Acylindrically hyperbolic groups

D. Osin

Vanderbilt University
Studying groups as geometric objects

Two approaches to convert a group G into a geometric object:

1. Fix a generating set X of G and study the Cayley graph $\Gamma = \text{Cay}(G, X)$ equipped with the combinatorial metric:

2. Let S be a metric space and let $G \curvearrowright S$ (by isometries). Fix $s \in S$ and study the geometric structure of the G-orbit of s.

These approaches work especially well in the presence of certain "negative curvature" conditions.
Studying groups as geometric objects

Two approaches to convert a group G into a geometric object:

1. Fix a generating set X of G and study the Cayley graph $\Gamma = \text{Cay}(G, X)$ equipped with the combinatorial metric:

2. Let S be a metric space and let $G \rtimes S$ (by isometries). Fix $s \in S$ and study the geometric structure of the G-orbit of s.

These approaches work especially well in the presence of certain "negative curvature" conditions.
Studying groups as geometric objects

Two approaches to convert a group G into a geometric object:

1. Fix a generating set X of G and study the *Cayley graph* $\Gamma = \text{Cay}(G, X)$ equipped with the combinatorial metric:

$$V(\Gamma) = G, \quad E(\Gamma): g \rightarrow gx$$

2. Let S be a metric space and let $G \acts S$ (by isometries). Fix $s \in S$ and study the geometric structure of the G-orbit of s. These approaches work especially well in the presence of certain "negative curvature" conditions.
Two approaches to convert a group G into a geometric object:

1. Fix a generating set X of G and study the *Cayley graph* $\Gamma = \text{Cay}(G, X)$ equipped with the combinatorial metric:

$$V(\Gamma) = G, \quad E(\Gamma): g \to gx$$

2. Let S be a metric space and let $G \curvearrowright S$ (by isometries). Fix $s \in S$ and study the geometric structure of the G-orbit of s. These approaches work especially well in the presence of certain "negative curvature" conditions.
Studying groups as geometric objects

Two approaches to convert a group G into a geometric object:

1. Fix a generating set X of G and study the *Cayley graph* $\Gamma = \text{Cay}(G, X)$ equipped with the combinatorial metric:

 $$ V(\Gamma) = G, \quad E(\Gamma) : g \rightarrow gx $$

2. Let S be a metric space and let $G \curvearrowright S$ (by isometries). Fix $s \in S$ and study the geometric structure of the G-orbit of s.

These approaches work especially well in the presence of certain “negative curvature” conditions.
Definition (Gromov)

A geodesic metric space is **hyperbolic** if \(\exists \delta \geq 0 \) such that for any triangle with geodesic sides \(p, q, r \) and any \(x \in p \), we have \(d(x, q \cup r) \leq \delta \).
Definition (Gromov)

A geodesic metric space is \textit{hyperbolic} if \(\exists \delta \geq 0 \) such that for any triangle with geodesic sides \(p, q, r \) and any \(x \in p \), we have \(d(x, q \cup r) \leq \delta \).

Examples.

1. Any bounded space \(S \) is hyperbolic with \(\delta = diam(S) \).
Definition (Gromov)

A geodesic metric space is hyperbolic if \(\exists \delta \geq 0 \) such that for any triangle with geodesic sides \(p, q, r \) and any \(x \in p \), we have \(d(x, q \cup r) \leq \delta \).

Examples.

1. Any bounded space \(S \) is hyperbolic with \(\delta = diam(S) \).
2. Any tree is hyperbolic with \(\delta = 0 \).
Definition (Gromov)

A geodesic metric space is **hyperbolic** if \(\exists \delta \geq 0 \) such that for any triangle with geodesic sides \(p, q, r \) and any \(x \in p \), we have \(d(x, q \cup r) \leq \delta \).

Examples.

1. Any bounded space \(S \) is hyperbolic with \(\delta = diam(S) \).
2. Any tree is hyperbolic with \(\delta = 0 \).
3. \(\mathbb{H}^n \) is hyperbolic.
A geodesic metric space is **hyperbolic** if there exists a constant $\delta \geq 0$ such that for any triangle with geodesic sides p, q, r and any $x \in p$, we have $d(x, q \cup r) \leq \delta$.

Examples.

1. Any bounded space S is hyperbolic with $\delta = \text{diam}(S)$.
2. Any tree is hyperbolic with $\delta = 0$.
3. \mathbb{H}^n is hyperbolic.
4. \mathbb{R}^n is not hyperbolic for $n \geq 2$.
A finitely generated group G is *hyperbolic* if $\text{Cay}(G, X)$ is hyperbolic for some finite generating set X of G.

Examples.
1. Finite groups.
2. Free groups of finite rank.
3. $\pi_1(M)$ for any closed hyperbolic manifold M.

Definition (Gromov)
Definition (Gromov)

A finitely generated group G is *hyperbolic* if $\text{Cay}(G, X)$ is hyperbolic for some finite generating set X of G.

Examples.

1. Finite groups.
Definition (Gromov)

A finitely generated group G is *hyperbolic* if $\text{Cay}(G, X)$ is hyperbolic for some finite generating set X of G.

Examples.

1. Finite groups.
2. Free groups of finite rank.
Definition (Gromov)

A finitely generated group G is *hyperbolic* if $\text{Cay}(G, X)$ is hyperbolic for some finite generating set X of G.

Examples.

1. Finite groups.
2. Free groups of finite rank.
3. $\pi_1(M)$ for any closed hyperbolic manifold M.
Definition (Gromov)

A finitely generated group G is \textit{hyperbolic} if $\text{Cay}(G, X)$ is hyperbolic for some finite generating set X of G.

Examples.

1. Finite groups.
2. Free groups of finite rank.
3. $\pi_1(M)$ for any closed hyperbolic manifold M.
A finitely generated group G is \textit{hyperbolic} if $\text{Cay}(G, X)$ is hyperbolic for some finite generating set X of G.

\textbf{Examples.}

1. Finite groups.
2. Free groups of finite rank.
3. $\pi_1(M)$ for any closed hyperbolic manifold M.

\begin{center}
\begin{tikzpicture}
\begin{scope}
\node [circle, fill=black, draw, line width=1.5mm, line cap=round, inner sep=10pt, fill opacity=0.5] (a) at (0,0) {hyperbolic groups};
\node [circle, fill=black, draw, line width=1.5mm, line cap=round, inner sep=10pt] (b) at (0,0) {relatively hyperbolic groups};
\end{scope}
\end{tikzpicture}
\end{center}
Definition (Gromov)

A finitely generated group G is *hyperbolic* if $\text{Cay}(G, X)$ is hyperbolic for some finite generating set X of G.

Examples.

1. Finite groups.
2. Free groups of finite rank.
3. $\pi_1(M)$ for any closed hyperbolic manifold M.

\[\text{hyperbolic groups} \supset \text{relatively hyperbolic groups} \]

- $\text{MCG}(S_g)$
- $\text{Out}(F_n)$

\[\vdots \]
Acylindrically hyperbolic groups

Definition (Bowditch)
An isometric action of G on a metric space S is acylindrical if

$\forall \varepsilon > 0 \exists R, N > 0 \forall x, y \in S \ d(x, y) \geq R \Rightarrow |\{g \in G \mid d(x, gx) \leq \varepsilon \land d(y, gy) \leq \varepsilon\}| \leq N$.

Examples:
$G \rtimes \text{pt}. \text{ Proper & cocompact } \Rightarrow \text{acylindrical}.$

$\text{MCG}(S_g) \rtimes \text{curve complex for } g \geq 2$ (Bowditch).
Acylindrically hyperbolic groups

Definition (Bowditch)

An isometric action of G on a metric space S is **acylindrical** if $\forall \varepsilon > 0 \exists R, N > 0$ such that $\forall x, y \in S$

\[
d(x, y) \geq R \implies |\{g \in G \mid d(x, gx) \leq \varepsilon \& d(y, gy) \leq \varepsilon\}| \leq N.
\]
Acylindrically hyperbolic groups

Definition (Bowditch)

An isometric action of G on a metric space S is **acylindrical** if $\forall \varepsilon > 0 \ \exists R, N > 0$ such that $\forall x, y \in S$

$$d(x, y) \geq R \implies |\{g \in G \mid d(x, gx) \leq \varepsilon \land d(y, gy) \leq \varepsilon\}| \leq N.$$

Examples:

- $G \curvearrowright pt.$
Definition (Bowditch)

An isometric action of G on a metric space S is **acylindrical** if $\forall \varepsilon > 0 \exists R, N > 0$ such that $\forall x, y \in S$

$$d(x, y) \geq R \implies |\{g \in G \mid d(x, gx) \leq \varepsilon \& d(y, gy) \leq \varepsilon\}| \leq N.$$

Examples:

- $G \curvearrowright \text{pt}$.
- Proper & cocompact \implies acylindrical.
Acylindrically hyperbolic groups

Definition (Bowditch)

An isometric action of G on a metric space S is **acylindrical** if $\forall \varepsilon > 0 \ \exists R, N > 0$ such that $\forall x, y \in S$

\[d(x, y) \geq R \implies | \{ g \in G \mid d(x, gx) \leq \varepsilon \ & d(y, gy) \leq \varepsilon \} | \leq N. \]

Examples:

- $G \curvearrowright pt.$
- Proper & cocompact \implies acylindrical.
- $MCG(S_g) \curvearrowright$ curve complex for $g \geq 2$ (Bowditch).
Definition

G is acylindrically hyperbolic if it admits a non-elementary acylindrical action on a hyperbolic space.

In our settings: non-elementary $\iff G$ is not virtually cyclic and has unbounded orbits.

Examples

Non-elementary hyperbolic and relatively hyperbolic groups.

$\text{Out}(F_n)$ (Bestvina-Feighn).

If $G = \pi_1(\text{closed irreducible 3-manifold})$, then G is acylindrically hyperbolic, or is virtually solvable, or M is Seifert fibered (Minasyan-Osin).

Groups of deficiency ≥ 2 (Osin).
Definition

G is acylindrically hyperbolic if it admits a non-elementary acylindrical action on a hyperbolic space.

In our settings: non-elementary $\iff G$ is not virtually cyclic and has unbounded orbits.

Examples

- Non-elementary hyperbolic and relatively hyperbolic groups.
Definition

G is **acylindrically hyperbolic** if it admits a non-elementary acylindrical action on a hyperbolic space.

In our settings: *non-elementary* \iff *G is not virtually cyclic and has unbounded orbits*.

Examples

- Non-elementary hyperbolic and relatively hyperbolic groups.
- $MGG(S_g)$ for $g \geq 1$ (Masur-Minsky, Bowditch).
Definition

G is acylindrically hyperbolic if it admits a non-elementary acylindrical action on a hyperbolic space.

In our settings: *non-elementary* $\iff G$ is not virtually cyclic and has unbounded orbits.

Examples

- Non-elementary hyperbolic and relatively hyperbolic groups.
- $\text{MGG}(S_g)$ for $g \geq 1$ (Masur-Minsky, Bowditch).
- $\text{Out}(F_n)$ (Bestvina-Feighn).
Definition

G is acylindrically hyperbolic if it admits a non-elementary acylindrical action on a hyperbolic space.

In our settings: non-elementary $\iff G$ is not virtually cyclic and has unbounded orbits.

Examples

- Non-elementary hyperbolic and relatively hyperbolic groups.
- $MGG(S_g)$ for $g \geq 1$ (Masur-Minsky, Bowditch).
- $Out(F_n)$ (Bestvina-Feighn).
- If $G = \pi_1(\text{closed irreducible 3-manifold})$, then G is acylindrically hyperbolic, or is virtually solvable, or M is Seifert fibered (Minasyan-Osin).
Definition

G is acylindrically hyperbolic if it admits a non-elementary acylindrical action on a hyperbolic space.

In our settings: non-elementary $\iff G$ is not virtually cyclic and has unbounded orbits.

Examples

- Non-elementary hyperbolic and relatively hyperbolic groups.
- $MGG(S_g)$ for $g \geq 1$ (Masur-Minsky, Bowditch).
- $Out(F_n)$ (Bestvina-Feighn).
- If $G = \pi_1(\text{closed irreducible } 3-\text{manifold})$, then G is acylindrically hyperbolic, or is virtually solvable, or M is Seifert fibered (Minasyan-Osin).
- Groups of deficiency ≥ 2 (Osin).
Some properties/applications of acylindrically hyperbolic groups:
Some properties/applications of acylindrically hyperbolic groups:

1. **Group theoretic Dehn filling:** Generalization of Thurston’s theory of hyperbolic Dehn fillings in 3-manifolds.

2. **Small cancellation theory:** Proving embedding theorems and constructing groups with interesting properties.

3. **Measure theoretic rigidity:** Every a.h. group G has plenty of quasi-cocycles $G \to \ell^2(G)$ (Hamenstadt, Hull-Osin, Bestvina-Bromberg-Fujiwara). It follows that $H^2_{b}(G, \ell^2(G)) \neq 0$ and Monod-Shalom rigidity theory for measure preserving actions applies.
Some properties/applications of acylindrically hyperbolic groups:

1. **Group theoretic Dehn filling:** Generalization of Thurston’s theory of hyperbolic Dehn fillings in 3-manifolds.

2. **Small cancellation theory:** proving embedding theorems and constructing groups with interesting properties.
Some properties/applications of acylinically hyperbolic groups:

1. **Group theoretic Dehn filling:** Generalization of Thurston’s theory of hyperbolic Dehn fillings in 3-manifolds.

2. **Small cancellation theory:** proving embedding theorems and constructing groups with interesting properties.

3. **Measure theoretic rigidity:** every a.h. group G has plenty of quasi-cocycles $G \rightarrow \ell^2(G)$ (Hamenstadt, Hull-Osin, Bestvina-Bromberg-Fujiwara). It follows that $H^2_b(G, \ell^2(G)) \neq 0$ and Monod-Shalom rigidity theory for measure preserving actions applies.
Dehn filling

M is a compact 3-manifold, $\partial M = T^2$. Fix $s \in \pi_1(\partial M)$ and let $M(s) = M \cup \phi(S^1 \times D^2)$, where $\phi: \partial (S^1 \times D^2) \to \partial M$ is such that $\phi(\partial D^2) \in s$.

Theorem (Thurston) If $M \setminus \partial M$ admits a finite volume hyperbolic structure, then $M(s)$ is hyperbolic for all but finitely many s.

Group theoretic Dehn filling

M a.h. group G

∂M hyperbolically embedded $H \leq G$

$s \in \pi_1(\partial M)$

$h \in H$

$M(s) G / \langle \langle h \rangle \rangle G$
Dehn filling

M is a compact 3-manifold, $\partial M = \mathbb{T}^2$. Fix $s \in \pi_1(\partial M)$ and let

$$M(s) = M \cup_{\phi} (S^1 \times D^2),$$

where $\phi: \partial(S^1 \times D^2) \to \partial M$ is such that $\phi(\partial D^2) \in s$.

Theorem (Thurston)

If $M \setminus \partial M$ admits a finite volume hyperbolic structure, then $M(s)$ is hyperbolic for all but finitely many s.

Group theoretic Dehn filling

M a.h. group G hyperbolically embedded $H \leq G$. $s \in \pi_1(\partial M)$, $h \in H$. $M(s) \xrightarrow{G/\langle \langle h \rangle \rangle} G$.

Dehn filling

M is a compact 3-manifold, $\partial M = \mathbb{T}^2$. Fix $s \in \pi_1(\partial M)$ and let

$$M(s) = M \cup_{\phi} (S^1 \times D^2),$$

where $\phi: \partial(S^1 \times D^2) \to \partial M$ is such that $\phi(\partial D^2) \in s$.

Theorem (Thurston)

If $M \setminus \partial M$ admits a finite volume hyperbolic structure, then $M(s)$ is hyperbolic for all but finitely many s.
Dehn filling

M is a compact 3-manifold, $\partial M = \mathbb{T}^2$. Fix $s \in \pi_1(\partial M)$ and let

$$M(s) = M \cup_\phi (S^1 \times D^2),$$

where $\phi: \partial(S^1 \times D^2) \to \partial M$ is such that $\phi(\partial D^2) \in s$.

Theorem (Thurston)

If $M \setminus \partial M$ admits a finite volume hyperbolic structure, then $M(s)$ is hyperbolic for all but finitely many s.

Group theoretic Dehn filling

<table>
<thead>
<tr>
<th>M</th>
<th>a.h. group G</th>
</tr>
</thead>
<tbody>
<tr>
<td>∂M</td>
<td>hyperbolically embedded $H \leq G$</td>
</tr>
<tr>
<td>$s \in \pi_1(\partial M)$</td>
<td>$h \in H$</td>
</tr>
<tr>
<td>$M(s)$</td>
<td>$G/\langle \langle h \rangle \rangle^G$</td>
</tr>
</tbody>
</table>
A subgroup $H \leq G$ is **hyperbolically embedded** (written $H \hookrightarrow_h G$) if there is a generating set X of G such that $\text{Cay}(G, X \cup H)$ is hyperbolic and satisfies a certain finiteness condition.

Examples.

1. If M is as in the Thurston theorem, then $\pi_1(\partial M) \hookrightarrow h \pi_1(M)$.
2. If $G = A * B$, then $A, B \hookrightarrow h G$.
3. If G is finitely generated and a.h., then a random subgroup is virtually free and hyperbolically embedded (Maher-Sisto).
Definition (Dahmani-Guirardel-Osin)

A subgroup $H \leq G$ is *hyperbolically embedded* \((written\ H \hookrightarrow_h G)\) if there is a generating set X of G such that $\text{Cay}(G, X \cup H)$ is hyperbolic and satisfies a certain finiteness condition.

Examples.

1. If M is as in the Thurston theorem, then $\pi_1(\partial M) \hookrightarrow_h \pi_1(M)$.
2. If $G = A \ast B$, then $A, B \hookrightarrow_h G$.
3. If G is finitely generated and a.h., then a random subgroup is virtually free and hyperbolically embedded (Maher-Sisto).
Definition (Dahmani-Guirardel-Osin)

A subgroup $H \leq G$ is **hyperbolically embedded** (written $H \hookrightarrow_h G$) if there is a generating set X of G such that $\text{Cay}(G, X \cup H)$ is hyperbolic and satisfies a certain finiteness condition.

Examples.

1. If M is as in the Thurston theorem, then $\pi_1(\partial M) \hookrightarrow_h \pi_1(M)$.
Definition (Dahmani-Guirardel-Osin)

A subgroup $H \leq G$ is *hyperbolically embedded* (written $H \hookrightarrow_h G$) if there is a generating set X of G such that $\text{Cay}(G, X \cup H)$ is hyperbolic and satisfies a certain finiteness condition.

Examples.

1. If M is as in the Thurston theorem, then $\pi_1(\partial M) \hookrightarrow_h \pi_1(M)$.

2. If $G = A \ast B$, then $A, B \hookrightarrow_h G$.
Definition (Dahmani-Guirardel-Osin)

A subgroup $H \leq G$ is *hyperbolically embedded* (written $H \hookrightarrow_h G$) if there is a generating set X of G such that $\text{Cay}(G, X \cup H)$ is hyperbolic and satisfies a certain finiteness condition.

Examples.

1. If M is as in the Thurston theorem, then $\pi_1(\partial M) \hookrightarrow_h \pi_1(M)$.

2. If $G = A \ast B$, then $A, B \hookrightarrow_h G$.

3. If G is finitely generated and a.h., then a random subgroup is virtually free and hyperbolically embedded (Maher-Sisto).
Theorem (Dahmani-Guirardel-Osin, 2016)

Let $H \hookrightarrow_h G$. Then there exists finite $\mathcal{F} \subseteq H \setminus \{1\}$ such that for all $N \triangleleft H$ satisfying $N \cap \mathcal{F} = \emptyset$, we have

1. $\langle \langle N \rangle \rangle^G \cap H = N$; equivalently, the natural map $H/N \to G/\langle \langle N \rangle \rangle^G$ is injective.
2. $H/N \hookrightarrow_h G/\langle \langle N \rangle \rangle^G$.

Remarks.

— Implies Thurston's theorem (modulo the geometrization conjecture).
Theorem (Dahmani-Guirardel-Osin, 2016)

Let $H \hookrightarrow_h G$. Then there exists finite $\mathcal{F} \subseteq H \setminus \{1\}$ such that for all $N \triangleleft H$ satisfying $N \cap \mathcal{F} = \emptyset$, we have

1. $\langle \langle N \rangle \rangle^G \cap H = N$; equivalently, the natural map $H/N \to G/\langle \langle N \rangle \rangle^G$ is injective.
2. $H/N \hookrightarrow_h G/\langle \langle N \rangle \rangle^G$.

Trivial example. If $G = H \ast K$ and $N \triangleleft H$, then $G/\langle \langle N \rangle \rangle^G \cong H/N \ast K$.
Theorem (Dahmani-Guirardel-Osin, 2016)

Let $H \hookrightarrow_h G$. Then there exists finite $\mathcal{F} \subseteq H \setminus \{1\}$ such that for all $N \triangleleft H$ satisfying $N \cap \mathcal{F} = \emptyset$, we have

1. $\langle \langle N \rangle \rangle^G \cap H = N$; equivalently, the natural map $H/N \to G/\langle \langle N \rangle \rangle^G$ is injective.
2. $H/N \hookrightarrow_h G/\langle \langle N \rangle \rangle^G$.

Trivial example. If $G = H \ast K$ and $N \triangleleft H$, then $G/\langle \langle N \rangle \rangle^G \cong H/N \ast K$.

In general, even proving $\langle \langle N \rangle \rangle^G \cap H = N$ is non-trivial!
Theorem (Dahmani-Guirardel-Osin, 2016)

Let $H \hookrightarrow_h G$. Then there exists finite $\mathcal{F} \subseteq H \setminus \{1\}$ such that for all $N \triangleleft H$ satisfying $N \cap \mathcal{F} = \emptyset$, we have

1. $\langle \langle N \rangle \rangle^G \cap H = N$; equivalently, the natural map $H/N \to G/\langle \langle N \rangle \rangle^G$ is injective.
2. $H/N \hookrightarrow_h G/\langle \langle N \rangle \rangle^G$.

Trivial example. If $G = H \ast K$ and $N \triangleleft H$, then $G/\langle \langle N \rangle \rangle^G \cong H/N \ast K$.

In general, even proving $\langle \langle N \rangle \rangle^G \cap H = N$ is non-trivial!

Remarks.

— Implies Thurston’s theorem (modulo the geometrization conjecture).
Applications:

1. Used in Agol’s proof of the virtual Haken conjecture.
Applications:

1. Used in Agol’s proof of the virtual Haken conjecture.

2. Can be used to approximate “complicated” groups by “simpler” quotients. Applications to the isomorphism problem (Dahmani-Guirardel-Touikan), primeness of von Neumann algebras (Chifan-Kida-Pant), the Farell-Jones conjecture (Antolin-Coulon-Gandini).

3. Structure of the kernel: Theorem (Dahmani-Guirardel-Osin, 2016) Under the assumptions of the main theorem, \(\langle \langle N \rangle \rangle \) is isomorphic to the free product of copies of \(N \). Implies solution of two open problems about mapping class groups.
Applications:

1. Used in Agol’s proof of the virtual Haken conjecture.

2. Can be used to approximate “complicated” groups by “simpler” quotients. Applications to the isomorphism problem (Dahmani-Guirardel-Touikan), primeness of von Neumann algebras (Chifan-Kida-Pant), the Farell-Jones conjecture (Antolin-Coulon-Gandini).

3. Structure of the kernel:

Theorem (Dahmani-Guirardel-Osin, 2016)

Under the assumptions of the main theorem, $\langle\langle N \rangle\rangle^G$ is isomorphic to the free product of copies of N.

Implies solution of two open problems about mapping class groups.
Constructing groups with interesting properties

Question (Burnside)

Is every finitely generated torsion group finite?

Answered negatively by Golod in 1964.

Naive idea

Let $F(x, y) = \{1, f_1, f_2, \ldots\}$ and $G = \langle x, y \mid f_n^1, f_n^2, \ldots \rangle$.

Clearly G is torsion.

Why is it non-trivial???

Theorem (Gromov-Olshanskii)

If G is non-elementary hyperbolic and $g \in G$, then $G/\langle\langle g^n \rangle\rangle$ is non-elementary for some $n >> 1$.

It follows that $G_k = \langle x, y \mid f_n^1, \ldots, f_n^k \rangle$ can be made non-elementary hyperbolic for all k. Therefore, $|G| = \infty$.
Constructing groups with interesting properties

Question (Burnside)

Is every finitely generated torsion group finite?

Answered negatively by Golod in 1964.

Naive idea

Let $F(x, y) = \{1, f_1, f_2, \ldots\}$ and $G = \langle x, y | f_n^1, f_n^2, \ldots \rangle$.

Clearly G is torsion.

Why is it non-trivial???

Theorem (Gromov-Olshanskii)

If G is non-elementary hyperbolic and $g \in G$, then $G/\langle\langle g^n \rangle\rangle$ is non-elementary hyperbolic for some $n >> 1$.

It follows that $G_k = \langle x, y | f_n^1, \ldots, f_n^k \rangle$ can be made non-elementary hyperbolic for all k. Therefore, $|G| = \infty$.
Constructing groups with interesting properties

Question (Burnside)

Is every finitely generated torsion group finite?

Answered negatively by Golod in 1964.

Naive idea: Let $F(x, y) = \{1, f_1, f_2, \ldots\}$ and $G = \langle x, y \mid f_1^{n_1}, f_2^{n_2}, \ldots \rangle$. Clearly G is torsion. Why is it non-trivial???

Theorem (Gromov-Olshanskii)

If G is non-elementary hyperbolic and $g \in G$, then $G/\langle\langle g^n \rangle\rangle$ is non-elementary for some $n > 1$.

It follows that $G_k = \langle x, y \mid f_1^{n_1}, \ldots, f_k^{n_k} \rangle$ can be made non-elementary hyperbolic for all k. Therefore, $|G| = \infty$.
Constructing groups with interesting properties

Question (Burnside)

Is every finitely generated torsion group finite?

Answered negatively by Golod in 1964.

Naive idea: Let $F(x, y) = \{1, f_1, f_2, \ldots \}$ and $G = \langle x, y \mid f_1^{n_1}, f_2^{n_2}, \ldots \rangle$. Clearly G is torsion.
Constructing groups with interesting properties

Question (Burnside)

Is every finitely generated torsion group finite?

Answered negatively by Golod in 1964.

Naive idea: Let $F(x, y) = \{1, f_1, f_2, \ldots\}$ and $G = \langle x, y \mid f_1^{n_1}, f_2^{n_2}, \ldots \rangle$.

Clearly G is torsion. **Why is it non-trivial??**
Constructing groups with interesting properties

Question (Burnside)

Is every finitely generated torsion group finite?

Answered negatively by Golod in 1964.

Naive idea: Let $F(x, y) = \{1, f_1, f_2, \ldots\}$ and $G = \langle x, y \mid f_1^{n_1}, f_2^{n_2}, \ldots \rangle$.

Clearly G is torsion. *Why is it non-trivial??*

Theorem (Gromov-Olshanskii)

*If G is non-elementary hyperbolic and $g \in G$, then $G/\langle g^n \rangle$ is non-elementary hyperbolic for some $n >> 1$.***
Constructing groups with interesting properties

Question (Burnside)

Is every finitely generated torsion group finite?

Answered negatively by Golod in 1964.

Naive idea: Let \(F(x, y) = \{1, f_1, f_2, \ldots\} \) and \(G = \langle x, y \mid f_{1}^{n_1}, f_{2}^{n_2}, \ldots \rangle \).

Clearly \(G \) is torsion. Why is it non-trivial???

Theorem (Gromov-Olshanskii)

If \(G \) is non-elementary hyperbolic and \(g \in G \), then \(G/\langle\langle g^n \rangle\rangle \) is non-elementary hyperbolic for some \(n >> 1 \).

It follows that \(G_k = \langle x, y \mid f_{1}^{n_1}, \ldots, f_{k}^{n_k} \rangle \) can be made non-elementary hyperbolic for all \(k \). Therefore, \(|G| = \infty \).
Let $\pi(G)$ denote the set of orders of elements of a group G.

Theorem (Osin, 2010) Every countable group H can be embedded in a finitely generated group G such that $\pi(G) = \pi(H) \cup \{\infty\}$ and all elements of the same order in G are conjugate.

Applying to $H = \mathbb{Z}$, we obtain:

Corollary There exists finitely generated group other than $\mathbb{Z}/2\mathbb{Z}$ with 2 conjugacy classes.

The proof uses small cancellation theory in relatively hyperbolic groups. It was generalized to acylindrically hyperbolic groups by Hull (2016) and new applications were found by Hull and Hull-Osin.
Let $\pi(G)$ denote the set of orders of elements of a group G.

Theorem (Osin, 2010)

Every countable group H can be embedded in a finitely generated group G such that $\pi(G) = \pi(H) \cup \{\infty\}$ and all elements of the same order in G are conjugate.

Applying to $H = \mathbb{Z}$, we obtain:

Corollary

There exists finitely generated group other than $\mathbb{Z}/2\mathbb{Z}$ with 2 conjugacy classes.

The proof uses small cancellation theory in relatively hyperbolic groups. It was generalized to acylindrically hyperbolic groups by Hull (2016) and new applications were found by Hull and Hull-Osin.
Let $\pi(G)$ denote the set of orders of elements of a group G.

Theorem (Osin, 2010)

Every countable group H can be embedded in a finitely generated group G such that $\pi(G) = \pi(H) \cup \{\infty\}$ and all elements of the same order in G are conjugate.

Applying to $H = \mathbb{Z}$, we obtain:

Corollary

There exists finitely generated group other than $\mathbb{Z}/2\mathbb{Z}$ with 2 conjugacy classes.

The proof uses small cancellation theory in relatively hyperbolic groups. It was generalized to acylindrically hyperbolic groups by Hull (2016) and new applications were found by Hull and Hull-Osin.
Let $\pi(G)$ denote the set of orders of elements of a group G.

Theorem (Osin, 2010)

Every countable group H can be embedded in a finitely generated group G such that $\pi(G) = \pi(H) \cup \{\infty\}$ and all elements of the same order in G are conjugate.

Applying to $H = \mathbb{Z}$, we obtain:

Corollary

There exists finitely generated group other than $\mathbb{Z}/2\mathbb{Z}$ with 2 conjugacy classes.
Let $\pi(G)$ denote the set of orders of elements of a group G.

Theorem (Osin, 2010)

Every countable group H can be embedded in a finitely generated group G such that $\pi(G) = \pi(H) \cup \{\infty\}$ and all elements of the same order in G are conjugate.

Applying to $H = \mathbb{Z}$, we obtain:

Corollary

There exists finitely generated group other than $\mathbb{Z}/2\mathbb{Z}$ with 2 conjugacy classes.

The proof uses small cancellation theory in relatively hyperbolic groups. It was generalized to acylindrically hyperbolic groups by Hull (2016) and new applications were found by Hull and Hull-Osin.
Open questions

1. (Geometric rigidity) Is the class of finitely generated a.h. groups closed under quasi-isometry? It is even unknown if a finite extension of an a.h. group is a.h.

2. (Analytic vs geometric negative curvature) Assume that G is torsion free and $\beta(2)(G) > 0$. Is G a.h.? False for torsion groups (Lück-Osin, 2011).

Conjecture
If $q: G \rightarrow \ell^2(G)$ is a cocycle, then $H = \{ g \in G | q(g) = 0 \} \hookrightarrow \rightarrow hG$.

3. (Model-theoretic rigidity) Assume that G is a.h., H is finitely generated, and $\text{Th}(G) = \text{Th}(H)$. Is H a.h.?
Open questions

1. (Geometric rigidity) Is the class of finitely generated a.h. groups closed under quasi-isometry?

2. (Analytic vs geometric negative curvature) Assume that G is torsion free and $\beta(2)(G) > 0$. Is G a.h.? False for torsion groups (Lück-Osin, 2011).

3. (Model-theoretic rigidity) Assume that G is a.h., H is finitely generated, and $\text{Th}(G) = \text{Th}(H)$. Is H a.h.?
Open questions

1. (Geometric rigidity) Is the class of finitely generated a.h. groups closed under quasi-isometry? It is even unknown if a finite extension of an a.h. group is a.h.
Open questions

1. (Geometric rigidity) Is the class of finitely generated a.h. groups closed under quasi-isometry? It is even unknown if a finite extension of an a.h. group is a.h.

2. (Analytic vs geometric negative curvature) Assume that G is torsion free and $\beta_1^{(2)}(G) > 0$. Is G a.h.?
Open questions

1. (Geometric rigidity) Is the class of finitely generated a.h. groups closed under quasi-isometry? It is even unknown if a finite extension of an a.h. group is a.h.

2. (Analytic vs geometric negative curvature) Assume that G is torsion free and $\beta_1^{(2)}(G) > 0$. Is G a.h.? False for torsion groups (Lück-Osin, 2011).

3. (Model-theoretic rigidity) Assume that G is a.h., H is finitely generated, and $\text{Th}(G) = \text{Th}(H)$. Is H a.h.?
Open questions

1. (Geometric rigidity) Is the class of finitely generated a.h. groups closed under quasi-isometry? It is even unknown if a finite extension of an a.h. group is a.h.

2. (Analytic vs geometric negative curvature) Assume that G is torsion free and $\beta_1^{(2)}(G) > 0$. Is G a.h.? False for torsion groups (Lück-Osin, 2011).

Conjecture

If $q: G \to \ell^2(G)$ is a cocycle, then $H = \{g \in G \mid q(g) = 0\} \hookrightarrow_h G$.
Open questions

1. (Geometric rigidity) Is the class of finitely generated a.h. groups closed under quasi-isometry? It is even unknown if a finite extension of an a.h. group is a.h.

2. (Analytic vs geometric negative curvature) Assume that G is torsion free and $\beta_1^{(2)}(G) > 0$. Is G a.h.? False for torsion groups (Lück-Osin, 2011).

Conjecture

If $q: G \to \ell^2(G)$ is a cocycle, then $H = \{g \in G \mid q(g) = 0\} \hookrightarrow_h G$.

3. (Model-theoretic rigidity) Assume that G is a.h., H is finitely generated, and $Th(G) = Th(H)$. Is H a.h.?