Cannon-Thurston Maps

Mahan Mj,
School of Mathematics,
Tata Institute of Fundamental Research.

ICM 2018
Rio de Janeiro
Geometric Structures on Surfaces

- **Differential Geometry:** Constant curvature metrics: $+1$ ($g = 0$), 0 ($g = 1$), -1 ($g \geq 2$).
- **Lie groups:** Discrete faithful representation
 \[\rho : \pi_1(S) \to PSL(2, \mathbb{R}) = SL(2, \mathbb{R})/\{\pm I\} = Isom^+(H^2). \]
- **Complex Geometry:** Riemann surfaces: transition functions complex analytic.
- **Algebraic Geometry:** Solution sets to algebraic equations: (Complex) 1 dimensional smooth varieties in $\mathbb{C}P^n$.

Poincaré-Koebe-Klein uniformization theorem establishes a dictionary between these structures.
Geometric Structures on Surfaces

1. Differential Geometry: Constant curvature metrics: $+1 (g = 0)$, $0 (g = 1)$, $-1 (g \geq 2)$.

2. Lie groups: Discrete faithful representation
 \[\rho : \pi_1(S) \rightarrow PSL(2, \mathbb{R}) = SL(2, \mathbb{R})/\{\pm I\} = Isom^+(H^2). \]

4. Algebraic Geometry: Solution sets to algebraic equations: (Complex) 1 dimensional smooth varieties in CP^n.

Poincaré-Koebe-Klein uniformization theorem establishes a dictionary between these structures.
Geometric Structures on Surfaces

1. Differential Geometry: Constant curvature metrics: $+1$ ($g = 0$), 0 ($g = 1$), -1 ($g \geq 2$).

2. Lie groups: Discrete faithful representation $\rho : \pi_1(S) \to PSL(2, \mathbb{R}) = SL(2, \mathbb{R})/\{\pm I\} = Isom^+(H^2)$.

4. Algebraic Geometry: Solution sets to algebraic equations: (Complex) 1 dimensional smooth varieties in $\mathbb{C}P^n$.

Poincaré-Koebe-Klein uniformization theorem establishes a dictionary between these structures.
Geometric Structures on Surfaces

1. Differential Geometry: Constant curvature metrics: +1 \((g = 0)\), 0 \((g = 1)\), -1 \((g \geq 2)\).

2. Lie groups: **Discrete faithful** representation \(\rho : \pi_1(S) \rightarrow PSL(2, \mathbb{R}) = SL(2, \mathbb{R})/\{\pm I\} = Isom^+(H^2)\).

- Complex Geometry: Riemann surfaces: transition functions complex analytic.
- Algebraic Geometry: Solution sets to algebraic equations: (Complex) 1 dimensional smooth varieties in \(CP^n\).

Poincaré-Koebe-Klein uniformization theorem establishes a dictionary between these structures.
Geometric Structures on Surfaces

1. Differential Geometry: Constant curvature metrics: +1 ($g = 0$), 0 ($g = 1$), -1 ($g \geq 2$).

2. Lie groups: **Discrete faithful** representation
 $\rho : \pi_1(S) \to PSL(2, \mathbb{R}) = SL(2, \mathbb{R})/\{\pm I\} = Isom^+(H^2)$.

- Complex Geometry: Riemann surfaces: transition functions complex analytic.

- Algebraic Geometry: Solution sets to algebraic equations: (Complex) 1 dimensional smooth varieties in CP^n.

Poincaré-Koebe-Klein uniformization theorem establishes a dictionary between these structures.
Geometric Structures on Surfaces

1. Differential Geometry: Constant curvature metrics: $+1 \ (g = 0), \ 0 \ (g = 1), \ -1 \ (g \geq 2)$.

2. Lie groups: **Discrete faithful** representation
 \[\rho : \pi_1(S) \to PSL(2, \mathbb{R}) = SL(2, \mathbb{R})/\{\pm I\} = Isom^+(H^2). \]

4. Algebraic Geometry: Solution sets to algebraic equations: (Complex) 1 dimensional smooth varieties in CP^n.

Poincaré-Koebe-Klein uniformization theorem establishes a dictionary between these structures.
Geometric Structures on Surfaces

1. Differential Geometry: Constant curvature metrics: +1 \((g = 0) \), 0 \((g = 1) \), -1 \((g \geq 2) \).

2. Lie groups: **Discrete faithful** representation
\[
\rho : \pi_1(S) \to PSL(2, \mathbb{R}) = SL(2, \mathbb{R})/\{\pm I\} = Isom^+(H^2).
\]

4. Algebraic Geometry: Solution sets to algebraic equations: (Complex) 1 dimensional smooth varieties in \(\mathbb{C}P^n \).

Poincaré-Koebe-Klein uniformization theorem establishes a dictionary between these structures.
Geometric Structures on Surfaces

1. Differential Geometry: Constant curvature metrics: +1 ($g = 0$), 0 ($g = 1$), -1 ($g \geq 2$).

2. Lie groups: **Discrete faithful** representation
 $$\rho : \pi_1(S) \to PSL(2, \mathbb{R}) = SL(2, \mathbb{R})/\{\pm I\} = Isom^+(H^2).$$

4. Algebraic Geometry: Solution sets to algebraic equations: (Complex) 1 dimensional smooth varieties in $\mathbb{C}P^n$.

Poincaré-Koebe-Klein uniformization theorem establishes a dictionary between these structures.
Geometric Structures on Surfaces

1. Differential Geometry: Constant curvature metrics: +1 ($g = 0$), 0 ($g = 1$), -1 ($g \geq 2$).

2. Lie groups: **Discrete faithful** representation
 \[\rho : \pi_1(S) \to PSL(2, \mathbb{R}) = SL(2, \mathbb{R})/\{ \pm I \} = Isom^+(H^2). \]

4. Algebraic Geometry: Solution sets to algebraic equations: (Complex) 1 dimensional smooth varieties in $\mathbb{C}P^n$.

Poincaré-Koebe-Klein uniformization theorem establishes a dictionary between these structures.
Geometric Structures on Surfaces

1. **Differential Geometry**: Constant curvature metrics: +1 ($g = 0$), 0 ($g = 1$), -1 ($g \geq 2$).

2. **Lie groups**: **Discrete faithful** representation
 \[\rho : \pi_1(S) \to PSL(2, \mathbb{R}) = SL(2, \mathbb{R})/\{ \pm I \} = Isom^+(\mathbb{H}^2). \]

3. **Complex Geometry**: Riemann surfaces: transition functions complex analytic.

4. **Algebraic Geometry**: Solution sets to algebraic equations: (Complex) 1 dimensional smooth varieties in $\mathbb{C}P^n$.

Poincaré-Koebe-Klein uniformization theorem establishes a dictionary between these structures.
Geometric Structures on Surfaces

1. Differential Geometry: Constant curvature metrics: $+1$ ($g = 0$), 0 ($g = 1$), -1 ($g \geq 2$).

2. Lie groups: **Discrete faithful** representation
 \[\rho : \pi_1(S) \to PSL(2, \mathbb{R}) = SL(2, \mathbb{R})/\{\pm I\} = Isom^+(H^2). \]

4. Algebraic Geometry: Solution sets to algebraic equations:
 (Complex) 1 dimensional smooth varieties in $\mathbb{C}P^n$.

Poincaré-Koebe-Klein uniformization theorem establishes a dictionary between these structures.
Discrete faithful representation of Coxeter group.

Constant curvature -1 metric on closed surface S of genus at least 2.
Discrete faithful representation of Coxeter group.

Constant curvature -1 metric on closed surface S of genus at least 2.
Discrete faithful representation of Coxeter group.

Constant curvature -1 metric on closed surface S of genus at least 2.
Discrete faithful representation of Coxeter group.

Constant curvature -1 metric on closed surface S of genus at least 2.
Discrete faithful representation of Coxeter group.

Constant curvature -1 metric on closed surface S of genus at least 2.
Discrete faithful representation of Coxeter group.

Constant curvature -1 metric on closed surface S of genus at least 2.
PSL(2, C) = Isom^+(H^3)

Look at space of discrete faithful \(\rho : \pi_1(S) \to PSL(2, \mathbb{C}) \) equipped with the usual (algebraic) topology of (pointwise) convergence. Let \(\Gamma = \rho(\pi_1(S)) \) – Kleinian surface group.

Definition (Algebraic topology on space of representations)

A sequence of representations \(\rho_n : \pi_1(S) \to PSL_2(\mathbb{C}) \) is said to converge **algebraically** to \(\rho_\infty : \pi_1(S) \to PSL_2(\mathbb{C}) \) if for all \(g \in \pi_1(S) \), \(\rho_n(g) \to \rho_\infty(g) \) in \(PSL_2(\mathbb{C}) \).

The collection of conjugacy classes of discrete faithful representations of \(\pi_1(S) \) into \(PSL_2(\mathbb{C}) \) equipped with the algebraic topology is denoted as \(AH(S) \).

In dimension 2 (for \(PSL_2(\mathbb{R}) \)), this is Teichmüller space.
$$PSL(2, \mathbb{C}) = Isom^+(H^3)$$

Look at space of discrete faithful $\rho : \pi_1(S) \to PSL(2, \mathbb{C})$ equipped with the usual (algebraic) topology of (pointwise) convergence. Let $\Gamma = \rho(\pi_1(S))$ – Kleinian surface group.

Definition (Algebraic topology on space of representations)

A sequence of representations $\rho_n : \pi_1(S) \to PSL_2(\mathbb{C})$ is said to converge **algebraically** to $\rho_\infty : \pi_1(S) \to PSL_2(\mathbb{C})$ if for all $g \in \pi_1(S)$, $\rho_n(g) \to \rho_\infty(g)$ in $PSL_2(\mathbb{C})$.

The collection of conjugacy classes of discrete faithful representations of $\pi_1(S)$ into $PSL_2(\mathbb{C})$ equipped with the algebraic topology is denoted as $AH(S)$

In dimension 2 (for $PSL_2(\mathbb{R})$), this is Teichmüller space.
Look at space of discrete faithful $\rho : \pi_1(S) \to PSL(2, \mathbb{C})$ equipped with the usual (algebraic) topology of (pointwise) convergence. Let $\Gamma = \rho(\pi_1(S))$ – Kleinian surface group.

Definition (Algebraic topology on space of representations)

A sequence of representations $\rho_n : \pi_1(S) \to PSL_2(\mathbb{C})$ is said to converge **algebraically** to $\rho_\infty : \pi_1(S) \to PSL_2(\mathbb{C})$ if for all $g \in \pi_1(S)$, $\rho_n(g) \to \rho_\infty(g)$ in $PSL_2(\mathbb{C})$.

The collection of conjugacy classes of discrete faithful representations of $\pi_1(S)$ into $PSL_2(\mathbb{C})$ equipped with the algebraic topology is denoted as $AH(S)$

In dimension 2 (for $PSL_2(\mathbb{R})$), this is Teichmüller space.
Look at space of discrete faithful $\rho : \pi_1(S) \to PSL(2, \mathbb{C})$ equipped with the usual (algebraic) topology of (pointwise) convergence. Let $\Gamma = \rho(\pi_1(S))$ – Kleinian surface group.

Definition (Algebraic topology on space of representations)

A sequence of representations $\rho_n : \pi_1(S) \to PSL_2(\mathbb{C})$ is said to converge **algebraically** to $\rho_\infty : \pi_1(S) \to PSL_2(\mathbb{C})$ if for all $g \in \pi_1(S)$, $\rho_n(g) \to \rho_\infty(g)$ in $PSL_2(\mathbb{C})$.

The collection of conjugacy classes of discrete faithful representations of $\pi_1(S)$ into $PSL_2(\mathbb{C})$ equipped with the algebraic topology is denoted as $AH(S)$.

In dimension 2 (for $PSL_2(\mathbb{R})$), this is Teichmüller space.
PSL(2, \mathbb{C}) = Isom^+(H^3)

Look at space of discrete faithful \(\rho : \pi_1(S) \to PSL(2, \mathbb{C}) \) equipped with the usual (algebraic) topology of (pointwise) convergence. Let \(\Gamma = \rho(\pi_1(S)) \) – Kleinian surface group.

Definition (Algebraic topology on space of representations)

A sequence of representations \(\rho_n : \pi_1(S) \to PSL_2(\mathbb{C}) \) is said to converge **algebraically** to \(\rho_\infty : \pi_1(S) \to PSL_2(\mathbb{C}) \) if for all \(g \in \pi_1(S) \), \(\rho_n(g) \to \rho_\infty(g) \) in \(PSL_2(\mathbb{C}) \).

The collection of conjugacy classes of discrete faithful representations of \(\pi_1(S) \) into \(PSL_2(\mathbb{C}) \) equipped with the algebraic topology is denoted as \(AH(S) \).

In dimension 2 (for \(PSL_2(\mathbb{R}) \)), this is Teichmüller space.
\(PSL(2, \mathbb{C}) = Isom^+(\mathbb{H}^3) \)

Look at space of discrete faithful \(\rho : \pi_1(S) \rightarrow PSL(2, \mathbb{C}) \) equipped with the usual (algebraic) topology of (pointwise) convergence. Let \(\Gamma = \rho(\pi_1(S)) \) – Kleinian surface group.

Definition (Algebraic topology on space of representations)

A sequence of representations \(\rho_n : \pi_1(S) \rightarrow PSL_2(\mathbb{C}) \) is said to converge algebraically to \(\rho_\infty : \pi_1(S) \rightarrow PSL_2(\mathbb{C}) \) if for all \(g \in \pi_1(S) \), \(\rho_n(g) \rightarrow \rho_\infty(g) \) in \(PSL_2(\mathbb{C}) \).

The collection of conjugacy classes of discrete faithful representations of \(\pi_1(S) \) into \(PSL_2(\mathbb{C}) \) equipped with the algebraic topology is denoted as \(AH(S) \) in dimension 2 (for \(PSL_2(\mathbb{R}) \)), this is Teichmüller space.
PSL(2, ℂ) = Isom⁺(H³)

Look at space of discrete faithful $\rho : \pi_1(S) \rightarrow PSL(2, ℂ)$ equipped with the usual (algebraic) topology of (pointwise) convergence. Let $\Gamma = \rho(\pi_1(S))$ – Kleinian surface group.

Definition (Algebraic topology on space of representations)

A sequence of representations $\rho_n : \pi_1(S) \rightarrow PSL_2(ℂ)$ is said to converge **algebraically** to $\rho_\infty : \pi_1(S) \rightarrow PSL_2(ℂ)$ if for all $g \in \pi_1(S)$, $\rho_n(g) \rightarrow \rho_\infty(g)$ in $PSL_2(ℂ)$.

The collection of conjugacy classes of discrete faithful representations of $\pi_1(S)$ into $PSL_2(ℂ)$ equipped with the algebraic topology is denoted as $A\!H(S)$.

In dimension 2 (for $PSL_2(ℝ)$), this is Teichmüller space.
$$PSL(2, \mathbb{C}) = Isom^+(H^3)$$

Look at space of discrete faithful \(\rho : \pi_1(S) \to PSL(2, \mathbb{C}) \) equipped with the usual (algebraic) topology of (pointwise) convergence. Let \(\Gamma = \rho(\pi_1(S)) \) – Kleinian surface group.

Definition (Algebraic topology on space of representations)

A sequence of representations \(\rho_n : \pi_1(S) \to PSL_2(\mathbb{C}) \) is said to converge \textbf{algebraically} to \(\rho_\infty : \pi_1(S) \to PSL_2(\mathbb{C}) \) if for all \(g \in \pi_1(S) \), \(\rho_n(g) \to \rho_\infty(g) \) in \(PSL_2(\mathbb{C}) \).

The collection of conjugacy classes of discrete faithful representations of \(\pi_1(S) \) into \(PSL_2(\mathbb{C}) \) equipped with the algebraic topology is denoted as \(AH(S) \). In dimension 2 (for \(PSL_2(\mathbb{R}) \)), this is Teichmüller space.
$PSL(2, \mathbb{C}) = Isom^+(H^3)$

Look at space of discrete faithful $\rho : \pi_1(S) \to PSL(2, \mathbb{C})$ equipped with the usual (algebraic) topology of (pointwise) convergence. Let $\Gamma = \rho(\pi_1(S))$ – Kleinian surface group.

Definition (Algebraic topology on space of representations)

A sequence of representations $\rho_n : \pi_1(S) \to PSL_2(\mathbb{C})$ is said to converge **algebraically** to $\rho_{\infty} : \pi_1(S) \to PSL_2(\mathbb{C})$ if for all $g \in \pi_1(S)$, $\rho_n(g) \to \rho_{\infty}(g)$ in $PSL_2(\mathbb{C})$.

The collection of conjugacy classes of discrete faithful representations of $\pi_1(S)$ into $PSL_2(\mathbb{C})$ equipped with the algebraic topology is denoted as $AH(S)$.

In dimension 2 (for $PSL_2(\mathbb{R})$), this is Teichmüller space.
$PSL(2, \mathbb{C}) = Isom^+(H^3)$

Look at space of discrete faithful $\rho : \pi_1(S) \to PSL(2, \mathbb{C})$ equipped with the usual (algebraic) topology of (pointwise) convergence. Let $\Gamma = \rho(\pi_1(S))$ – Kleinian surface group.

Definition (Algebraic topology on space of representations)

A sequence of representations $\rho_n : \pi_1(S) \to PSL_2(\mathbb{C})$ is said to converge **algebraically** to $\rho_\infty : \pi_1(S) \to PSL_2(\mathbb{C})$ if for all $g \in \pi_1(S)$, $\rho_n(g) \to \rho_\infty(g)$ in $PSL_2(\mathbb{C})$.

The collection of conjugacy classes of discrete faithful representations of $\pi_1(S)$ into $PSL_2(\mathbb{C})$ equipped with the algebraic topology is denoted as $AH(S)$.

In dimension 2 (for $PSL_2(\mathbb{R})$), this is Teichmüller space.
Hyperbolic structures on $S \times \mathbb{R}$: Geometry

Theorem (Topological tameness) (Thurston-Bonahon): For $\Gamma = \rho(\pi_1(S))$ - a Kleinian surface group, $M = \mathbb{H}^3/\Gamma$ is homeomorphic to a product $S \times \mathbb{R}$.

But geometrically, a lot of variety.
So 3-dimensional analog of Teichmüller theory becomes the study of hyperbolic structures on $M = S \times \mathbb{R}$ up to isometry.
Theorem (Topological tameness)

(Thurston-Bonahon): For $\Gamma = \rho(\pi_1(S))$ - a Kleinian surface group, $M = \mathbb{H}^3/\Gamma$ is homeomorphic to a product $S \times \mathbb{R}$.

But geometrically, a lot of variety. So 3-dimensional analog of Teichmüller theory becomes the study of hyperbolic structures on $M = S \times \mathbb{R}$ up to isometry.
Theorem (Topological tameness)

(Thurston-Bonahon): For $\Gamma = \rho(\pi_1(S))$ - a Kleinian surface group, $M = \mathbb{H}^3/\Gamma$ is homeomorphic to a product $S \times \mathbb{R}$.

But geometrically, a lot of variety.
So 3-dimensional analog of Teichmüller theory becomes the study of hyperbolic structures on $M = S \times \mathbb{R}$ up to isometry.
Theorem (Topological tameness)

(Thurston-Bonahon): For $\Gamma = \rho(\pi_1(S))$ - a Kleinian surface group, $M = \mathbb{H}^3/\Gamma$ is homeomorphic to a product $S \times \mathbb{R}$.

But geometrically, a lot of variety. So 3-dimensional analog of Teichmüller theory becomes the study of hyperbolic structures on $M = S \times \mathbb{R}$ up to isometry.
Hyperbolic structures on $S \times \mathbb{R}$: Geometry

Theorem (Topological tameness)

(Thurston-Bonahon): For $\Gamma = \rho(\pi_1(S))$ - a Kleinian surface group, $M = \mathbb{H}^3/\Gamma$ is homeomorphic to a product $S \times \mathbb{R}$.

But geometrically, a lot of variety.
So 3-dimensional analog of Teichmüller theory becomes the study of hyperbolic structures on $M = S \times \mathbb{R}$ up to isometry.
Hyperbolic structures on $S \times \mathbb{R}$: Geometry

Theorem (Topological tameness)

(Thurston-Bonahon): For $\Gamma = \rho(\pi_1(S))$ - a Kleinian surface group, $M = H^3/\Gamma$ is homeomorphic to a product $S \times \mathbb{R}$.

But geometrically, a lot of variety.

So 3-dimensional analog of Teichmüller theory becomes the study of hyperbolic structures on $M = S \times \mathbb{R}$ up to isometry.
Hyperbolic structures on $S \times \mathbb{R}$: Geometry

Theorem (Topological tameness)

(Thurston-Bonahon): For $\Gamma = \rho(\pi_1(S))$ - a Kleinian surface group, \(M = \mathbb{H}^3/\Gamma \) is homeomorphic to a product $S \times \mathbb{R}$.

But geometrically, a lot of variety. So 3-dimensional analog of Teichmüller theory becomes the study of hyperbolic structures on $M = S \times \mathbb{R}$ up to isometry.
Hyperbolic structures on $S \times \mathbb{R}$: Geometry

Theorem (Topological tameness)

(Thurston-Bonahon): For $\Gamma = \rho(\pi_1(S))$ - a Kleinian surface group, $M = \mathbb{H}^3/\Gamma$ is homeomorphic to a product $S \times \mathbb{R}$.

But geometrically, a lot of variety.
So 3-dimensional analog of Teichmüller theory becomes the study of hyperbolic structures on $M = S \times \mathbb{R}$ up to isometry.
Let \(i : S \to M \) be a homotopy equivalence (embedding),
\(o \in \mathbb{H}^2 = \tilde{S} \) be a base-point,
\(\tilde{i} : \mathbb{H}^2 \to \mathbb{H}^3 \) be a lift \(i \),
and \(\tilde{i}(o) = O \).
Let $i : S \rightarrow M$ be a homotopy equivalence (embedding),

$o \in H^2 = \tilde{S}$ be a base-point,

$\tilde{i} : H^2 \rightarrow H^3$ be a lift i,

and $\tilde{i}(o) = O$.
Let $i : S \to M$ be a homotopy equivalence (embedding), $o \in H^2 = \tilde{S}$ be a base-point, $\tilde{i} : H^2 \to H^3$ be a lift i, and $\tilde{i}(o) = O$.
Let $i : S \to M$ be a homotopy equivalence (embedding), $o \in H^2 = \tilde{S}$ be a base-point, $	ilde{i} : H^2 \to H^3$ be a lift i, and $\tilde{i}(o) = O$.
Let $i : S \to M$ be a homotopy equivalence (embedding),
$o \in H^2 = \tilde{S}$ be a base-point,
$\tilde{i} : H^2 \to H^3$ be a lift i,
and $\tilde{i}(o) = O$.
Let \(i : S \to M \) be a homotopy equivalence (embedding),
\(o \in H^2 = \tilde{S} \) be a base-point,
\(\tilde{i} : H^2 \to H^3 \) be a lift \(i \),
and \(\tilde{i}(o) = O \).
Dichotomy of representations

Broadly, 3d hyperbolic geometric structures on $S \times \mathbb{R}$ are of two kinds.

- Quasi-Fuchsian/ Convex cocompact/ undistorted/ quasi-isometrically (qi) embedded:
 Distances in H^2 (denote d_2) and H^3 (denote d_3) are linearly comparable: There exist (k, ϵ) such that

$$\frac{1}{k} d_2(g.o, h.o) - \epsilon \leq d_3(\rho(g).O, \rho(h).O) \leq k d_2(g.o, h.o) + \epsilon.$$

$QF(S) = Teich(S) \times Teich(S)$ (Bers’ simultaneous uniformization theorem, 1960) Diagonal=Fuchsian

- Limits of the above in the algebraic topology. (Bers’ density conjecture proved by Brock-Canary-Minsky, 2012) These are not qi-embedded.

Accordingly, ends of $H^3/\Gamma = S \times \mathbb{R} = M$ can also be quasi-Fuchsian or degenerate.
Dichotomy of representations

Broadly, 3d hyperbolic geometric structures on $S \times \mathbb{R}$ are of two kinds.

- Quasi-Fuchsian/ Convex cocompact/ undistorted/ quasi-isometrically (qi) embedded:
 Distances in \mathbb{H}^2 (denote d_2) and \mathbb{H}^3 (denote d_3) are linearly comparable: There exist (k, ϵ) such that

$$\frac{1}{k} d_2(g.o, h.o) - \epsilon \leq d_3(\rho(g).O, \rho(h).O) \leq k d_2(g.o, h.o) + \epsilon.$$

$QF(S) = \text{Teich}(S) \times \text{Teich}(S)$ (Bers’ simultaneous uniformization theorem, 1960) Diagonal=Fuchsian

- Limits of the above in the algebraic topology. (Bers’ density conjecture proved by Brock-Canary-Minsky, 2012) These are not qi-embedded.

Accordingly, ends of $\mathbb{H}^3/\Gamma = S \times \mathbb{R} = M$ can also be quasi-Fuchsian or degenerate.
Broadly, 3d hyperbolic geometric structures on $S \times \mathbb{R}$ are of two kinds.

1. Quasi-Fuchsian/ Convex cocompact/ undistorted/ quasi-isometrically (qi) embedded:
 Distances in H^2 (denote d_2) and H^3 (denote d_3) are linearly comparable: There exist (k, ϵ) such that
 \[
 \frac{1}{k} d_2(g \cdot o, h \cdot o) - \epsilon \leq d_3(\rho(g) \cdot O, \rho(h) \cdot O) \leq k d_2(g \cdot o, h \cdot o) + \epsilon.
 \]

 \[QF(S) = Teich(S) \times Teich(S) \] (Bers’ simultaneous uniformization theorem, 1960) Diagonal=Fuchsian

 Limits of the above in the algebraic topology. (Bers’ density conjecture proved by Brock-Canary-Minsky, 2012) These are not qi-embedded.

Accordingly, ends of $H^3/\Gamma = S \times \mathbb{R} = M$ can also be quasi-Fuchsian or degenerate.
Dichotomy of representations

Broadly, 3d hyperbolic geometric structures on $S \times \mathbb{R}$ are of two kinds.

1. **Quasi-Fuchsian/ Convex cocompact/ undistorted/ quasi-isometrically (qi) embedded:**

 Distances in H^2 (denote d_2) and H^3 (denote d_3) are linearly comparable: There exist (k, ϵ) such that

 \[
 \frac{1}{k} d_2(g.o, h.o) - \epsilon \leq d_3(\rho(g).O, \rho(h).O) \leq k d_2(g.o, h.o) + \epsilon.
 \]

 \[QF(S) = \text{Teich}(S) \times \text{Teich}(S)\ (\text{Bers’ simultaneous uniformization theorem, 1960})\]

 Diagonal=Fuchsian

2. Limits of the above in the algebraic topology. (Bers’ density conjecture proved by Brock-Canary-Minsky, 2012) These are *not* qi-embedded.

Accordingly, ends of $H^3/\Gamma = S \times \mathbb{R} = M$ can also be quasi-Fuchsian or degenerate.
Broadly, 3d hyperbolic geometric structures on $S \times \mathbb{R}$ are of two kinds.

1. Quasi-Fuchsian/ Convex cocompact/ undistorted/ quasi-isometrically (qi) embedded: Distances in H^2 (denote d_2) and H^3 (denote d_3) are linearly comparable: There exist (k, ϵ) such that

$$\frac{1}{k} d_2(g.o, h.o) - \epsilon \leq d_3(\rho(g).O, \rho(h).O) \leq k d_2(g.o, h.o) + \epsilon.$$

$QF(S) = Teich(S) \times Teich(S)$ (Bers’ simultaneous uniformization theorem, 1960) Diagonal=Fuchsian

2. Limits of the above in the algebraic topology. (Bers’ density conjecture proved by Brock-Canary-Minsky, 2012) These are not qi-embedded.

Accordingly, ends of $H^3/\Gamma = S \times \mathbb{R} = M$ can also be quasi-Fuchsian or degenerate.
Broadly, 3d hyperbolic geometric structures on $S \times \mathbb{R}$ are of two kinds.

1. Quasi-Fuchsian/ Convex cocompact/ undistorted/ quasi-isometrically (qi) embedded:

Distances in H^2 (denote d_2) and H^3 (denote d_3) are linearly comparable: There exist (k, ϵ) such that

$$\frac{1}{k} d_2(g.o, h.o) - \epsilon \leq d_3(\rho(g).O, \rho(h).O) \leq k d_2(g.o, h.o) + \epsilon.$$

$QF(S) = Teich(S) \times Teich(S)$ (Bers’ simultaneous uniformization theorem, 1960) Diagonal=Fuchsian

Limits of the above in the algebraic topology. (Bers’ density conjecture proved by Brock-Canary-Minsky, 2012) These are not qi-embedded.

Accordingly, ends of $H^3/\Gamma = S \times \mathbb{R} = M$ can also be quasi-Fuchsian or degenerate.
Dichotomy of representations

Broadly, 3d hyperbolic geometric structures on $S \times \mathbb{R}$ are of two kinds.

1. Quasi-Fuchsian/ Convex cocompact/ undistorted/ quasi-isometrically (qi) embedded:
 Distances in H^2 (denote d_2) and H^3 (denote d_3) are linearly comparable: There exist (k, ϵ) such that
 \[
 \frac{1}{k} d_2(g.o, h.o) - \epsilon \leq d_3(\rho(g).O, \rho(h).O) \leq k d_2(g.o, h.o) + \epsilon.
 \]

$QF(S) = Teich(S) \times Teich(S)$ (Bers’ simultaneous uniformization theorem, 1960) Diagonal=Fuchsian

Limits of the above in the algebraic topology. (Bers’ density conjecture proved by Brock-Canary-Minsky, 2012) These are not qi-embedded.

Accordingly, ends of $H^3/\Gamma = S \times \mathbb{R} = M$ can also be quasi-Fuchsian or degenerate.
Dichotomy of representations

Broadly, 3d hyperbolic geometric structures on $S \times \mathbb{R}$ are of two kinds.

1. Quasi-Fuchsian/ Convex cocompact/ undistorted/ quasi-isometrically (qi) embedded:
Distances in \mathbb{H}^2 (denote d_2) and \mathbb{H}^3 (denote d_3) are linearly comparable: There exist (k, ϵ) such that

$$\frac{1}{k} d_2(g.o, h.o) - \epsilon \leq d_3(\rho(g).O, \rho(h).O) \leq k d_2(g.o, h.o) + \epsilon.$$

$QF(S) = Teich(S) \times Teich(S)$ (Bers’ simultaneous uniformization theorem, 1960) Diagonal=Fuchsian

Limits of the above in the algebraic topology. (Bers’ density conjecture proved by Brock-Canary-Minsky, 2012) These are not qi-embedded.

Accordingly, ends of $\mathbb{H}^3/\Gamma = S \times \mathbb{R} = M$ can also be quasi-Fuchsian or degenerate.
Dichotomy of representations

Broadly, 3d hyperbolic geometric structures on $S \times \mathbb{R}$ are of two kinds.

1. Quasi-Fuchsian/ Convex cocompact/ undistorted/ quasi-isometrically (qi) embedded:
 Distances in \mathbb{H}^2 (denote d_2) and \mathbb{H}^3 (denote d_3) are linearly comparable: There exist (k, ϵ) such that
 \[
 \frac{1}{k} d_2(g.o, h.o) - \epsilon \leq d_3(\rho(g).O, \rho(h).O) \leq k d_2(g.o, h.o) + \epsilon.
 \]

 \[QF(S) = \text{Teich}(S) \times \text{Teich}(S)\] (Bers’ simultaneous uniformization theorem, 1960)

 Diagonal=Fuchsian

 Limit of the above in the algebraic topology. (Bers’ density conjecture proved by Brock-Canary-Minsky, 2012) These are not qi-embedded.

Accordingly, ends of $\mathbb{H}^3/\Gamma = S \times \mathbb{R} = M$ can also be quasi-Fuchsian or degenerate.
Broadly, 3d hyperbolic geometric structures on $S \times \mathbb{R}$ are of two kinds.

1. Quasi-Fuchsian/ Convex cocompact/ undistorted/ quasi-isometrically (qi) embedded:
 Distances in H^2 (denote d_2) and H^3 (denote d_3) are linearly comparable: There exist (k, ϵ) such that
 \[
 \frac{1}{k} d_2(g.o, h.o) - \epsilon \leq d_3(\rho(g).O, \rho(h).O) \leq k d_2(g.o, h.o) + \epsilon.
 \]

\[
QF(S) = \text{Teich}(S) \times \text{Teich}(S) \quad \text{(Bers’ simultaneous uniformization theorem, 1960)}
\]

Limits of the above in the algebraic topology. (Bers’ density conjecture proved by Brock-Canary-Minsky, 2012) These are not qi-embedded.

Accordingly, ends of $H^3/\Gamma = S \times \mathbb{R} = M$ can also be quasi-Fuchsian or degenerate.
Dichotomy of representations

Broadly, 3d hyperbolic geometric structures on $S \times \mathbb{R}$ are of two kinds.

1. Quasi-Fuchsian/ Convex cocompact/ undistorted/ quasi-isometrically (qi) embedded:
 Distances in H^2 (denote d_2) and H^3 (denote d_3) are linearly comparable: There exist (k, ϵ) such that
 \[
 \frac{1}{k} d_2(g.o, h.o) - \epsilon \leq d_3(\rho(g).O, \rho(h).O) \leq k d_2(g.o, h.o) + \epsilon.
 \]

 \[
 QF(S) = Teich(S) \times Teich(S) \text{ (Bers' simultaneous uniformization theorem, 1960) Diagonal=Fuchsian}
 \]

2. Limits of the above in the algebraic topology. (Bers’ density conjecture proved by Brock-Canary-Minsky, 2012) These are not qi-embedded.

Accordingly, ends of $H^3/\Gamma = S \times \mathbb{R} = M$ can also be quasi-Fuchsian or degenerate.
Dichotomy of representations

Broadly, 3d hyperbolic geometric structures on $S \times \mathbb{R}$ are of two kinds.

1. Quasi-Fuchsian/ Convex cocompact/ undistorted/ quasi-isometrically (qi) embedded:

Distances in H^2 (denote d_2) and H^3 (denote d_3) are linearly comparable: There exist (k, ϵ) such that

$$\frac{1}{k} d_2(g \cdot o, h \cdot o) - \epsilon \leq d_3(\rho(g) \cdot O, \rho(h) \cdot O) \leq k d_2(g \cdot o, h \cdot o) + \epsilon.$$

$$QF(S) = Teich(S) \times Teich(S) \text{ (Bers’ simultaneous uniformization theorem, 1960)}$$

Diagonal=Fuchsian

2. Limits of the above in the algebraic topology. (Bers’ density conjecture proved by Brock-Canary-Minsky, 2012) These are not qi-embedded.

Accordingly, ends of $H^3/\Gamma = S \times \mathbb{R} = M$ can also be quasi-Fuchsian or degenerate.
Dichotomy of representations

Broadly, 3d hyperbolic geometric structures on $S \times \mathbb{R}$ are of two kinds.

1. Quasi-Fuchsian/ Convex cocompact/ undistorted/ quasi-isometrically (qi) embedded: Distances in H^2 (denote d_2) and H^3 (denote d_3) are linearly comparable: There exist (k, ϵ) such that

$$\frac{1}{k} d_2(g.o, h.o) - \epsilon \leq d_3(\rho(g).O, \rho(h).O) \leq k d_2(g.o, h.o) + \epsilon.$$

$$QF(S) = Teich(S) \times Teich(S) \text{ (Bers’ simultaneous uniformization theorem, 1960) Diagonal=Fuchsian}$$

2. Limits of the above in the algebraic topology. (Bers’ density conjecture proved by Brock-Canary-Minsky, 2012) These are not qi-embedded.

Accordingly, ends of $H^3/\Gamma = S \times \mathbb{R} = M$ can also be quasi-Fuchsian or degenerate.

Mahan Mj
Dichotomy of representations

Broadly, 3d hyperbolic geometric structures on $S \times \mathbb{R}$ are of two kinds.

1. **Quasi-Fuchsian/ Convex cocompact/ undistorted/ quasi-isometrically (qi) embedded:**
 Distances in H^2 (denote d_2) and H^3 (denote d_3) are linearly comparable: There exist (k, ϵ) such that
 $$\frac{1}{k} d_2(g.o, h.o) - \epsilon \leq d_3(\rho(g).O, \rho(h).O) \leq k d_2(g.o, h.o) + \epsilon.$$

 $QF(S) = \text{Teich}(S) \times \text{Teich}(S)$ (**Bers’ simultaneous uniformization theorem, 1960**) Diagonal=Fuchsian

2. Limits of the above in the algebraic topology. (**Bers’ density conjecture proved by Brock-Canary-Minsky, 2012**) These are *not* qi-embedded.

Accordingly, ends of $H^3/\Gamma = S \times \mathbb{R} = M$ can also be quasi-Fuchsian or degenerate.
Dichotomy of representations

Broadly, 3d hyperbolic geometric structures on $S \times \mathbb{R}$ are of two kinds.

1. Quasi-Fuchsian/ Convex cocompact/ undistorted/ quasi-isometrically (qi) embedded:
 Distances in H^2 (denote d_2) and H^3 (denote d_3) are linearly comparable: There exist (k, ϵ) such that
 $$\frac{1}{k} d_2(g.o, h.o) - \epsilon \leq d_3(\rho(g).O, \rho(h).O) \leq k d_2(g.o, h.o) + \epsilon.$$

 $$QF(S) = Teich(S) \times Teich(S)$$ (Bers’ simultaneous uniformization theorem, 1960) Diagonal=Fuchsian

2. Limits of the above in the algebraic topology. (Bers’ density conjecture proved by Brock-Canary-Minsky, 2012) These are not qi-embedded.

Accordingly, ends of $H^3/\Gamma = S \times \mathbb{R} = M$ can also be quasi-Fuchsian or degenerate.
Broadly, 3d hyperbolic geometric structures on $S \times \mathbb{R}$ are of two kinds.

1. Quasi-Fuchsian/ Convex cocompact/ undistorted/ quasi-isometrically (qi) embedded: Distances in H^2 (denote d_2) and H^3 (denote d_3) are linearly comparable: There exist (k, ϵ) such that

$$\frac{1}{k} d_2(g \cdot o, h \cdot o) - \epsilon \leq d_3(\rho(g) \cdot O, \rho(h) \cdot O) \leq k d_2(g \cdot o, h \cdot o) + \epsilon.$$

$QF(S) = Teich(S) \times Teich(S)$ (Bers’ simultaneous uniformization theorem, 1960) Diagonal=Fuchsian

2. Limits of the above in the algebraic topology. (Bers’ density conjecture proved by Brock-Canary-Minsky, 2012) These are not qi-embedded.

Accordingly, ends of $H^3/\Gamma = S \times \mathbb{R} = M$ can also be quasi-Fuchsian or degenerate.
Quasi-Fuchsian representations are precisely those for which $\tilde{i} : \mathbb{H}^2 \rightarrow \mathbb{H}^3$ extends to a continuous embedding $\partial i : S^1 \rightarrow S^2$.

Limit set $\Lambda_{\Gamma} =$ Set of accumulation points in $\hat{\mathbb{C}}$ of $\Gamma \cdot O$ for some (any) $O \in \mathbb{H}^3$: the locus of chaotic dynamics of the Γ--action on S^2.

For a quasi-Fuchsian group (subgroup of $PSL_2(\mathbb{R})$), limit set is a quasi-circle.
Quasi-Fuchsian representations are precisely those for which \(\tilde{i} : \mathbb{H}^2 \to \mathbb{H}^3 \) extends to a \textit{continuous embedding} \(\partial i : S^1 \to S^2 \).

Limit set \(\Lambda_{\Gamma} = \text{Set of accumulation points in } \hat{\mathbb{C}} \text{ of } \Gamma.O \) for some (any) \(O \in \mathbb{H}^3 \): the \textit{locus of chaotic dynamics of the } \Gamma\text{–action on } S^2.

For a quasi-Fuchsian group (subgroup of \(PSL_2(\mathbb{R}) \)), limit set is a quasi-circle.
Quasi-Fuchsian representations are precisely those for which \(\tilde{i} : H^2 \to H^3 \) extends to a **continuous embedding**
\(\partial i : S^1 \to S^2 \).

Limit set \(\Lambda_\Gamma = \) Set of accumulation points in \(\hat{C} \) of \(\Gamma \cdot O \) for some (any) \(O \in H^3 \): the **locus of chaotic dynamics of the \(\Gamma \)–action on \(S^2 \).**

For a quasi-Fuchsian group (subgroup of \(PSL_2(\mathbb{R}) \)), limit set is a quasi-circle.
Quasi-Fuchsian representations are precisely those for which \(\tilde{i} : H^2 \rightarrow H^3 \) extends to a continuous embedding \(\partial i : S^1 \rightarrow S^2 \).

Limit set \(\Lambda_\Gamma = \) Set of accumulation points in \(\hat{C} \) of \(\Gamma \cdot O \) for some (any) \(O \in H^3 \): the locus of chaotic dynamics of the \(\Gamma \)-action on \(S^2 \).

For a quasi-Fuchsian group (subgroup of \(PSL_2(\mathbb{R}) \)), limit set is a quasi-circle.
Quasi-Fuchsian representations are precisely those for which \(\tilde{i} : H^2 \to H^3 \) extends to a **continuous embedding** \(\partial i : S^1 \to S^2 \).

Limit set \(\Lambda_\Gamma = \text{Set of accumulation points in} \ \hat{\mathbb{C}} \ \text{of} \ \Gamma.O \) for some (any) \(O \in \mathbb{H}^3 \): the *locus of chaotic dynamics of the* \(\Gamma \)-action on \(S^2 \).

For a quasi-Fuchsian group (subgroup of \(PSL_2(\mathbb{R}) \)), limit set is a quasi-circle.
Quasi-Fuchsian representations are precisely those for which \(\tilde{i} : H^2 \to H^3 \) extends to a **continuous embedding** \(\partial i : S^1 \to S^2 \).

Limit set \(\Lambda_G = \) Set of accumulation points in \(\hat{C} \) of \(\Gamma.O \) for some (any) \(O \in H^3 \): the *locus of chaotic dynamics of the \(\Gamma \)–action on \(S^2 \).

For a quasi-Fuchsian group (subgroup of \(PSL_2(\mathbb{R}) \)), limit set is a quasi-circle.
Quasi-Fuchsian representations are precisely those for which $	ilde{i} : \mathbb{H}^2 \to \mathbb{H}^3$ extends to a **continuous embedding** $\partial i : S^1 \to S^2$.

Limit set $\Lambda_\Gamma = $ Set of accumulation points in $\hat{\mathbb{C}}$ of $\Gamma. O$ for some (any) $O \in \mathbb{H}^3$: the *locus of chaotic dynamics of the* Γ–$action on S^2.

For a quasi-Fuchsian group (subgroup of $PSL_2(\mathbb{R})$), limit set is a quasi-circle.
Quasi-Fuchsian representations are precisely those for which $\tilde{i} : H^2 \rightarrow H^3$ extends to a **continuous embedding** $\partial i : S^1 \rightarrow S^2$.

Limit set $\Lambda_{\Gamma} =$ Set of accumulation points in \hat{C} of $\Gamma. O$ for some (any) $O \in H^3$: the *locus of chaotic dynamics of the Γ–action on S^2.*

For a quasi-Fuchsian group (subgroup of $PSL_2(\mathbb{R})$), limit set is a quasi-circle.
Quasi-Fuchsian representations are precisely those for which \(\tilde{i} : H^2 \to H^3 \) extends to a **continuous embedding**
\[\partial i : S^1 \to S^2. \]
Limit set \(\Lambda_{\Gamma} = \text{Set of accumulation points in } \hat{C} \text{ of } \Gamma \cdot O \text{ for some (any) } O \in \mathbb{H}^3: \text{the locus of chaotic dynamics of the } \Gamma - \text{action on } S^2. \]
For a quasi-Fuchsian group (subgroup of \(PSL_2(\mathbb{R}) \)), limit set is a quasi-circle.

Mahan Mj
Quasi-Fuchsian representations are precisely those for which $\tilde{i} : H^2 \to H^3$ extends to a **continuous embedding** $\partial i : S^1 \to S^2$.

Limit set $\Lambda_\Gamma =$ Set of accumulation points in \hat{C} of $\Gamma. O$ for some (any) $O \in \mathbb{H}^3$: the **locus of chaotic dynamics of the Γ–action on S^2**.

For a quasi-Fuchsian group (subgroup of $PSL_2(\mathbb{R})$), limit set is a quasi-circle.
Quasi-Fuchsian representations are precisely those for which \(\tilde{i} : \mathcal{H}^2 \to \mathcal{H}^3 \) extends to a **continuous embedding**
\[\partial i : S^1 \to S^2. \]

Limit set \(\Lambda_\Gamma = \text{Set of accumulation points in } \hat{\mathcal{C}} \text{ of } \Gamma.O \text{ for some (any) } O \in \mathbb{H}^3: \text{the locus of chaotic dynamics of the } \Gamma-\text{action on } S^2. \]

For a quasi-Fuchsian group (subgroup of \(PSL_2(\mathbb{R}) \)), limit set is a quasi-circle.
Quasi-Fuchsian representations are precisely those for which \(\tilde{i} : H^2 \to H^3 \) extends to a **continuous embedding**
\[\partial i : S^1 \to S^2. \]
Limit set \(\Lambda_\Gamma = \) Set of accumulation points in \(\hat{C} \) of \(\Gamma \cdot O \) for some (any) \(O \in \mathbb{H}^3 \): the *locus of chaotic dynamics of the \(\Gamma \)–action on \(S^2 \).
For a quasi-Fuchsian group (subgroup of \(\text{PSL}_2(\mathbb{R}) \)), limit set is a quasi-circle.
Jordan curve theorem $\Rightarrow \hat{C} \setminus \Lambda_\Gamma = \text{domain of discontinuity} = \text{two (topological) disks, quotienting down to Riemann surfaces } \tau_1, \tau_2. \ (\text{cf. Bers’ Simultaneous Uniformization Theorem})$

Definition (From complex analytic to geometric perspective:)

The convex hull CH_Γ of Λ_Γ is the smallest non-empty closed convex subset of H^3 invariant under Γ.

Let $M = H^3/\Gamma$. The quotient of CH_Γ by Γ is called the convex core $CC(M)$ of M.

For quasi-Fuchsian groups, $CC(M)$ is homeomorphic to $S \times [-1, 1]$.

Limits of quasi-Fuchsian groups:
Thickess of Convex core $CC(M)$ tends to infinity.
2 possibilities: Degenerate only τ_1. Degenerate both τ_1, τ_2.
i.e. $I \rightarrow [0, \infty)$ (simply degenerate)
OR $I \rightarrow (-\infty, \infty)$ (doubly degenerate).
Jordan curve theorem ⇒ \(\hat{C} \setminus \Lambda_{\Gamma} = \text{domain of discontinuity} = \) two (topological) disks, quotienting down to Riemann surfaces \(\tau_1, \tau_2 \). (cf. Bers’ Simultaneous Uniformization Theorem)

Definition (From complex analytic to geometric perspective:)

The convex hull \(CH_{\Gamma} \) of \(\Lambda_{\Gamma} \) is the smallest non-empty closed convex subset of \(\mathbb{H}^3 \) invariant under \(\Gamma \).

Let \(M = \mathbb{H}^3 / \Gamma \). The quotient of \(CH_{\Gamma} \) by \(\Gamma \) is called the convex core \(CC(M) \) of \(M \).

For quasi-Fuchsian groups, \(CC(M) \) is homeomorphic to \(S \times [−1, 1] \).

Limits of quasi-Fuchsian groups:

Thickness of Convex core \(CC(M) \) tends to infinity.

2 possibilities: Degenerate only \(\tau_1 \). Degenerate both \(\tau_1, \tau_2 \).

i.e. \(I \to [0, \infty) \) (simply degenerate)

OR \(I \to (−\infty, \infty) \) (doubly degenerate).
Jordan curve theorem \(\Rightarrow \hat{C} \setminus \Lambda_{\Gamma} = \text{domain of discontinuity} = \text{two (topological) disks, quotienting down to Riemann surfaces } \tau_1, \tau_2. \) (cf. Bers’ Simultaneous Uniformization Theorem)

Definition (From complex analytic to geometric perspective:)

The convex hull \(CH_{\Gamma} \) of \(\Lambda_{\Gamma} \) is the smallest non-empty closed convex subset of \(\mathbb{H}^3 \) invariant under \(\Gamma \).

Let \(M = \mathbb{H}^3 / \Gamma \). The quotient of \(CH_{\Gamma} \) by \(\Gamma \) is called the convex core \(CC(M) \) of \(M \).

For quasi-Fuchsian groups, \(CC(M) \) is homeomorphic to \(S \times [-1, 1] \).

Limits of quasi-Fuchsian groups:

Thickness of Convex core \(CC(M) \) tends to infinity.

2 possibilities: Degenerate only \(\tau_1 \). Degenerate both \(\tau_1, \tau_2 \).

i.e. \(l \to [0, \infty) \) (simply degenerate)

OR \(l \to (-\infty, \infty) \) (doubly degenerate).
Jordan curve theorem ⇒ \(\hat{C} \setminus \Lambda_\Gamma = \text{domain of discontinuity} = \text{two (topological) disks, quotienting down to Riemann surfaces } \tau_1, \tau_2. \) (cf. Bers’ Simultaneous Uniformization Theorem)

Definition (From complex analytic to geometric perspective:)

The convex hull \(CH_\Gamma \) of \(\Lambda_\Gamma \) is the smallest non-empty closed convex subset of \(\mathbb{H}^3 \) invariant under \(\Gamma \).

Let \(M = \mathbb{H}^3 / \Gamma \). The quotient of \(CH_\Gamma \) by \(\Gamma \) is called the convex core \(CC(M) \) of \(M \).

For quasi-Fuchsian groups, \(CC(M) \) is homeomorphic to \(S \times [−1, 1] \).

Limits of quasi-Fuchsian groups:

Thickness of Convex core \(CC(M) \) tends to infinity.

2 possibilities: Degenerate only \(\tau_1 \). Degenerate both \(\tau_1, \tau_2 \).

i.e. \(I \to [0, \infty) \) (simply degenerate)

OR \(I \to (−\infty, \infty) \) (doubly degenerate).
Jordan curve theorem $\Rightarrow \hat{C} \setminus \Lambda_\Gamma = \text{domain of discontinuity} = \text{two (topological) disks, quotienting down to Riemann surfaces } \tau_1, \tau_2. \text{ (cf. Bers’ Simultaneous Uniformization Theorem)}$

Definition (From complex analytic to geometric perspective:)

The convex hull CH_Γ of Λ_Γ is the smallest non-empty closed convex subset of H^3 invariant under Γ.

Let $M = H^3/\Gamma$. The quotient of CH_Γ by Γ is called the convex core $CC(M)$ of M.

For quasi-Fuchsian groups, $CC(M)$ is homeomorphic to $S \times [-1, 1]$.

Limits of quasi-Fuchsian groups:

Thickness of Convex core $CC(M)$ tends to infinity.

2 possibilities: Degenerate only τ_1. Degenerate both τ_1, τ_2.

i.e. $I \to [0, \infty)$ (simply degenerate)

OR $I \to (-\infty, \infty)$ (doubly degenerate).
Jordan curve theorem $\Rightarrow \hat{\mathcal{C}} \setminus \Lambda_{\Gamma} =$ domain of discontinuity = two (topological) disks, quotienting down to Riemann surfaces τ_1, τ_2. (cf. Bers’ Simultaneous Uniformization Theorem)

Definition (From complex analytic to geometric perspective:)

The **convex hull** CH_{Γ} of Λ_{Γ} is the smallest non-empty closed convex subset of H^3 invariant under Γ.

Let $M = H^3 / \Gamma$. The quotient of CH_{Γ} by Γ is called the convex core $CC(M)$ of M.

For quasi-Fuchsian groups, $CC(M)$ is homeomorphic to $S \times [-1, 1]$.

Limits of quasi-Fuchsian groups:

Thickness of Convex core $CC(M)$ tends to infinity.

2 possibilities: Degenerate only τ_1. Degenerate both τ_1, τ_2.

i.e. $I \rightarrow [0, \infty)$ (simply degenerate)

OR $I \rightarrow (-\infty, \infty)$ (doubly degenerate).
Jordan curve theorem $\Rightarrow \hat{C} \setminus \Lambda_{\Gamma} = \text{domain of discontinuity} =$ two (topological) disks, quotienting down to Riemann surfaces $\tau_1, \tau_2.$ (cf. Bers’ Simultaneous Uniformization Theorem)

Definition (From complex analytic to geometric perspective:)

The **convex hull** CH_{Γ} of Λ_{Γ} is the smallest non-empty closed convex subset of H^3 invariant under Γ.

Let $M = H^3/\Gamma$. The quotient of CH_{Γ} by Γ is called the convex core $CC(M)$ of M.

For quasi-Fuchsian groups, $CC(M)$ is homeomorphic to $S \times [-1, 1]$.

Limits of quasi-Fuchsian groups:
Thickness of Convex core $CC(M)$ tends to infinity.
2 possibilities: Degenerate only τ_1. Degenerate both τ_1, τ_2.
i.e. $I \to [0, \infty)$ (simply degenerate)
OR $I \to (-\infty, \infty)$ (doubly degenerate).
Jordan curve theorem \(\Rightarrow \hat{C} \setminus \Lambda = \text{domain of discontinuity} = \) two (topological) disks, quotienting down to Riemann surfaces \(\tau_1, \tau_2 \). (cf. Bers’ Simultaneous Uniformization Theorem)

Definition (From complex analytic to geometric perspective:)

The **convex hull** \(CH_\Gamma \) of \(\Lambda_\Gamma \) is the smallest non-empty closed convex subset of \(H^3 \) invariant under \(\Gamma \).

Let \(M = H^3/\Gamma \). The quotient of \(CH_\Gamma \) by \(\Gamma \) is called the convex core \(CC(M) \) of \(M \).

For quasi-Fuchsian groups, \(CC(M) \) is homeomorphic to \(S \times [-1, 1] \).

Limits of quasi-Fuchsian groups:

Thickness of Convex core \(CC(M) \) tends to infinity.

2 possibilities: Degenerate only \(\tau_1 \). Degenerate both \(\tau_1, \tau_2 \).

i.e. \(I \rightarrow [0, \infty) \) (simply degenerate)

OR \(I \rightarrow (-\infty, \infty) \) (doubly degenerate).
Jordan curve theorem \(\Rightarrow \hat{C} \setminus \Lambda_{\Gamma} = \text{domain of discontinuity} = \text{two (topological) disks, quotienting down to Riemann surfaces} \tau_1, \tau_2. \) (cf. Bers’ Simultaneous Uniformization Theorem)

Definition (From complex analytic to geometric perspective:)

The convex hull \(CH_{\Gamma} \) of \(\Lambda_{\Gamma} \) *is the smallest non-empty closed convex subset of* \(\mathbb{H}^3 \) *invariant under* \(\Gamma \).

Let \(M = \mathbb{H}^3 / \Gamma \). *The quotient of* \(CH_{\Gamma} \) *by* \(\Gamma \) *is called the convex core* \(CC(M) \) *of* \(M \).

For quasi-Fuchsian groups, \(CC(M) \) is homeomorphic to \(S \times [-1, 1] \).

Limits of quasi-Fuchsian groups:

Thickness of Convex core \(CC(M) \) tends to infinity.

2 possibilities: Degenerate only \(\tau_1 \). Degenerate both \(\tau_1, \tau_2 \).

i.e. \(I \rightarrow [0, \infty) \) (simply degenerate)

OR \(I \rightarrow (-\infty, \infty) \) (doubly degenerate).
Jordan curve theorem $\Rightarrow \hat{C} \setminus \Lambda_\Gamma = \text{domain of discontinuity} = \text{two (topological) disks, quotienting down to Riemann surfaces } \tau_1, \tau_2$. (cf. Bers’ Simultaneous Uniformization Theorem)

Definition (From complex analytic to geometric perspective:)

The **convex hull** CH_Γ of Λ_Γ is the smallest non-empty closed convex subset of \mathbb{H}^3 invariant under Γ.

Let $M = \mathbb{H}^3/\Gamma$. The quotient of CH_Γ by Γ is called the **convex core** $\text{CC}(M)$ of M.

For quasi-Fuchsian groups, $\text{CC}(M)$ is homeomorphic to $S \times [-1, 1]$.

Limits of quasi-Fuchsian groups:

Thickness of Convex core $\text{CC}(M)$ tends to infinity.

2 possibilities: Degenerate only τ_1. Degenerate both τ_1, τ_2.
i.e. $I \to [0, \infty)$ (simply degenerate)
OR $I \to (-\infty, \infty)$ (doubly degenerate).
Jordan curve theorem \(\Rightarrow \hat{C} \setminus \Lambda_{\Gamma} = \) domain of discontinuity = two (topological) disks, quotienting down to Riemann surfaces \(\tau_1, \tau_2 \). (cf. Bers’ Simultaneous Uniformization Theorem)

Definition (From complex analytic to geometric perspective:)

The **convex hull** \(CH_{\Gamma} \) of \(\Lambda_{\Gamma} \) is the smallest non-empty closed convex subset of \(H^3 \) invariant under \(\Gamma \).

Let \(M = H^3/\Gamma \). The quotient of \(CH_{\Gamma} \) by \(\Gamma \) is called the convex core \(CC(M) \) of \(M \).

For quasi-Fuchsian groups, \(CC(M) \) is homeomorphic to \(S \times [-1, 1] \).

Limits of quasi-Fuchsian groups:

Thickness of Convex core \(CC(M) \) tends to infinity.

2 possibilities: Degenerate only \(\tau_1 \). Degenerate both \(\tau_1, \tau_2 \).

i.e. \(I \rightarrow [0, \infty) \) (simply degenerate)

OR \(I \rightarrow (-\infty, \infty) \) (doubly degenerate).
Jordan curve theorem $\Rightarrow \hat{C} \setminus \Lambda_\Gamma = \text{domain of discontinuity} = \text{two (topological) disks, quotienting down to Riemann surfaces } \tau_1, \tau_2.$ (cf. Bers’ Simultaneous Uniformization Theorem)

Definition (From complex analytic to geometric perspective:)

The convex hull CH_Γ of Λ_Γ is the smallest non-empty closed convex subset of H^3 invariant under Γ.

Let $M = H^3/\Gamma$. The quotient of CH_Γ by Γ is called the convex core $CC(M)$ of M.

For quasi-Fuchsian groups, $CC(M)$ is homeomorphic to $S \times [-1, 1]$.

Limits of quasi-Fuchsian groups:

Thickess of Convex core $CC(M)$ tends to infinity.

2 possibilities: Degenerate only τ_1. Degenerate both τ_1, τ_2.

i.e. $l \rightarrow [0, \infty)$ (**simply degenerate**)

OR $l \rightarrow (-\infty, \infty)$ (**doubly degenerate**).
Jordan curve theorem $\Rightarrow \hat{\mathcal{C}} \setminus \Lambda_\Gamma = \text{domain of discontinuity} = \text{two (topological) disks, quotienting down to Riemann surfaces } \tau_1, \tau_2. \text{ (cf. Bers’ Simultaneous Uniformization Theorem)}$

Definition (From complex analytic to geometric perspective:)

The convex hull CH_Γ of Λ_Γ is the smallest non-empty closed convex subset of H^3 invariant under Γ.

Let $M = H^3/\Gamma$. The quotient of CH_Γ by Γ is called the convex core $CC(M)$ of M.

For quasi-Fuchsian groups, $CC(M)$ is homeomorphic to $S \times [-1, 1]$.

Limits of quasi-Fuchsian groups:

Thickness of Convex core $CC(M)$ tends to infinity.

2 possibilities: Degenerate only τ_1. Degenerate both τ_1, τ_2.

i.e. $l \rightarrow [0, \infty)$ (**simply degenerate**)

OR $l \rightarrow (-\infty, \infty)$ (**doubly degenerate**).
Jordan curve theorem ⇒ $\hat{C} \setminus \Lambda_\Gamma = \text{domain of discontinuity} = \text{two (topological) disks, quotienting down to Riemann surfaces } \tau_1, \tau_2$. (cf. Bers’ Simultaneous Uniformization Theorem)

Definition (From complex analytic to geometric perspective:)

The convex hull CH_Γ of Λ_Γ *is the smallest non-empty closed convex subset of* H^3 *invariant under* Γ.

Let $M = H^3/\Gamma$. The quotient of CH_Γ by Γ is called the convex core $CC(M)$ of M.

For quasi-Fuchsian groups, $CC(M)$ is homeomorphic to $S \times [-1, 1]$.

Limits of quasi-Fuchsian groups:

Thickness of Convex core $CC(M)$ tends to infinity.

2 possibilities: Degenerate only τ_1. Degenerate both τ_1, τ_2.

i.e. $I \to [0, \infty)$ (simply degenerate)

OR $I \to (-\infty, \infty)$ (doubly degenerate).
Theorem (Thurston’s Double Limit Theorem ’80)

Limits exist as thickness of convex cores tends to infinity.

Simultaneous uniformization perspective for the limits = ??
Theorem (Thurston’s Double Limit Theorem ’80)

Limits exist as thickness of convex cores tends to infinity.

Simultaneous uniformization perspective for the limits = ??
Theorem (Thurston’s Double Limit Theorem ’80)

Limits exist as thickness of convex cores tends to infinity.

Simultaneous uniformization perspective for the limits = ??
Theorem (Thurston’s Double Limit Theorem ’80)

Limits exist as thickness of convex cores tends to infinity.

Simultaneous uniformization perspective for the limits = ??
Theorem (Thurston’s Double Limit Theorem ’80)

Limits exist as thickness of convex cores tends to infinity.

Simultaneous uniformization perspective for the limits = ??
Theorem (Thurston’s Double Limit Theorem ’80)

Limits exist as thickness of convex cores tends to infinity.

Simultaneous uniformization perspective for the limits = ??
Theorem (Thurston’s Double Limit Theorem ’80)

Limits exist as thickness of convex cores tends to infinity.

Simultaneous uniformization perspective for the limits = ??
Cannon-Thurston maps: Asymptotic/dynamic viewpoint for degenerate representations

Theorem (Existence of Cannon-Thurston Maps, 2014, (M–))

For all representations in $\text{AH}(S)$, $\tilde{i} : \mathbb{H}^2 \rightarrow \mathbb{H}^3$ extends to a continuous map $\partial i : S^1 \rightarrow S^2$

Such continuous maps are in general called Cannon-Thurston maps. Play, in particular, the role of "Jordan curve theorem" even when we have space filling curves.
Cannon-Thurston maps: Asymptotic/dynamic viewpoint for degenerate representations

Theorem (Existence of Cannon-Thurston Maps, 2014, (M–))

For all representations in $AH(S)$, $\tilde{i} : H^2 \to H^3$ extends to a continuous map $\partial i : S^1 \to S^2$

Such continuous maps are in general called Cannon-Thurston maps. Play, in particular, the role of "Jordan curve theorem" even when we have space filling curves.
Cannon-Thurston maps: Asymptotic/dynamic viewpoint for degenerate representations

Theorem (Existence of Cannon-Thurston Maps, 2014, (M–))

For all representations in $\text{AH}(S)$, $\tilde{i} : H^2 \to H^3$ extends to a continuous map $\partial i : S^1 \to S^2$

Such continuous maps are in general called Cannon-Thurston maps. Play, in particular, the role of "Jordan curve theorem" even when we have space filling curves.
Theorem (Existence of Cannon-Thurston Maps, 2014, (M–))

For all representations in $AH(S)$, $\tilde{i} : H^2 \rightarrow H^3$ extends to a continuous map $\partial i : S^1 \rightarrow S^2$

Such continuous maps are in general called Cannon-Thurston maps. Play, in particular, the role of "Jordan curve theorem" even when we have space filling curves.
Cannon-Thurston maps: Asymptotic/dynamic viewpoint for degenerate representations

Theorem (Existence of Cannon-Thurston Maps, 2014, (M–))

For all representations in \(\text{AH}(S) \), \(\tilde{i} : H^2 \to H^3 \) extends to a continuous map \(\partial i : S^1 \to S^2 \).

Such continuous maps are in general called Cannon-Thurston maps. Play, in particular, the role of "Jordan curve theorem" even when we have space filling curves.

Mahan Mj
Cannon-Thurston maps: Asymptotic/dynamic viewpoint for degenerate representations

Theorem (Existence of Cannon-Thurston Maps, 2014, (M–))

For all representations in \(AH(S) \), \(\tilde{i} : H^2 \to H^3 \) extends to a continuous map \(\partial i : S^1 \to S^2 \).

Such continuous maps are in general called Cannon-Thurston maps. Play, in particular, the role of "Jordan curve theorem" even when we have space filling curves.
Theorem (Existence of Cannon-Thurston Maps, 2014, (M–))

For all representations in \(AH(S)\), \(\tilde{i} : H^2 \to H^3\) extends to a continuous map \(\partial i : S^1 \to S^2\).

Such continuous maps are in general called Cannon-Thurston maps. Play, in particular, the role of "Jordan curve theorem" even when we have space filling curves.
Theorem (Existence of Cannon-Thurston Maps, 2014, (M–))

For all representations in $AH(S)$, $\tilde{i}: H^2 \to H^3$ extends to a continuous map $\partial i: S^1 \to S^2$

Such continuous maps are in general called Cannon-Thurston maps. Play, in particular, the role of "Jordan curve theorem" even when we have space filling curves.
A **geodesic lamination** on a hyperbolic surface is a foliation of a closed subset with geodesics. For each degenerate end of M, there exists a natural geodesic lamination (a ‘laminated object at infinity’) called the **ending lamination** $EL(\rho)$ (in place of τ_1, τ_2 for quasi-Fuchsian.)

Theorem (Structure of Cannon-Thurston Maps: 2014, (M–))

Cannon-Thurston maps identify precisely the end-points of ending laminations.

(Dynamics on $\hat{\mathbb{C}}$ determines asymptotics of M)
A **geodesic lamination** on a hyperbolic surface is a foliation of a closed subset with geodesics. For each degenerate end of M, there exists a natural geodesic lamination (a ‘laminated object at infinity’) called the **ending lamination** $EL(\rho)$ (in place of τ_1, τ_2 for quasi-Fuchsian.)

Theorem (Structure of Cannon-Thurston Maps: 2014, (M–))

Cannon-Thurston maps identify precisely the end-points of ending laminations.

(Dynamics on \hat{C} determines asymptotics of M)
A geodesic lamination on a hyperbolic surface is a foliation of a closed subset with geodesics. For each degenerate end of M, there exists a natural geodesic lamination (a ‘laminated object at infinity’) called the ending lamination $EL(\rho)$ (in place of τ_1, τ_2 for quasi-Fuchsian.)

Theorem (Structure of Cannon-Thurston Maps: 2014, (M–))

Cannon-Thurston maps identify precisely the end-points of ending laminations.

(Dynamics on $\hat{\mathbb{C}}$ determines asymptotics of M)
A **geodesic lamination** on a hyperbolic surface is a foliation of a closed subset with geodesics. For each degenerate end of M, there exists a natural geodesic lamination (a ‘laminated object at infinity’) called the **ending lamination** $EL(\rho)$ (in place of τ_1, τ_2 for quasi-Fuchsian.)

Theorem (Structure of Cannon-Thurston Maps: 2014, (M–))

Cannon-Thurston maps identify precisely the end-points of ending laminations.

(Dynamics on \hat{C} determines asymptotics of M)
A **geodesic lamination** on a hyperbolic surface is a foliation of a closed subset with geodesics. For each degenerate end of M, there exists a natural geodesic lamination (a ‘laminated object at infinity’) called the **ending lamination** $EL(\rho)$ (in place of τ_1, τ_2 for quasi-Fuchsian.)

Theorem (Structure of Cannon-Thurston Maps: 2014, (M–))

Cannon-Thurston maps identify precisely the end-points of ending laminations.

(Dynamics on \hat{C} determines asymptotics of M)
A **geodesic lamination** on a hyperbolic surface is a foliation of a closed subset with geodesics. For each degenerate end of \mathcal{M}, there exists a natural geodesic lamination (a ‘laminated object at infinity’) called the **ending lamination** $EL(\rho)$ (in place of τ_1, τ_2 for quasi-Fuchsian.)

Theorem (Structure of Cannon-Thurston Maps: 2014, (M–))

Cannon-Thurston maps identify precisely the end-points of ending laminations.

(Dynamics on $\hat{\mathcal{C}}$ determines asymptotics of \mathcal{M})
A **geodesic lamination** on a hyperbolic surface is a foliation of a closed subset with geodesics. For each degenerate end of M, there exists a natural geodesic lamination (a ‘laminated object at infinity’) called the **ending lamination** $EL(\rho)$ (in place of τ_1, τ_2 for quasi-Fuchsian.)

Theorem (Structure of Cannon-Thurston Maps: 2014, (M–))

Cannon-Thurston maps identify precisely the end-points of ending laminations.

(Dynamics on \hat{C} determines asymptotics of M)
A **geodesic lamination** on a hyperbolic surface is a foliation of a closed subset with geodesics.

For each degenerate end of M, there exists a natural geodesic lamination (a ‘laminated object at infinity’) called the **ending lamination** $EL(\rho)$ (in place of τ_1, τ_2 for quasi-Fuchsian.)

Theorem (Structure of Cannon-Thurston Maps: 2014, (M–))

Cannon-Thurston maps identify precisely the end-points of ending laminations.

(Dynamics on $\hat{\mathbb{C}}$ determines asymptotics of M)
A **geodesic lamination** on a hyperbolic surface is a foliation of a closed subset with geodesics. For each degenerate end of M, there exists a natural geodesic lamination (a ‘laminated object at infinity’) called the **ending lamination** $EL(\rho)$ (in place of τ_1, τ_2 for quasi-Fuchsian.)

Theorem (Structure of Cannon-Thurston Maps: 2014, (M–))

Cannon-Thurston maps identify precisely the end-points of ending laminations.

Dynamics on \hat{C} determines asymptotics of M.
Theorem (Ending lamination theorem (Brock-Canary-Minsky 2012))

Ending lamination determines ρ up to conjugacy.

(Asymptotics of M determine its geometry)

Yair Minsky’s ICM talk 2006.
Hence, dynamics on the sphere at infinity (specifically on the limit set) determines geometry of $H^3/G = M$.
Theorem (Ending lamination theorem (Brock-Canary-Minsky 2012))

Ending lamination determines ρ up to conjugacy.

(Asymptotics of M determine its geometry)

Yair Minsky’s ICM talk 2006.

Hence, dynamics on the sphere at infinity (specifically on the limit set) determines geometry of $\mathbb{H}^3/G = M$.
Theorem (Ending lamination theorem (Brock-Canary-Minsky 2012))

Ending lamination determines ρ *up to conjugacy.*
(Asymptotics of M *determine its geometry)*

Yair Minsky’s ICM talk 2006.
Hence, dynamics on the sphere at infinity (specifically on the limit set) determines geometry of $H^3 / G = M.$
Theorem (Ending lamination theorem (Brock-Canary-Minsky 2012))

Ending lamination determines ρ up to conjugacy.
(Asymptotics of M determine its geometry)

Yair Minsky’s ICM talk 2006.

Hence, dynamics on the sphere at infinity (specifically on the limit set) determines geometry of $H^3/G = M$.
Theorem (Ending lamination theorem (Brock-Canary-Minsky 2012))

Ending lamination determines ρ *up to conjugacy.*
(*Asymptotics of M determine its geometry*)

Yair Minsky’s ICM talk 2006.

Hence, dynamics on the sphere at infinity (specifically on the limit set) determines geometry of $\mathbb{H}^3/G = M.$
Theorem (Ending lamination theorem (Brock-Canary-Minsky 2012))

Ending lamination determines ρ up to conjugacy. (Asymptotics of M determine its geometry)

Yair Minsky’s ICM talk 2006.

Hence, dynamics on the sphere at infinity (specifically on the limit set) determines geometry of $H^3/G = M$.
Theorem (Local connectivity, 2014, (M–))

Connected limit sets of finitely generated discrete subgroups of $\text{PSL}_2(\mathbb{C})$ are locally connected.

Theorem (Arbitrary Kleinian groups, 2017, (M–))

Existence and structure theorem for C-T maps continue to hold for arbitrary finitely generated discrete subgroups of $\text{PSL}_2(\mathbb{C})$.

Mahan Mj
Connected limit sets of finitely generated discrete subgroups of $\text{PSL}_2(\mathbb{C})$ are locally connected.

Existence and structure theorem for C-T maps continue to hold for arbitrary finitely generated discrete subgroups of $\text{PSL}_2(\mathbb{C})$.
Theorem (Local connectivity, 2014, (M–))

Connected limit sets of finitely generated discrete subgroups of $\text{PSL}_2(\mathbb{C})$ are locally connected.

Theorem (Arbitrary Kleinian groups, 2017, (M–))

*Existence and structure theorem for C-T maps continue to hold for arbitrary finitely generated discrete subgroups of $\text{PSL}_2(\mathbb{C})$.***
Question (–M, ’97)

Let \(H \subset G \) be a hyperbolic subgroup of a hyperbolic group. Does the inclusion \(i : \Gamma_H \to \Gamma_G \) of Cayley graphs extend to the boundary, giving \(\partial i : \partial H \to \partial G \)?

No, in this generality (Baker-Riley 2013)
Yes, if (’98, M–)

- \(H \) is normal in \(G \)
- \(H \) is a vertex subgroup in a graph of groups decomposition where edge-to-vertex group inclusions are qi-embeddings.
Question (–M, ’97)

Let $H \subset G$ be a hyperbolic subgroup of a hyperbolic group. Does the inclusion $i : \Gamma_H \to \Gamma_G$ of Cayley graphs extend to the boundary, giving $\partial i : \partial H \to \partial G$?

No, in this generality (Baker-Riley 2013)

Yes, if (’98, M–)

- H is normal in G
- H is a vertex subgroup in a graph of groups decomposition where edge-to-vertex group inclusions are qi-embeddings.
Question (–M, ’97)

Let \(H \subset G \) be a hyperbolic subgroup of a hyperbolic group. Does the inclusion \(i : \Gamma_H \to \Gamma_G \) of Cayley graphs extend to the boundary, giving \(\partial i : \partial H \to \partial G \)?

No, in this generality (Baker-Riley 2013)

Yes, if (’98, M–)

1. \(H \) is normal in \(G \)
2. \(H \) is a vertex subgroup in a graph of groups decomposition where edge-to-vertex group inclusions are qi-embeddings.
Let $H \subset G$ be a hyperbolic subgroup of a hyperbolic group. Does the inclusion $i : \Gamma_H \to \Gamma_G$ of Cayley graphs extend to the boundary, giving $\partial i : \partial H \to \partial G$?

No, in this generality (Baker-Riley 2013)
Yes, if (’98, M–)

- H is normal in G
- H is a vertex subgroup in a graph of groups decomposition where edge-to-vertex group inclusions are qi-embeddings.
Question (–M, ’97)

Let $H \subset G$ be a hyperbolic subgroup of a hyperbolic group. Does the inclusion $i : \Gamma_H \to \Gamma_G$ of Cayley graphs extend to the boundary, giving $\partial i : \partial H \to \partial G$?

No, in this generality (Baker-Riley 2013)
Yes, if (’98, M–)

1. H is normal in G
2. H is a vertex subgroup in a graph of groups decomposition where edge-to-vertex group inclusions are qi-embeddings.
Question (–M, ’97)

Let $H \subset G$ be a hyperbolic subgroup of a hyperbolic group. Does the inclusion $i : \Gamma_H \to \Gamma_G$ of Cayley graphs extend to the boundary, giving $\partial i : \partial H \to \partial G$?

No, in this generality (Baker-Riley 2013)
Yes, if (’98, M–)

1. H is normal in G
2. H is a vertex subgroup in a graph of groups decomposition where edge-to-vertex group inclusions are qi-embeddings.
Surface group representations in other non-compact semisimple Lie groups G: Anosov representations (Labourie) give $\pi_1(S)$–equivariant embeddings from S^1 to G/P. Analog of $QF(S)$. Work of Kapovich-Leeb-Porti; Gueritaud-Guichard-Kassel-Wienhard.

Question

1. Analog of elements of limiting representations in $AH(S) \setminus QF(S)$?

2. What if asymptotic embedding $\partial_i: S^1 \to G/B$ is replaced by requiring only a continuous (higher Cannon-Thurston?) map at $S^1 \to G/B$?
Surface group representations in other non-compact semisimple Lie groups G: Anosov representations (Labourie) give $\pi_1(S)$–equivariant embeddings from S^1 to G/P. Analog of $QF(S)$.
Work of Kapovich-Leeb-Porti; Gueritaud-Guichard-Kassel-Wienhard.

Question

1. Analog of elements of limiting representations in $AH(S) \setminus QF(S)$?
2. What if asymptotic embedding $\partial_i: S^1 \to G/P$ is replaced by requiring only a continuous (higher Cannon-Thurston?) map $\partial_i: S^1 \to G/B$?
Surface group representations in other non-compact semisimple Lie groups G: Anosov representations (Labourie) give $\pi_1(S)$–equivariant embeddings from S^1 to G/P. Analog of $QF(S)$.

Work of Kapovich-Leeb-Porti; Gueritaud-Guichard-Kassel-Wienhard.

Question

1. Analog of elements of limiting representations in $AH(S) \setminus QF(S)$?

2. What if asymptotic embedding $\partial i: S^1 \to G/B$ is replaced by requiring only a continuous (higher Cannon-Thurston?) map $\partial i: S^1 \to GrB$?
Surface group representations in other non-compact semisimple Lie groups G: Anosov representations (Labourie) give $\pi_1(S)$–equivariant embeddings from S^1 to G/P. Analog of $QF(S)$.
Work of Kapovich-Leeb-Porti;
Gueritaud-Guichard-Kassel-Wienhard.

Question

1. Analog of elements of limiting representations in $AH(S) \setminus QF(S)$?
2. What if asymptotic embedding $\partial_i : S^1 \to G/B$ is replaced by requiring only a continuous (higher Cannon-Thurston?) map $\partial_i : S^1 \to G/B$?
Surface group representations in other non-compact semisimple Lie groups G: Anosov representations (Labourie) give $\pi_1(S)$–equivariant embeddings from S^1 to G/P. Analog of $QF(S)$.

Work of Kapovich-Leeb-Porti; Gueritaud-Guichard-Kassel-Wienhard.

Question

1. Analog of elements of limiting representations in $AH(S) \setminus QF(S)$?

2. What if asymptotic embedding $\partial i : S^1 \to G/B$ is replaced by requiring only a continuous (higher Cannon-Thurston?) map $\partial i : S^1 \to G/B$?
Surface group representations in other non-compact semisimple Lie groups G: Anosov representations (Labourie) give $\pi_1(S)$–equivariant embeddings from S^1 to G/P. Analog of $QF(S)$.
Work of Kapovich-Leeb-Porti; Gueritaud-Guichard-Kassel-Wienhard.

Question

1. Analog of elements of limiting representations in $AH(S) \setminus QF(S)$?

What if asymptotic embedding $\partial i : S^1 \to G/B$ is replaced by requiring only a continuous (higher Cannon-Thurston?) map $\partial i : S^1 \to G/B$?
Surface group representations in other non-compact semisimple Lie groups G: Anosov representations (Labourie) give $\pi_1(S)$–equivariant embeddings from S^1 to G/P. Analog of $QF(S)$.
Work of Kapovich-Leeb-Porti; Gueritaud-Guichard-Kassel-Wienhard.

Question

1. **Analog of elements of limiting representations in $AH(S) \setminus QF(S)$?**

2. What if asymptotic embedding $\partial i : S^1 \to G/B$ is replaced by requiring only a continuous (higher Cannon-Thurston?) map $\partial i : S^1 \to G/B$?
Surface group representations in other non-compact semisimple Lie groups G: Anosov representations (Labourie) give $\pi_1(S)$–equivariant embeddings from S^1 to G/P. Analog of $QF(S)$.
Work of Kapovich-Leeb-Porti; Gueritaud-Guichard-Kassel-Wienhard.

Question

1. Analog of elements of limiting representations in $AH(S) \setminus QF(S)$?

2. What if asymptotic embedding $\partial i : S^1 \rightarrow G/B$ is replaced by requiring only a continuous (higher Cannon-Thurston?) map $\partial i : S^1 \rightarrow G/B$?
Surface group representations in other non-compact semisimple Lie groups G: Anosov representations (Labourie) give $\pi_1(S)$–equivariant embeddings from S^1 to G/P. Analog of $QF(S)$.
Work of Kapovich-Leeb-Porti; Gueritaud-Guichard-Kassel-Wienhard.

Question

1. Analog of elements of limiting representations in $AH(S) \setminus QF(S)$?
2. What if asymptotic embedding $\partial i : S^1 \to G/B$ is replaced by requiring only a continuous (higher Cannon-Thurston?) map $\partial i : S^1 \to G/B$?
Surface group representations in other non-compact semisimple Lie groups G: Anosov representations (Labourie) give $\pi_1(S)$–equivariant embeddings from S^1 to G/P. Analog of $QF(S)$.

Work of Kapovich-Leeb-Porti; Gueritaud-Guichard-Kassel-Wienhard.

Question

1. Analog of elements of limiting representations in $AH(S) \setminus QF(S)$?

2. What if asymptotic embedding $\partial i : S^1 \to G/B$ is replaced by requiring only a continuous (higher Cannon-Thurston?) map $\partial i : S^1 \to G/B$?
THANK YOU