamma = \pi_1(S) \to \text{SL}(n, \mathbb{R})$ is injective and discrete.

= continuous deformation of $\rho_0 : \Gamma \xrightarrow{\text{inj.}} \text{SL}(2, \mathbb{R}) \xrightarrow{\text{irreducible}} \text{SL}(n, \mathbb{R})$

Proof for $n = 3$: geometry

$\rho_0(\Gamma) \subset \text{SO}(2, 1) \Rightarrow$ preserves $\{[x] \in \mathbb{P}(\mathbb{R}^3) | x_1^2 + x_2^2 - x_3^2 < 0\}$

ρ preserves a properly convex open set in $\mathbb{P}(\mathbb{R}^3)$ (convex and bounded in some affine chart)
Theorem (Labourie 2006 for general $n \geq 3$)

Any Hitchin representation $\rho : \Gamma = \pi_1(S) \to \text{SL}(n, \mathbb{R})$ is injective and discrete.

= continuous deformation of $\rho_0 : \Gamma \xrightarrow{\text{inj.}} \text{SL}(2, \mathbb{R}) \xrightarrow{\text{irreducible}} \text{SL}(n, \mathbb{R})$

\[\text{Proof for } n \geq 3: \text{ dynamics}\]
Theorem (Labourie 2006 for general \(n \geq 3 \))

Any Hitchin representation \(\rho : \Gamma = \pi_1(S) \to \text{SL}(n, \mathbb{R}) \) is injective and discrete.

= continuous deformation of \(\rho_0 : \Gamma \xrightarrow{\text{inj.}} \text{SL}(2, \mathbb{R}) \xrightarrow{\text{irreducible}} \text{SL}(n, \mathbb{R}) \)

Proof for \(n \geq 3 \): dynamics

- Key notion: boundary of \(\Gamma \)
 \(\partial_\infty \Gamma = \) visual boundary of a metric space \((X, d)\) on which \(\Gamma \) acts geometrically
Theorem (Labourie 2006 for general $n \geq 3$)

Any Hitchin representation $\rho : \Gamma = \pi_1(S) \to \text{SL}(n, \mathbb{R})$ is injective and discrete.

= continuous deformation of $\rho_0 : \Gamma \xrightarrow{\text{inj.}} \text{SL}(2, \mathbb{R}) \xrightarrow{\text{irreducible}} \text{SL}(n, \mathbb{R})$

Proof for $n \geq 3$: dynamics

- Key notion: boundary of $\Gamma = \pi_1(S)$
 $\partial_\infty \Gamma = \text{visual boundary of a metric space } (X, d)$ on which Γ acts geometrically
Theorem (Labourie 2006 for general $n \geq 3$)

Any Hitchin representation $\rho : \Gamma = \pi_1(S) \to \SL(n, \mathbb{R})$ is injective and discrete.

= continuous deformation of $\rho_0 : \Gamma \xrightarrow{\text{inj.}} \SL(2, \mathbb{R}) \xrightarrow{\text{irreducible}} \SL(n, \mathbb{R})$

Proof for $n \geq 3$: dynamics

- Key notion: boundary of $\Gamma = \pi_1(S) \sim \partial_\infty \Gamma = \partial \tilde{S}$ (circle)
 \[\partial_\infty \Gamma = \text{visual boundary of a metric space } (X, d) \text{ on which } \Gamma \text{ acts geometrically} \]

surface S

universal cover $\tilde{S} \simeq \mathbb{H}^2$
Theorem (Labourie 2006 for general $n \geq 3$)

Any Hitchin representation $\rho : \Gamma = \pi_1(S) \rightarrow \text{SL}(n, \mathbb{R})$ is injective and discrete.

= continuous deformation of $\rho_0 : \Gamma \xrightarrow{\text{inj.}} \text{SL}(2, \mathbb{R}) \xrightarrow{\text{irreducible}} \text{SL}(n, \mathbb{R})$

Proof for $n \geq 3$: dynamics

- Key notion: boundary of $\Gamma = \pi_1(S) \sim \partial_\infty \Gamma = \partial \tilde{S}$ (circle)
 $\partial_\infty \Gamma =$ visual boundary of a metric space (X, d) on which Γ acts geometrically
Theorem (Labourie 2006 for general $n \geq 3$)

Any Hitchin representation $\rho : \Gamma = \pi_1(S) \to \text{SL}(n, \mathbb{R})$ is injective and discrete.

= continuous deformation of $\rho_0 : \Gamma \xrightarrow{\text{inj.}} \text{SL}(2, \mathbb{R}) \xrightarrow{\text{irreducible}} \text{SL}(n, \mathbb{R})$.

Proof for $n \geq 3$: dynamics

- Key notion: boundary of $\Gamma = \pi_1(S) \sim \partial_\infty \Gamma = \partial S$ (circle)
 \(\partial_\infty \Gamma = \) visual boundary of a metric space X, d on which Γ acts geometrically

- Proof: For $\rho : \Gamma \to \text{SL}(n, \mathbb{R})$ Hitchin, show there exists a “boundary map”

\[
\xi : \partial_\infty \Gamma \to \text{Flag}(\mathbb{R}^n)
\]

\[
z \mapsto (\xi_1(z) \subset \xi_2(z) \subset \cdots \subset \xi_{n-1}(z))
\]

continuous, injective, compatible with actions $\Gamma \circ \partial_\infty \Gamma$ and $\Gamma \circ \text{Flag}(\mathbb{R}^n)$.
Boundary maps $\xi = (\xi_1, \ldots, \xi_{n-1}) : \partial_\infty \Gamma \to \text{Flag}(\mathbb{R}^n)$ for Hitchin rep’s

$n = 3$

$\xi_1(z)$

$\xi_2(z)$

$\text{Im}(\xi_1) = \text{boundary of convex set}$

$\xi_2(z) = \text{proj. line tangent to convex set at } \xi_1(z)$
Boundary maps $\xi = (\xi_1, \ldots, \xi_{n-1}) : \partial_\infty \Gamma \to \text{Flag}(\mathbb{R}^n)$ for Hitchin rep's

For $n = 3$:
- $\xi_1(z)$
- $\xi_2(z)$

$\text{Im}(\xi_1) =$ boundary of convex set
$\xi_2(z) =$ proj. line tangent to convex set at $\xi_1(z)$

For $n = 4$:
- $\xi_1(z)$
- $\xi_2(z)$
- $\xi_3(z)$

$\text{Im}(\xi_1) =$ C^1 curve, nontrivial homotopy (for ρ_0: "twisted cubic", equation (t, t^2, t^3))
$\xi_2(z) =$ osculating line at $\xi_1(z)$
$\xi_3(z) =$ osculating plane at $\xi_1(z)$
Section 3

Anosov representations
Section 3

Anosov representations

- injective and discrete representations, forming open sets
Section 3

Anosov representations

- injective and discrete representations, forming open sets
- images of Anosov rep’s (“Anosov subgroups”) are some of the few reasonably understood discrete subgroups of $\text{SL}(n, \mathbb{R})$ beyond lattices
Finitely generated group $\Gamma = \pi_1(S)$ or free group or...

(Gromov hyperbolic group)

Boundary $\partial_\infty \Gamma =$ circle or Cantor set or...

Choose $1 \leq i \leq n/2$.

Definition (Labourie 2006, Guichard–Wienhard 2012)

A representation $\rho : \Gamma \to \text{SL}(n, \mathbb{R})$ is $\mathbb{P}i$-Anosov if

$\exists \xi = (\xi_i, \xi_{n-i}) : \partial_\infty \Gamma \to \text{Flag}_i, n-i(\mathbb{R}^n) = \{ (V_i \subset V_{n-i}) | \text{dim} V = \}$

Γ-equivariant, continuous, injective, satisfying:

1. transversality ($\forall z \neq z' \in \partial_\infty \Gamma$,

$\xi_i(z) \oplus \xi_{n-i}(z') = \mathbb{R}^n$)

2. uniform contraction/expansion condition for some flow

"the intrinsic dynamics of Γ on $\partial_\infty \Gamma$ are reflected in $\text{Flag}_i, n-i(\mathbb{R}^n)$ via $\xi"$

Important properties (Labourie):

\triangleright Anosov representations are injective and discrete

\triangleright the set of Anosov representations is open in $\text{Hom}(\Gamma, \text{SL}(n, \mathbb{R}))$
Finitely generated group $\Gamma = \pi_1(S)$ or free group or... (Gromov hyperbolic group)

Boundary $\partial_\infty \Gamma = \text{circle or Cantor set or...}$
Finitely generated group $\Gamma = \pi_1(S)$ or free group or... (Gromov hyperbolic group)
Boundary $\partial_\infty \Gamma = \text{circle or Cantor set or...}$

Choose $1 \leq i \leq n/2$.
Finitely generated group $\Gamma = \pi_1(S)$ or free group or... (Gromov hyperbolic group)
Boundary $\partial_\infty \Gamma =$ circle or Cantor set or...
Choose $1 \leq i \leq n/2$.

Definition (Labourie 2006, Guichard–Wienhard 2012)
Finitely generated group $\Gamma = \pi_1(S)$ or free group or... (Gromov hyperbolic group)
Boundary $\partial_\infty \Gamma =$ circle or Cantor set or...

Choose $1 \leq i \leq n/2$.

Definition (Labourie 2006, Guichard–Wienhard 2012)

A representation $\rho : \Gamma \longrightarrow \text{SL}(n, \mathbb{R})$ is P_i-Anosov if

\[
\exists \xi = (\xi_i, \xi_{n-i}) : \partial_\infty \Gamma \longrightarrow \text{Flag}_{i, n-i}(\mathbb{R}^n) = \{(V_i \subset V_{n-i}) \mid \text{dim } V_{\bullet} = \bullet\}
\]

Γ-equivariant, continuous, injective, satisfying:

1. **transversality** ($\forall z \neq z' \text{ in } \partial_\infty \Gamma, \xi_i(z) \oplus \xi_{n-i}(z') = \mathbb{R}^n$)
2. **uniform contraction/expansion condition** for some flow
Finitely generated group $\Gamma = \pi_1(S)$ or free group or... (Gromov hyperbolic group)
Boundary $\partial_\infty \Gamma =$ circle or Cantor set or...

Choose $1 \leq i \leq n/2$.

Definition (Labourie 2006, Guichard-Wienhard 2012)

A representation $\rho : \Gamma \to \text{SL}(n, \mathbb{R})$ is P_i-Anosov if

$$\exists \xi = (\xi_i, \xi_{n-i}) : \partial_\infty \Gamma \to \text{Flag}_{i,n-i}(\mathbb{R}^n) = \{ (V_i \subset V_{n-i}) \mid \dim V_i = \bullet \}$$

Γ-equivariant, continuous, injective, satisfying:

1. transversality $(\forall z \neq z' \text{ in } \partial_\infty \Gamma, \xi_i(z) \oplus \xi_{n-i}(z') = \mathbb{R}^n)$
2. uniform contraction/expansion condition for some flow

Theorem (Kapovich-Leeb-Porti, Guéritaud-Guichard-K.-Wienhard, 2014–15)

Can replace 2 by

$$2', \quad \frac{i\text{-th singular value}}{(i+1)\text{-th singular value}}(\rho(\gamma)) \to \infty \quad \text{or} \quad 2'' \quad \frac{i\text{-th } |\text{eigenvalue}|}{(i+1)\text{-th } |\text{eigenvalue}|}(\rho(\gamma)) \to \infty$$
Finitely generated group $\Gamma = \pi_1(S)$ or free group or... (Gromov hyperbolic group)
Boundary $\partial_\infty \Gamma =$ circle or Cantor set or...

Choose $1 \leq i \leq n/2$.

Definition (Labourie 2006, Guichard-Wienhard 2012)

A representation $\rho : \Gamma \longrightarrow \text{SL}(n, \mathbb{R})$ is P_i-Anosov if

$$\exists \xi = (\xi_i, \xi_{n-i}) : \partial_\infty \Gamma \longrightarrow \text{Flag}_{i,n-i}(\mathbb{R}^n) = \{(V_i \subset V_{n-i}) \mid \dim V_\bullet = \bullet\}$$

Γ-equivariant, continuous, injective, satisfying:

1. **transversality** ($\forall z \neq z' \in \partial_\infty \Gamma$, $\xi_i(z) \oplus \xi_{n-i}(z') = \mathbb{R}^n$)
2. uniform contraction/expansion condition for some flow

Theorem (Kapovich-Leeb-Porti, Guéritaud-Guichard-K.-Wienhard, 2014–15)

Can replace 2 by

$$2', \quad \text{i-th singular value} \quad \frac{\rho(\gamma)}{(i+1)\text{-th singular value}} \xrightarrow{\gamma \to \infty} \infty \quad \text{or} \quad 2'' \quad \text{i-th \mid eigenvalue\mid} \quad \frac{\rho(\gamma)}{(i+1)\text{-th \mid eigenvalue\mid}} \xrightarrow{[\gamma] \to \infty} \infty$$
Finitely generated group $\Gamma = \pi_1(S)$ or free group or... (Gromov hyperbolic group)
Boundary $\partial_\infty \Gamma =$ circle or Cantor set or...
Choose $1 \leq i \leq n/2$.

Definition (Labourie 2006, Guichard–Wienhard 2012)

A representation $\rho : \Gamma \rightarrow \text{SL}(n, \mathbb{R})$ is P_i-Anosov if

$$\exists \xi = (\xi_i, \xi_{n-i}) : \partial_\infty \Gamma \rightarrow \text{Flag}_{i,n-i} (\mathbb{R}^n) = \{ (V_i \subset V_{n-i}) | \dim V_\bullet = \bullet \}$$

Γ-equivariant, continuous, injective, satisfying:

1. transversality $(\forall z \neq z' \in \partial_\infty \Gamma, \xi_i(z) \oplus \xi_{n-i}(z') = \mathbb{R}^n)$
2. uniform contraction/expansion condition for some flow

“the intrinsic dynamics of Γ on $\partial_\infty \Gamma$ are reflected in $\text{Flag}_{i,n-i}(\mathbb{R}^n)$ via ξ”
Finitely generated group $\Gamma = \pi_1(S)$ or free group or... (Gromov hyperbolic group)
Boundary $\partial_\infty \Gamma = \text{circle or Cantor set or...}$

Choose $1 \leq i \leq n/2$.

Definition (Labourie 2006, Guichard–Wienhard 2012)

A representation $\rho : \Gamma \rightarrow \text{SL}(n, \mathbb{R})$ is P_i-Anosov if

$\exists \xi = (\xi_i, \xi_{n-i}) : \partial_\infty \Gamma \rightarrow \text{Flag}_{i,n-i}(\mathbb{R}^n) = \{(V_i \subset V_{n-i}) | \dim V_\bullet = \bullet\}$

Γ-equivariant, continuous, injective, satisfying:

1. **transversality** $(\forall z \neq z' \in \partial_\infty \Gamma, \xi_i(z) \oplus \xi_{n-i}(z') = \mathbb{R}^n)$
2. **uniform contraction/expansion condition** for some flow

“the intrinsic dynamics of Γ on $\partial_\infty \Gamma$ are reflected in $\text{Flag}_{i,n-i}(\mathbb{R}^n)$ via ξ”

Important properties (Labourie):

- Anosov representations are **injective and discrete**
- the set of Anosov representations is open in $\text{Hom}(\Gamma, \text{SL}(n, \mathbb{R}))$
Examples

\(P_i \text{-Anosov representation } \rho : \Gamma \to \text{SL}(n, \mathbb{R}) \leadsto \text{boundary map } \xi : \partial_\infty \Gamma \to \text{Flag}_{i,n-i}(\mathbb{R}^n) \)
Examples

P_i-Anosov representation $\rho : \Gamma \to \text{SL}(n, \mathbb{R}) \leadsto$ boundary map $\xi : \partial_\infty \Gamma \to \text{Flag}_{i,n-i}(\mathbb{R}^n)$

- Hitchin representations are P_i-Anosov for all i (Labourie)
Examples

\[P_i\text{-Anosov representation } \rho : \Gamma \to \text{SL}(n, \mathbb{R}) \rightsquigarrow \text{boundary map } \xi : \partial_\infty \Gamma \to \text{Flag}_{i,n-i}(\mathbb{R}^n) \]

- Hitchin representations are \(P_i\)-Anosov for all \(i \) \((\text{Labourie})\)

- Small deformations of \(\pi_1(S) \hookrightarrow \text{SL}(2, \mathbb{R}) \overset{\text{standard}}{\twoheadrightarrow} \text{SL}(n, \mathbb{R}) \) are \(P_1\)-Anosov
Examples

P_i-Anosov representation $\rho : \Gamma \to \text{SL}(n, \mathbb{R}) \rightsquigarrow \text{boundary map } \xi : \partial_\infty \Gamma \to \text{Flag}_{i,n-i}(\mathbb{R}^n)$

- Hitchin representations are P_i-Anosov for all i (Labourie)

- Small deformations of $\pi_1(S) \hookrightarrow \text{SL}(2, \mathbb{R}) \overset{\text{standard}}{\longrightarrow} \text{SL}(n, \mathbb{R})$ are P_1-Anosov

- Free groups playing ping pong on $\mathbb{P}(\mathbb{R}^n)$ are P_1-Anosov

Geometric interpretation for Anosov representations?

$\text{Im}(\xi_1) \subset \mathbb{P}(\mathbb{R}^3)$
Examples

- Hitchin representations are P_i-Anosov for all i (Labourie)
- Small deformations of
 $\pi_1(S) \hookrightarrow \text{SL}(2, \mathbb{R})$ \text{standard} $\rightarrow \text{SL}(n, \mathbb{R})$
 are P_1-Anosov
- Free groups playing ping pong on $\mathbb{P}(\mathbb{R}^n)$ are P_1-Anosov

Geometric interpretation for Anosov representations?

P_i-Anosov representation $\rho : \Gamma \rightarrow \text{SL}(n, \mathbb{R}) \rightsquigarrow$ boundary map $\xi : \partial_\infty \Gamma \rightarrow \text{Flag}_{i,n-i}(\mathbb{R}^n)$

Examples

\[P_i \text{-Anosov representation } \rho : \Gamma \to \text{SL}(n, \mathbb{R}) \leadsto \text{boundary map } \xi : \partial_\infty \Gamma \to \text{Flag}_{i,n-i}(\mathbb{R}^n) \]

- Hitchin representations are \(P_i \)-Anosov for all \(i \) \text{ (Labourie)}

- Small deformations of \(\pi_1(S) \hookrightarrow \text{SL}(2, \mathbb{R}) \xrightarrow{\text{standard}} \text{SL}(n, \mathbb{R}) \) are \(P_1 \)-Anosov

- Free groups playing ping pong on \(\mathbb{P}(\mathbb{R}^n) \) are \(P_1 \)-Anosov

Geometric interpretation for Anosov representations?

(Choi-Goldman, Frances, Barbot, Guichard-Wienhard, Kapovich-Leeb-Porti, Guéritaud-Guichard-K.-Wienhard, Collier-Tholozan-Toulisse, ...)}
Section 4

Convex cocompactness
Classical setting: $\text{SL}(2, \mathbb{R})$
Classical setting: $\text{SL}(2, \mathbb{R})$

Recall:
Γ discrete subgroup of $\text{SL}(2, \mathbb{R}) \rightsquigarrow \mathbb{H}^2/\Gamma$ hyperbolic surface (orbifold)
(finitely generated)
Classical setting: $SL(2, \mathbb{R})$

Recall:
\[\Gamma \text{ discrete subgroup of } SL(2, \mathbb{R}) \rightsquigarrow \mathbb{H}^2 / \Gamma \text{ hyperbolic surface (orbifold)} \]
(finitely generated)
Classical setting: $\text{SL}(2, \mathbb{R})$

Recall:
Γ discrete subgroup of $\text{SL}(2, \mathbb{R}) \rightarrow \mathbb{H}^2/\Gamma$ hyperbolic surface (orbifold)
(finitely generated)

Definition

Γ is **convex cocompact** if \mathbb{H}^2/Γ has no cusp

\mathbb{H}^2/Γ has no cusp

Funnel
Classical setting: \(SL(2, \mathbb{R}) \)

Recall:
\[\Gamma \text{ discrete subgroup of } SL(2, \mathbb{R}) \rightarrow \mathbb{H}^2/\Gamma \text{ hyperbolic surface (orbifold)} \]
(finitely generated)

Definition
\(\Gamma \) is **convex cocompact** if \(\mathbb{H}^2/\Gamma \) has no cusp, or equivalently if
\[\exists \mathcal{C} \subset \mathbb{H}^2 \text{ convex, } \Gamma \text{-invariant with } \mathcal{C}/\Gamma \text{ compact } \neq \emptyset \]
Classical setting: $\text{SL}(2, \mathbb{R})$

Recall:
Γ discrete subgroup of $\text{SL}(2, \mathbb{R}) \twoheadrightarrow \mathbb{H}^2/\Gamma$ hyperbolic surface (orbifold)
(finitely generated)

Definition

Γ is **convex cocompact** if \mathbb{H}^2/Γ has no cusp, or equivalently if
$\exists \ C \subset \mathbb{H}^2$ convex, Γ-invariant with C/Γ compact $\neq \emptyset$

Example:

$\Gamma = \langle \gamma_1, \gamma_2 \rangle$
Classical setting: $\text{SL}(2, \mathbb{R})$

Recall:
Γ discrete subgroup of $\text{SL}(2, \mathbb{R}) \leadsto \mathbb{H}^2/\Gamma$ hyperbolic surface (orbifold)
(finitely generated)

Definition
Γ is convex cocompact if \mathbb{H}^2/Γ has no cusp, or equivalently if $\exists C \subset \mathbb{H}^2$ convex, Γ-invariant with C/Γ compact $\neq \emptyset$

Example:
$\Gamma = \langle \gamma_1, \gamma_2 \rangle$

Fact
$\Gamma < \text{SL}(2, \mathbb{R})$ is Anosov \iff Γ is convex cocompact

Example for $\text{SL}(n, \mathbb{R}), n \geq 3$:
$\Gamma = \langle \gamma_1, \gamma_2 \rangle$
Classical setting: $\text{SL}(2, \mathbb{R})$

Recall:
Γ discrete subgroup of $\text{SL}(2, \mathbb{R}) \leadsto \mathbb{H}^2/\Gamma$ hyperbolic surface (orbifold)
(finitely generated)

Definition
Γ is **convex cocompact** if \mathbb{H}^2/Γ has no cusp, or equivalently if $\exists \mathcal{C} \subset \mathbb{H}^2$ convex, Γ-invariant with \mathcal{C}/Γ compact $\neq \emptyset$

Fact
$\Gamma < \text{SL}(2, \mathbb{R})$ is **Anosov**
$\iff \Gamma$ is convex cocompact

Example:
$\Gamma = \langle \gamma_1, \gamma_2 \rangle$

\mathbb{H}^2

\mathcal{C} convex

\mathcal{C}/Γ compact

\mathbb{H}^2/Γ
Classical setting: $\text{SL}(2, \mathbb{R})$

Recall:
\[\Gamma \text{ discrete subgroup of } \text{SL}(2, \mathbb{R}) \leadsto \mathbb{H}^2/\Gamma \text{ hyperbolic surface (orbifold)} \]
(finitely generated)

Definition
\[\Gamma \text{ is convex cocompact if } \mathbb{H}^2/\Gamma \text{ has no cusp, or equivalently if } \exists \mathcal{C} \subset \mathbb{H}^2 \text{ convex, } \Gamma\text{-invariant with } \mathcal{C}/\Gamma \text{ compact } \neq \emptyset \]

Fact
\[\Gamma < \text{SL}(2, \mathbb{R}) \text{ is Anosov } \iff \Gamma \text{ is convex cocompact} \]

Example:
\[\Gamma = \langle \gamma_1, \gamma_2 \rangle \]

What about $\text{SL}(n, \mathbb{R}), \ n \geq 3$?
First attempt: convex cocompactness for $\text{SL}(n, \mathbb{R})$
First attempt: convex cocompactness for $\text{SL}(n, \mathbb{R})$

Definition

Γ discrete $\subset \text{SL}(2, \mathbb{R})$ is **convex cocompact** if $\exists \ C \subset \mathbb{H}^2$ convex, Γ-invariant with C/Γ compact $\neq \emptyset$.
First attempt: convex cocompactness for $\text{SL}(n, \mathbb{R})$

$\mathbb{H}^2 \cong \text{SL}(2, \mathbb{R})/\text{SO}(2) \rightsquigarrow$ generalize to $X_n = \text{SL}(n, \mathbb{R})/\text{SO}(n)$ symmetric space

Definition

Γ discrete $< \text{SL}(2, \mathbb{R})$ is **convex cocompact** if $\exists C \subset \mathbb{H}^2$ convex, Γ-invariant with C/Γ compact $\neq \emptyset$
First attempt: convex cocompactness for $\text{SL}(n, \mathbb{R})$

$\mathbb{H}^2 \cong \text{SL}(2, \mathbb{R})/\text{SO}(2) \leadsto$ generalize to $X_n = \text{SL}(n, \mathbb{R})/\text{SO}(n)$ symmetric space

Definition

Γ discrete $< \text{SL}(n, \mathbb{R})$ is **convex cocompact in** X_n if $\exists \, C \subset X_n$ convex, Γ-invariant with C/Γ compact $\neq \emptyset$.
First attempt: convex cocompactness for $\text{SL}(n, \mathbb{R})$

$\mathbb{H}^2 \simeq \text{SL}(2, \mathbb{R})/\text{SO}(2) \sim \text{generalize to } X_n = \text{SL}(n, \mathbb{R})/\text{SO}(n)$ symmetric space

Definition

\[\Gamma \text{ discrete } < \text{SL}(n, \mathbb{R}) \text{ is convex cocompact in } X_n \text{ if } \exists C \subset X_n \text{ convex, } \Gamma\text{-invariant with } C/\Gamma \text{ compact } \neq \emptyset \]

- For $n \geq 3$, the vast majority of Anosov subgroups of $\text{SL}(n, \mathbb{R})$ are not convex cocompact in X_n (Kleiner-Leeb’06, Quint’05)
First attempt: convex cocompactness for $\text{SL}(n, \mathbb{R})$

$\mathbb{H}^2 \simeq \text{SL}(2, \mathbb{R})/\text{SO}(2) \rightsquigarrow$ generalize to $X_n = \text{SL}(n, \mathbb{R})/\text{SO}(n)$ symmetric space

Definition

Γ discrete $< \text{SL}(n, \mathbb{R})$ is convex cocompact in X_n if $\exists C \subset X_n$ convex, Γ-invariant with C/Γ compact $\neq \emptyset$

- For $n \geq 3$, the vast majority of Anosov subgroups of $\text{SL}(n, \mathbb{R})$ are not convex cocompact in X_n (Kleiner–Leeb’06, Quint’05)

- Yet they have a number of dynamical and topological properties that nicely generalize those of convex cocompact subgroups of $\text{SL}(2, \mathbb{R})$ (Labourie’06, Guichard-Wienhard’12, Kapovich-Leeb-Porti’14-18, ...)

Other form of convex cocompactness?
First attempt: convex cocompactness for $\text{SL}(n, \mathbb{R})$

$\mathbb{H}^2 \cong \text{SL}(2, \mathbb{R})/\text{SO}(2)$ generalize to $X_n = \text{SL}(n, \mathbb{R})/\text{SO}(n)$ symmetric space

Definition

Γ discrete $<$ $\text{SL}(n, \mathbb{R})$ is **convex cocompact in** X_n if $\exists C \subset X_n$ convex, Γ-invariant with C/Γ compact $\neq \emptyset$

- For $n \geq 3$, the vast majority of **Anosov** subgroups of $\text{SL}(n, \mathbb{R})$ are **not** convex cocompact in X_n (Kleiner–Leeb’06, Quint’05)

- Yet they have a number of **dynamical and topological properties** that nicely generalize those of convex cocompact subgroups of $\text{SL}(2, \mathbb{R})$ (Labourie’06, Guichard–Wienhard’12, Kapovich–Leeb–Porti’14-18, ...)

\leadsto other form of convex cocompactness?
Second attempt: convex cocompactness for $\text{SL}(n, \mathbb{R})$

$$\mathbb{H}^2 \cong \{ [x] \in \mathbb{P}(\mathbb{R}^3) \mid x_1^2 + x_2^2 - x_3^2 < 0 \}$$
Second attempt: convex cocompactness for $\text{SL}(n, \mathbb{R})$

$\mathbb{H}^2 \simeq \{ [x] \in \mathbb{P}(\mathbb{R}^3) \mid x_1^2 + x_2^2 - x_3^2 < 0 \} \leadsto \text{generalize to } \Omega \text{ properly convex open } \subset \mathbb{P}(\mathbb{R}^n)$
Second attempt: convex cocompactness for $\text{SL}(n, \mathbb{R})$

$\mathbb{H}^2 \simeq \{ [x] \in \mathbb{P}(\mathbb{R}^3) | x_1^2 + x_2^2 - x_3^2 < 0 \} \rightsquigarrow$ generalize to Ω properly convex open $\subset \mathbb{P}(\mathbb{R}^n)$

e.g.

$n = 3$
Second attempt: convex cocompactness for $\text{SL}(n, \mathbb{R})$

$\mathbb{H}^2 \simeq \{ [x] \in \mathbb{P}(\mathbb{R}^3) \mid x_1^2 + x_2^2 - x_3^2 < 0 \} \leadsto$ generalize to Ω properly convex open $\subset \mathbb{P}(\mathbb{R}^n)$

e.g. $n = 3$
Second attempt: convex cocompactness for $\text{SL}(n, \mathbb{R})$

$\mathbb{H}^2 \cong \{[x] \in \mathbb{P}(\mathbb{R}^3) \mid x_1^2 + x_2^2 - x_3^2 < 0\} \rightsquigarrow$ generalize to Ω properly convex open $\subset \mathbb{P}(\mathbb{R}^n)$

Definition

Γ discrete $\leq \text{SL}(n, \mathbb{R})$ is **convex cocompact** in $\mathbb{P}(\mathbb{R}^n)$ if there exist:

- Ω properly convex, Γ-invariant open $\subset \mathbb{P}(\mathbb{R}^n)$, and
- $C \subset \Omega$ convex, Γ-invariant with C/Γ compact $\neq \emptyset$
Second attempt: convex cocompactness for $\text{SL}(n, \mathbb{R})$

$\mathbb{H}^2 \cong \{ [x] \in \mathbb{P}(\mathbb{R}^3) \mid x_1^2 + x_2^2 - x_3^2 < 0 \} \leadsto$ generalize to Ω properly convex open $\subset \mathbb{P}(\mathbb{R}^n)$

Definition

Γ discrete $\subset \text{SL}(n, \mathbb{R})$ is convex cocompact in $\mathbb{P}(\mathbb{R}^n)$ if there exist:

- Ω properly convex, Γ-invariant open $\subset \mathbb{P}(\mathbb{R}^n)$, and
- $\mathcal{C} \subset \Omega$ convex, Γ-invariant with \mathcal{C}/Γ compact $\neq \emptyset$
Second attempt: convex cocompactness for $\text{SL}(n, \mathbb{R})$

$\mathbb{H}^2 \simeq \{ [x] \in \mathbb{P}(\mathbb{R}^3) \mid x_1^2 + x_2^2 - x_3^2 < 0 \} \leadsto$ generalize to Ω properly convex open $\subset \mathbb{P}(\mathbb{R}^n)$

Definition

Γ discrete $< \text{SL}(n, \mathbb{R})$ is convex cocompact in $\mathbb{P}(\mathbb{R}^n)$ if there exist:

- Ω properly convex, Γ-invariant open $\subset \mathbb{P}(\mathbb{R}^n)$, and
- $C \subset \Omega$ convex, Γ-invariant with C/Γ compact $\neq \emptyset$

(Case $\Omega = C$: “divisible convex sets”, see Benoist’00-06)
Second attempt: convex cocompactness for \(SL(n, \mathbb{R}) \)

\[
\mathbb{H}^2 \simeq \{ [x] \in \mathbb{P}(\mathbb{R}^3) \mid x_1^2 + x_2^2 - x_3^2 < 0 \} \leadsto \text{generalize to } \Omega \text{ properly convex open } \subset \mathbb{P}(\mathbb{R}^n)
\]

Definition

\(\Gamma \text{ discrete } < SL(n, \mathbb{R}) \) is **convex cocompact** in \(\mathbb{P}(\mathbb{R}^n) \) if there exist:

- \(\Omega \) properly convex, \(\Gamma \)-invariant open \(\subset \mathbb{P}(\mathbb{R}^n) \), and
- \(\mathcal{C} \subset \Omega \) convex, \(\Gamma \)-invariant with \(\mathcal{C}/\Gamma \) compact \(\neq \emptyset \)
Second attempt: convex cocompactness for $\text{SL}(n, \mathbb{R})$

$\mathbb{H}^2 \simeq \{ [x] \in \mathbb{P}(\mathbb{R}^3) | x_1^2 + x_2^2 - x_3^2 < 0 \} \leadsto$ generalize to Ω properly convex open $\subset \mathbb{P}(\mathbb{R}^n)$

Definition

Γ discrete $< \text{SL}(n, \mathbb{R})$ is strongly convex cocompact in $\mathbb{P}(\mathbb{R}^n)$ if there exist:

- Ω properly convex, Γ-invariant open $\subset \mathbb{P}(\mathbb{R}^n)$ “sufficiently regular”, and
- $C \subset \Omega$ convex, Γ-invariant with C/Γ compact $\neq \emptyset$

($\partial \Omega$ is C^1 and contains no segment)
Theorem (Danciger–Guéritaud–K. 2017)

Let Γ be a discrete subgroup of $\text{SL}(n, \mathbb{R})$ preserving a properly convex open subset Ω of $\mathbb{P}(\mathbb{R}^n)$. Then

$$\Gamma \subset \text{SL}(n, \mathbb{R}) \text{ is } P_1-\text{Anosov} \iff \Gamma \text{ is strongly convex cocompact in } \mathbb{P}(\mathbb{R}^n)$$

p-Anosov Γ do not preserve any convex set in $\mathbb{P}(\mathbb{R}^n)$.

Trick: pass to $\mathbb{P}(\mathbb{R}^n (n+1)/2) \cong \mathbb{P}(\{\text{quad. forms on } \mathbb{R}^n\})$.

Ω "sufficiently regular"

C convex compact mod Γ
Theorem (Danciger–Guéritaud–K. 2017)

Let Γ be a discrete subgroup of $\text{SL}(n, \mathbb{R})$ preserving a properly convex open subset Ω of $\mathbb{P}(\mathbb{R}^n)$. Then

$$\Gamma < \text{SL}(n, \mathbb{R}) \text{ is } P_1\text{-Anosov} \iff \Gamma \text{ is strongly convex cocompact in } \mathbb{P}(\mathbb{R}^n)$$

NB: see also Zimmer’17. (Earlier partial results: Benoist’04, Barbot–Mérigot’12, Crampon–Marquis’14.)
Theorem (Danciger–Guéritaud–K. 2017)

Let Γ be a discrete subgroup of $\text{SL}(n, \mathbb{R})$ preserving a properly convex open subset Ω of $\mathbb{P}^n(\mathbb{R})$. Then

$\Gamma < \text{SL}(n, \mathbb{R})$ is P_1-Anosov \iff Γ is strongly convex cocompact in $\mathbb{P}(\mathbb{R}^n)$

NB: see also Zimmer’17. (Earlier partial results: Benoist’04, Barbot-Mérigot’12, Crampon-Marquis’14.)
Theorem (Danciger–Guéritaud–K. 2017)

Let Γ be a discrete subgroup of $\text{SL}(n, \mathbb{R})$ preserving a properly convex open subset Ω of $\mathbb{P}(\mathbb{R}^n)$. Then

$$\Gamma < \text{SL}(n, \mathbb{R}) \overset{\text{is } P_1\text{-Anosov}}{\iff} \Gamma \text{ is strongly convex cocompact in } \mathbb{P}(\mathbb{R}^n)$$

NB: see also Zimmer’17. (Earlier partial results: Benoist’04, Barbot-Mérigot’12, Crampon-Marquis’14.)
Theorem (Danciger–Guéritaud–K. 2017)

Let Γ be a discrete subgroup of $\text{SL}(n, \mathbb{R})$ preserving a properly convex open subset Ω of $\mathbb{P}(\mathbb{R}^n)$. Then

$$\Gamma < \text{SL}(n, \mathbb{R}) \text{ is } P_1\text{-Anosov} \iff \Gamma \text{ is strongly convex cocompact in } \mathbb{P}(\mathbb{R}^n)$$

NB: see also Zimmer’17. (Earlier partial results: Benoist’04, Barbot-Mérigot’12, Crampon-Marquis’14.)
Theorem (Danciger-Guéritaud-K. 2017)

Let \(\Gamma \) be a discrete subgroup of \(\text{SL}(n, \mathbb{R}) \) preserving a properly convex open subset \(\Omega \) of \(\mathbb{P}(\mathbb{R}^n) \). Then

\[
\Gamma < \text{SL}(n, \mathbb{R}) \quad \text{is } P_1\text{-Anosov} \quad \iff \quad \Gamma \text{ is strongly convex cocompact in } \mathbb{P}(\mathbb{R}^n)
\]

NB: see also Zimmer’17. (Earlier partial results: Benoist’04, Barbot-Mérigot’12, Crampon-Marquis’14.)
Theorem (Danciger–Guéritaud–K. 2017)

Let Γ be a discrete subgroup of $\text{SL}(n, \mathbb{R})$ preserving a properly convex open subset Ω of $\mathbb{P}(\mathbb{R}^n)$. Then

$$\Gamma < \text{SL}(n, \mathbb{R}) \text{ is } P_1\text{-Anosov} \iff \Gamma \text{ is strongly convex cocompact in } \mathbb{P}(\mathbb{R}^n)$$

NB: see also Zimmer’17. (Earlier partial results: Benoist’04, Barbot-Mérigot’12, Crampon-Marquis’14.)

Application (Danciger–Guéritaud–K., Zimmer)

If n odd, then for any Hitchin $\rho : \pi_1(S) \to \text{SL}(n, \mathbb{R})$, $\rho(\pi_1(S))$ is strongly convex cocompact in $\mathbb{P}(\mathbb{R}^n)$.

Ω “sufficiently regular” $\text{Im}(\xi_1)$ \mathbb{C} convex compact mod Γ
Theorem (Danciger-Guéritaud-K. 2017)

Let Γ be a discrete subgroup of $\text{SL}(n, \mathbb{R})$ preserving a properly convex open subset Ω of $\mathbb{P}(\mathbb{R}^n)$. Then

$$\Gamma < \text{SL}(n, \mathbb{R})$$

is P_1-Anosov \iff Γ is strongly convex cocompact in $\mathbb{P}(\mathbb{R}^n)$

NB: see also Zimmer’17. (Earlier partial results: Benoist’04, Barbot-Mérigot’12, Crampon-Marquis’14.)

Application (Danciger-Guéritaud-K., Zimmer)

If n odd, then for any Hitchin $\rho : \pi_1(S) \to \text{SL}(n, \mathbb{R})$, $\rho(\pi_1(S))$ is strongly convex cocompact in $\mathbb{P}(\mathbb{R}^n)$.

△ Some P_1-Anosov Γ do not preserve any convex set in $\mathbb{P}(\mathbb{R}^n)$.
Theorem (Danciger–Guéritaud–K. 2017)

Let Γ be a discrete subgroup of $\text{SL}(n, \mathbb{R})$ preserving a properly convex open subset Ω of $\mathbb{P}(\mathbb{R}^n)$. Then

$$\Gamma < \text{SL}(n, \mathbb{R}) \text{ is } P_1\text{-Anosov} \iff \Gamma \text{ is strongly convex cocompact in } \mathbb{P}(\mathbb{R}^n)$$

NB: see also Zimmer’17. (Earlier partial results: Benoist’04, Barbot-Mérigot’12, Crampon-Marquis’14.)

Application (Danciger–Guéritaud–K., Zimmer)

If n odd, then for any Hitchin $\rho : \pi_1(S) \to \text{SL}(n, \mathbb{R})$, $\rho(\pi_1(S))$ is strongly convex cocompact in $\mathbb{P}(\mathbb{R}^n)$.

\[\triangle \] Some $P_1\text{-Anosov } \Gamma$ do not preserve any convex set in $\mathbb{P}(\mathbb{R}^n)$. Trick: pass to $\mathbb{P}(\mathbb{R}^{\frac{n(n+1)}{2}}) \simeq \mathbb{P}(\{\text{quad. forms on } \mathbb{R}^n\})$.
Theorem (Danciger–Guéritaud–K. 2017)

Let Γ be a discrete subgroup of $\text{SL}(n, \mathbb{R})$ preserving a properly convex open subset Ω of $\mathbb{P}(\mathbb{R}^n)$. Then

$$\Gamma < \text{SL}(n, \mathbb{R}) \text{ is } P_1\text{-Anosov} \iff \Gamma \text{ is strongly convex cocompact in } \mathbb{P}(\mathbb{R}^n).$$

NB: see also Zimmer’17. (Earlier partial results: Benoist’04, Barbot–Mérigot’12, Crampon–Marquis’14.)

Application (Danciger–Guéritaud–K., Zimmer)

If n odd, then for any Hitchin $\rho : \pi_1(S) \to \text{SL}(n, \mathbb{R})$, $\rho(\pi_1(S))$ is strongly convex cocompact in $\mathbb{P}(\mathbb{R}^n)$.

⚠️ Some P_1-Anosov Γ do not preserve any convex set in $\mathbb{P}(\mathbb{R}^n)$. Trick: pass to $\mathbb{P}(\mathbb{R}^{\frac{n(n+1)}{2}}) \simeq \mathbb{P}(\{\text{quad. forms on } \mathbb{R}^n\})$.

\[P \Rightarrow \text{SL}(n, R) \text{ is } P_1\text{-Anosov} \iff \Gamma \text{ is strongly convex cocompact in } \mathbb{P}(\mathbb{R}^n).\]
Section 5

Beyond Anosov subgroups
Projective convex cocompactness for nonhyperbolic groups

Definition \(\Gamma \) is strongly convex cocompact in \(\mathbb{P}(\mathbb{R}^n) \) if there exist:

- \(\Omega \) properly convex, \(\Gamma \)-invariant open \(\subset \mathbb{P}(\mathbb{R}^n) \) "sufficiently regular",
- \(C \subset \Omega \) convex, \(\Gamma \)-invariant with \(C/\Gamma \) compact \(\neq \emptyset \) with \(C \) large enough (\(C \) contains all accumulation points of \(\Gamma \)-orbits of \(\Omega \)).

\(\Omega \cap C \) convex compact mod \(\Gamma \)

Theorem (Danciger–Guéritaud–K. 2017)

- Convex cocompactness in \(\mathbb{P}(\mathbb{R}^n) \) is an open condition
- Good behavior under duality, embedding into larger \(\mathbb{P}(\mathbb{R}^N) \), ...
- Convex cocompact and Gromov hyperbolic \(\iff \) strongly convex cocompact
Γ discrete $< \text{SL}(n, \mathbb{R})$ is strongly convex cocompact in $\mathbb{P}(\mathbb{R}^n)$ if there exist:

- Ω properly convex, Γ-invariant open $\subset \mathbb{P}(\mathbb{R}^n)$ “sufficiently regular”, and
- $C \subset \Omega$ convex, Γ-invariant with C/Γ compact $\neq \emptyset$
Definition

Γ discrete < SL(n, R) is strongly convex cocompact in \(\mathbb{P}(\mathbb{R}^n) \) if there exist:

- Ω properly convex, Γ-invariant open \(\subset \mathbb{P}(\mathbb{R}^n) \) “sufficiently regular”, and
- \(C \subset \Omega \) convex, Γ-invariant with \(C/\Gamma \) compact \(\neq \emptyset \)

Theorem (Danciger–Guéritaud–K. 2017)

Convex cocompactness in \(\mathbb{P}(\mathbb{R}^n) \) is an open condition

Good behavior under duality, embedding into larger \(\mathbb{P}(\mathbb{R}^N) \), ...

Convex cocompact and Gromov hyperbolic \(\iff \) strongly convex cocompact
Definition

Γ discrete $< \text{SL}(n, \mathbb{R})$ is strongly convex cocompact in $\mathbb{P}(\mathbb{R}^n)$ if there exist:

- \(\Omega\) properly convex, Γ-invariant open $\subset \mathbb{P}(\mathbb{R}^n)$ “sufficiently regular”, and
- \(\mathcal{C} \subset \Omega\) convex, Γ-invariant with \(\mathcal{C}/\Gamma\) compact $\neq \emptyset$ with \(\mathcal{C}\) large enough

\(\overline{\mathcal{C}}\) contains all accumulation points of Γ-orbits of Ω

Theorem (Danciger–Guéritaud–K. 2017)

- Convex cocompactness in $\mathbb{P}(\mathbb{R}^n)$ is an open condition
- Good behavior under duality, embedding into larger $\mathbb{P}(\mathbb{R}^N)$, ...
- Convex cocompact and Gromov hyperbolic \iff strongly convex cocompact
Projective convex cocompactness for nonhyperbolic groups

Definition

\[\Gamma \text{ discrete } < \text{SL}(n, \mathbb{R}) \text{ is strongly convex cocompact in } \mathbb{P}(\mathbb{R}^n) \text{ if there exist:} \]

1. \(\Omega \) properly convex, \(\Gamma \)-invariant open \(\subset \mathbb{P}(\mathbb{R}^n) \) “sufficiently regular”, and
2. \(C \subset \Omega \) convex, \(\Gamma \)-invariant with \(C/\Gamma \) compact \(\neq \emptyset \) with \(C \) large enough

\[
(\overline{C} \text{ contains all accumulation points of } \Gamma\text{-orbits of } \Omega)
\]

Theorem (Danciger–Guéritaud–K. 2017)

- Convex cocompactness in \(\mathbb{P}(\mathbb{R}^n) \) is an open condition
- Good behavior under duality, embedding into larger \(\mathbb{P}(\mathbb{R}^N) \), ...
- Convex cocompact and Gromov hyperbolic \(\Leftrightarrow \) strongly convex cocompact
Example: convex cocompact reflection groups
Example: convex cocompact reflection groups

Coxeter group: $W = \langle s_1, \ldots, s_N \mid (s_is_j)^{m_{i,j}} = 1 \rangle$,
where $m_{i,i} = 1$ and $m_{i,j} \in \{2, 3, 4, \ldots \} \cup \{\infty\}$ for $i \neq j$
Example: convex cocompact reflection groups

Coxeter group: \(W = \langle s_1, \ldots, s_N | (s_i s_j)^{m_{i,j}} = 1 \rangle \),
where \(m_{i,i} = 1 \) and \(m_{i,j} \in \{2, 3, 4, \ldots\} \cup \{\infty\} \) for \(i \neq j \).
Example: convex cocompact reflection groups

Coxeter group: $W = \langle s_1, \ldots, s_N \mid (s_is_j)^{m_{i,j}} = 1 \rangle$, where $m_{i,i} = 1$ and $m_{i,j} \in \{2, 3, 4, \ldots \} \cup \{\infty\}$ for $i \neq j$.
Example: convex cocompact reflection groups

Coxeter group: \(W = \langle s_1, \ldots, s_N \mid (s_is_j)^{m_{i,j}} = 1 \rangle \),
where \(m_{i,i} = 1 \) and \(m_{i,j} \in \{2, 3, 4, \ldots \} \cup \{\infty\} \) for \(i \neq j \)

\(W \) Gromov hyperbolic (Moussong) \(\iff \) \(W \) does not contain a subgroup \(\simeq \mathbb{Z}^2 \)

\(W \) hyp. \(\iff \) \(W \) not hyp.

(Benoist)
Example: convex cocompact reflection groups

Coxeter group: \(W = \langle s_1, \ldots, s_N \mid (s_is_j)^{m_{i,j}} = 1 \rangle \), where \(m_{i,i} = 1 \) and \(m_{i,j} \in \{2, 3, 4, \ldots\} \cup \{\infty\} \) for \(i \neq j \)

\(W \) Gromov hyperbolic \(\iff \) \(W \) does not contain a subgroup \(\simeq \mathbb{Z}^2 \)

Theorem (Danciger-Guéritaud-K., Lee-Marquis, 2016-2018)

Assume \(W \) infinite (irreducible).

- If \(W \) is Gromov hyperbolic, then \(\exists \rho : W \to \text{SL}^{\pm}(N, \mathbb{R}) \) injective with \(\rho(W) \) strongly convex cocompact reflection group.
Example: convex cocompact reflection groups

Coxeter group: $W = \langle s_1, \ldots, s_N \mid (s_is_j)^{m_{i,j}} = 1 \rangle$,
where $m_{i,i} = 1$ and $m_{i,j} \in \{2, 3, 4, \ldots \} \cup \{\infty\}$ for $i \neq j$

W Gromov hyperbolic \iff W does not contain a subgroup $\simeq \mathbb{Z}^2$

Assume W infinite (irreducible).

- If W is Gromov hyperbolic, then $\exists \rho : W \rightarrow \text{SL}^\pm(N, \mathbb{R})$ injective with $\rho(W)$ strongly convex cocompact reflection group. $\rightarrow P_1$-Anosov subgroup
Example: convex cocompact reflection groups

Coxeter group: \(W = \langle s_1, \ldots, s_N \mid (s_is_j)^{m_{i,j}} = 1 \rangle, \) where \(m_{i,i} = 1 \) and \(m_{i,j} \in \{2, 3, 4, \ldots\} \cup \{\infty\} \) for \(i \neq j \)

\(W \) Gromov hyperbolic \(\iff \) \(W \) does not contain a subgroup \(\simeq \mathbb{Z}^2 \)

\[\text{hyp.} \quad \xymatrix{ 4 \ar@{-}[rr] & & 4 \ar@{-}[rr] & & 4 \ar@{-}[rr] & & \tilde{A}_3 } \]

\[\text{not hyp.} \quad \xymatrix{ 3 \ar@{-}[rr] & & 3 \ar@{-}[rr] & & 3 \ar@{-}[rr] & & \tilde{A}_5 } \]

Assume \(W \) infinite (irreducible).

- If \(W \) is Gromov hyperbolic, then \(\exists \rho : W \to \text{SL}^\pm(N, \mathbb{R}) \) injective with \(\rho(W) \) strongly convex cocompact reflection group. \(\rightarrow \) \(P_1 \)-Anosov subgroup

- In general, \(\exists \rho : W \to \text{SL}^\pm(n, \mathbb{R}) \) injective with \(\rho(W) \) convex cocompact reflection group for some \(n \leftrightarrow \) any subgroup \(\simeq \mathbb{Z}^2 \) of \(W \) is contained in a standard subgroup \(W_I = \langle s_i \rangle_{i \in I} \) of type \(\tilde{A}_k \).
Conclusion

Discrete subgroups of $G = \text{SL}(n, \mathbb{R})$ ▶ lattices and their subgroups ▶ Anosov subgroups ▶ good behavior: deformations, dynamical properties, important role in higher Teichmüller theory, many examples, ...

▶ geometric interpretation: P^1-Anosov \iff strongly convex cocompact in $\text{P}(\mathbb{R}^n(\mathbb{R} + 1)^2) ▶ ...

One approach: relax strong convex cocompactness: ▶ allowing for cusps (Crampon–Marquis, Kapovich–Leeb, ...) ▶ convex cocompactness (not strong) (Danciger–Guéritaud–K.)

Questions: Dynamical properties? Other classes of discrete subgroups?
Conclusion

Discrete subgroups of $G = \text{SL}(n, \mathbb{R})$
Conclusion

Discrete subgroups of $G = \text{SL}(n, \mathbb{R})$

- lattices

One approach: relax strong convex cocompactness:
- Allowing for cusps (Crampon–Marquis, Kapovich–Leeb, ...)
- Convex cocompactness (not strong) (Danciger–Guéritaud–K.)

Questions: Dynamical properties? Other classes of discrete subgroups?
Conclusion

Discrete subgroups of $G = \text{SL}(n, \mathbb{R})$

- lattices and their subgroups

...
Conclusion

Discrete subgroups of $G = \text{SL}(n, \mathbb{R})$

- lattices and their subgroups
- Anosov subgroups

One approach: relax strong convex cocompactness:
- Allowing for cusps (Crampon–Marquis, Kapovich–Leeb, ...)
- Convex cocompactness (not strong) (Danciger–Guéritaud–K.)

Questions: Dynamical properties? Other classes of discrete subgroups?
Conclusion

Discrete subgroups of $G = \text{SL}(n, \mathbb{R})$

- lattices and their subgroups
- Anosov subgroups
 - good behavior: deformations, dynamical properties, important role in higher Teichmüller theory, many examples, ...
Conclusion

Discrete subgroups of $G = \text{SL}(n, \mathbb{R})$

- lattices and their subgroups
- **Anosov subgroups**
 - good behavior: deformations, dynamical properties, important role in higher Teichmüller theory, many examples, ...
 - geometric interpretation:
 P_1-Anosov \iff strongly convex cocompact in $\mathbb{P}(\mathbb{R}^{n(n+1)/2})$
Conclusion

Discrete subgroups of $G = \text{SL}(n, \mathbb{R})$

- lattices and their subgroups
- **Anosov subgroups**
 - good behavior: deformations, dynamical properties, important role in higher Teichmüller theory, many examples, ...
 - geometric interpretation:

 P_1-Anosov \iff strongly convex cocompact in $\mathbb{P}(\mathbb{R}^{n(n+1)/2})$

- ... ???
Conclusion

Discrete subgroups of $G = \text{SL}(n, \mathbb{R})$

- lattices and their subgroups
- Anosov subgroups
 - good behavior: deformations, dynamical properties, important role in higher Teichmüller theory, many examples, ...
 - geometric interpretation:
 $$P_1\text{-Anosov} \iff \text{strongly convex cocompact in } \mathbb{P}(\mathbb{R}^{n(n+1)/2})$$
- ... ???

One approach: relax strong convex cocompactness:
Conclusion

Discrete subgroups of $G = \text{SL}(n, \mathbb{R})$

- lattices and their subgroups
- **Anosov subgroups**
 - good behavior: deformations, dynamical properties, important role in higher Teichmüller theory, many examples, ...
 - geometric interpretation:
 \[P_1\text{-Anosov} \Leftrightarrow \text{strongly convex cocompact in } \mathbb{P}(\mathbb{R}^{\frac{n(n+1)}{2}}) \]
- ...

One approach: relax strong convex cocompactness:

- Allowing for cusps (Crampon-Marquis, Kapovich-Leeb, ...)
Conclusion

Discrete subgroups of $G = \text{SL}(n, \mathbb{R})$

- lattices and their subgroups
- **Anosov subgroups**
 - good behavior: deformations, dynamical properties, important role in higher Teichmüller theory, many examples, ...
 - geometric interpretation:
 $$P_1\text{-Anosov } \iff \text{strongly convex cocompact in } \mathbb{P}(\mathbb{R}^{\frac{n(n+1)}{2}})$$
- ... ???

One approach: relax strong convex cocompactness:

- Allowing for cusps (Crampon-Marquis, Kapovich-Leeb, ...)
- **Convex cocompactness** (not strong) (Danciger-Guéritaud-K.)
Conclusion

Discrete subgroups of $G = \text{SL}(n, \mathbb{R})$

- lattices and their subgroups
- **Anosov subgroups**
 - good behavior: deformations, dynamical properties, important role in higher Teichmüller theory, many examples, ...
 - geometric interpretation:

 $$P_1\text{-Anosov} \iff \text{strongly convex cocompact in } \mathbb{P} \left(\mathbb{R}^{n(n+1)/2} \right)$$

- ... ???

One approach: relax strong convex cocompactness:

- Allowing for cusps (Crampon-Marquis, Kapovich-Leeb, ...)

- **Convex cocompactness** (not strong) (Danciger-Guéritaud-K.)

Questions: Dynamical properties? Other classes of discrete subgroups?