On Explicit Aspect of Pluricanonical Maps of Projective Varieties

Jungkai A. Chen & Meng Chen

National Taiwan University & Fudan University

2018.08.04
I-1. Introduction

I-2. Irregular Varieties

I-3. Baskets and Weighted Complete Intersections (WCI)

II-1. Explicit birational geometry for 3-folds of general type

II-2. \mathbb{Q}-Fano 3-folds

II-3. The Noether inequality for algebraic 3-folds
Birational Classification:

to classify varieties up to birational equivalence.
I–1.1. Birational Geometry

• **Birational Classification:**
to classify varieties up to birational equivalence.

• **Birational Geometry:**
to study geometry of varieties (minimal models) and maps between varieties.
I–1.1. Birational Geometry

- **Birational Classification**: to classify varieties up to birational equivalence.
- **Birational Geometry**: to study geometry of varieties (minimal models) and maps between varieties.
- **Minimal Model Program**: to find good model inside a birational equivalence class.
I–1.1. Birational Geometry

- **Birational Classification:**
 to classify varieties up to birational equivalence.

- **Birational Geometry:**
 to study geometry of varieties (minimal models) and maps between varieties.

- **Minimal Model Program:**
 to find good model inside a birational equivalence class.

All these are highly related to canonical divisor, or its variants.
I–1.1. Birational Geometry

- **Birational Classification:**
 to classify varieties up to birational equivalence.
- **Birational Geometry:**
 to study geometry of varieties (minimal models) and maps between varieties.
- **Minimal Model Program:**
 to find good model inside a birational equivalence class.

All these are highly related to canonical divisor, or its variants
- pair \((X, \Delta)\), or generalized pair \((X, B + M)\)
I–1.1. Birational Geometry

- **Birational Classification**: to classify varieties up to birational equivalence.
- **Birational Geometry**: to study geometry of varieties (minimal models) and maps between varieties.
- **Minimal Model Program**: to find good model inside a birational equivalence class.

All these are highly related to canonical divisor, or its variants
- pair \((X, \Delta)\), or generalized pair \((X, B + M)\)
- pluricanonical divisor, \(mK_X\)
I-1. Introduction

I–1.1. Birational Geometry

- **Birational Classification:**
 to classify varieties up to birational equivalence.

- **Birational Geometry:**
 to study geometry of varieties (minimal models) and maps between varieties.

- **Minimal Model Program:**
 to find good model inside a birational equivalence class.

All these are highly related to canonical divisor, or its variants

- **pair** \((X, \Delta)\), or **generalized pair** \((X, B + M)\)

- **pluricanonical divisor**, \(mK_X\)

- **twisted canonical divisor**, \(K_X + P\) for some \(P \in \text{Pic}^0\).
Given a complex projective variety X and let K_X be the canonical divisor. Suppose that $H^0(X, mK_X) \neq 0$, then we have a natural map

$$\varphi_m : X \to \mathbb{P}^N.$$
Given a complex projective variety X and let K_X be the canonical divisor. Suppose that $H^0(X, mK_X) \neq 0$, then we have a natural map

$$\varphi_m : X \rightarrow \mathbb{P}^N.$$

φ_m is called the m-th canonical map.
Given a complex projective variety X and let K_X be the canonical divisor. Suppose that $H^0(X, mK_X) \neq 0$, then we have a natural map

$$\varphi_m : X \dashrightarrow \mathbb{P}^N.$$

φ_m is called the m-th canonical map. There exist $d(X)$ and $r(X)$ such that φ_m is stabilized (birationally) for $m \geq r(X)$ and divisible by $d(X)$.

Jungkai A. Chen & Meng Chen (NTU & Fudan)
• **Canonical stability index.**

For any integer $n \geq 3$, find a practical integer r_n so that, for all nonsingular projective n-folds of general type, φ_m is birational onto its image for all $m \geq r_n$.
• **Canonical stability index.**
For any integer $n \geq 3$, find a practical integer r_n so that, for all nonsingular projective n-folds of general type, φ_m is birational onto its image for all $m \geq r_n$.

• **Iitaka fibrations.**
For any integers $n \geq 3$ and $n > \kappa \geq 0$, find integers $M_{n,\kappa}$ and $d_{n,\kappa}$ such that, for all nonsingular projective n-folds with Kodaira dimension κ, the m-th canonical map φ_m defines an Iitaka fibration for all $m \geq M_{n,\kappa}$ and divisible by $d_{n,\kappa}$.
• Anti-pluricanonical birationality.
For any integer $n \geq 3$, find an integer m_n so that, for all canonical (terminal) weak \mathbb{Q}-Fano n-folds (i.e. $-K$ being \mathbb{Q}-Cartier, nef and big), φ_{-m} is birational onto its image for all $m \geq m_n$.
I-1. Introduction

I–1.4. Fundamental Questions in Explicit Geometry

• Anti-pluricanonical birationality.

For any integer $n \geq 3$, find an integer m_n so that, for all canonical (terminal) weak \mathbb{Q}-Fano n-folds (i.e. $-K$ being \mathbb{Q}-Cartier, nef and big), φ_{-m} is birational onto its image for all $m \geq m_n$.

• The behavior of $\varphi_{m,X}$ is birationally invariant, when $\kappa \geq 0$ and X has canonical singularities;
I–1.4. Fundamental Questions in Explicit Geometry

- **Anti-pluricanonical birationality.**
 For any integer \(n \geq 3 \), find an integer \(m_n \) so that, for all canonical (terminal) weak \(\mathbb{Q} \)-Fano \(n \)-folds (\(-K \) being \(\mathbb{Q} \)-Cartier, nef and big), \(\varphi_{-m} \) is birational onto its image for all \(m \geq m_n \).

- The behavior of \(\varphi_{m,X} \) is **birationally invariant**, when \(\kappa \geq 0 \) and \(X \) has canonical singularities;
 NOT birationally invariant, when \(\kappa = -\infty \).

I–1.5. Known Existence Results

- [Hacon–McKernan ’06, Takayama ’06, Tsuji ’06] If $\kappa(X) = \dim X$, then r_n exists.
I–1.5. Known Existence Results

- [Hacon-McKernan ’06, Takayama ’06, Tsuji ’06] If \(\kappa(X) = \dim X \), then \(r_n \) exists.
- [Fujino-Mori ’00] If \(\kappa(X) = 1 \), then \(M_{n,1} \) and \(d_{n,1} \) exist.
I–1.5. Known Existence Results

- [Hacon-McKernan ’06, Takayama ’06, Tsuji ’06]
 If $\kappa(X) = \dim X$, then r_n exists.

- [Fujino-Mori ’00]
 If $\kappa(X) = 1$, then $M_{n,1}$ and $d_{n,1}$ exist.

- [Viehweg-Zhang ’07]
 If $\kappa(X) = 2$, then $M_{n,2}$ and $d_{n,2}$ exist.
● [Birkar-Zhang '16]
There exists a uniform number $M(n, b_F, \beta_{\tilde{F}})$ so that φ_m gives an Iitaka fibration for all $m \geq M(n, b_F, \beta_{\tilde{F}})$ and divisible.
I-1. Introduction

I–1.6. Known Existence Results

- [Birkar-Zhang ’16]
 There exists a uniform number $M(n, b_F, \beta_{\tilde{F}})$ so that φ_m gives an Iitaka fibration for all $m \geq M(n, b_F, \beta_{\tilde{F}})$ and divisible.
 Let F be the general fiber of Iitaka fibration. The number b_F, called the *index of fiber*, is the smallest positive integer so that $|bK_F| \neq \emptyset$.
I–1.6. Known Existence Results

• [Birkar-Zhang '16]
 There exists a uniform number $M(n, b_F, \beta_{\tilde{F}})$ so that φ_m gives an Iitaka fibration for all $m \geq M(n, b_F, \beta_{\tilde{F}})$ and divisible. Let F be the general fiber of Iitaka fibration. The number b_F, called the index of fiber, is the smallest positive integer so that $|bK_F| \neq \emptyset$.
 One has a covering $\tilde{F} \to F$ by $|mK_{\tilde{F}}|$. Then $\beta_{\tilde{F}}$, called the middle Betti number, is defined as the $(n - \kappa)$-th Betti number of the $n - \kappa$ dimensional variety \tilde{F}.
I–1.7. $\kappa = -\infty$

- [Kawamata, ’89] for weak \mathbb{Q}-Fano threefolds, the boundedness was proved under the condition that the Picard number $\rho = 1$
I–1.7. \(\kappa = -\infty \)

- [Kawamata, ’89] for weak \(\mathbb{Q} \)-Fano threefolds, the boundedness was proved under the condition that the Picard number \(\rho = 1 \)
- [Kollár–Miyaoka–Mori–Takagi, ’00] \(m_3 \) exists.
1-1.7. $\kappa = -\infty$

- [Kawamata, ’89] for weak \mathbb{Q}-Fano threefolds, the boundedness was proved under the condition that the Picard number $\rho = 1$
- [Kollár–Miyaoka–Mori–Takagi, ’00] m_3 exists.
- [Birkar, ’16] for $n \geq 4$ there is a constant m_n depending only on n such that φ_{-m} is birational for all $m \geq m_n$.
Can we find those above mentioned bound explicitly?
Can we find those above mentioned bound explicitly?

At least in dimension three?
Can we find those above mentioned bound explicitly?

At least in dimension three?

Or in some special interesting category?
I-1.8. Explicit Geometry in Higher Dimensional

- Can we find those above mentioned bound explicitly?
- At least in dimension three?
- Or in some special interesting category?
A variety is said to be *irregular* if $h^1(\mathcal{O}_X) > 0$. In other words, there exists non-trivial *Albanese map*

$$a_X : X \rightarrow \text{Alb}(X).$$

Let $a(X) = \dim(a_X(X))$.

Theorem [Chen-Hacon '07]

Let X be a variety of $(X) = a(X) = \dim X$. Suppose that $(X; \mathcal{O}_K^\times X) > 0$, then (a_X) is a M-regular sheaf. Moreover, $j_3 K^\times X$ is birational.

Jungkai A. Chen & Meng Chen (NTU & Fudan)
I–2. Irregular Varieties

I–2.1. Pluricanonical Maps on Irregular Varieties

A variety is said to be irregular if $h^1(\mathcal{O}_X) > 0$. In other words, there exists non-trivial Albanese map

$$a_X : X \to \text{Alb}(X).$$

Let $a(X) = \dim(a_X(X))$.

Theorem

[Chen-Hacon '07]

Let X be a variety of $\kappa(X) = a(X) = \dim X$. Suppose that $\chi(X, \mathcal{O}(K_X)) > 0$, then $(a_X)_* \mathcal{O}(K_X)$ is a M-regular sheaf.
A variety is said to be *irregular* if $h^1(\mathcal{O}_X) > 0$. In other words, there exists non-trivial *Albanese map*

$$a_X : X \to \text{Alb}(X).$$

Let $\alpha(X) = \dim(a_X(X))$.

Theorem

[Chen-Hacon '07]

Let X be a variety of $\kappa(X) = \alpha(X) = \dim X$. Suppose that $\chi(X, \mathcal{O}(K_X)) > 0$, then $(a_X)_* \mathcal{O}(K_X)$ is a M-regular sheaf. Moreover, $|3K_X|$ is birational.
Some More Recent Results:

- [Z. Jiang, Lahos, Tirabashi, ’14]
 \(\kappa(X) = \alpha(X) = \dim X \). Then \(|3K| \) is birational.
Some More Recent Results:

- [Z. Jiang, Lahos, Tirabashi, ’14]
 \(\kappa(X) = a(X) = \dim X \). Then \(|3K| \) is birational.

- [Z. Jiang, H. Sun, ’14]
 \(\kappa(X) = \dim X, \ a(X) = \dim X - 1 \). Then \(|4K| \) is birational.
Some More Recent Results:

- [Z. Jiang, Lahos, Tirabashi, '14]
 $\kappa(X) = \alpha(X) = \dim X$. Then $|3K|$ is birational.

- [Z. Jiang, H. Sun, '14]
 $\kappa(X) = \dim X$, $\alpha(X) = \dim X - 1$. Then $|4K|$ is birational.

- [J. Chen, M. Chen, Z. Jiang, '16]
 Let X be an irregular threefold of general type. Then $|6K|$ is birational.
 The most difficult case is $X \to \text{Alb}(X)$ is a morphism to an elliptic curve fibered by surface of $(1, 2)$-type.
From now on, we will concentrate on threefolds
I–3.1. Baskets of Terminal Orbifold Points

• A terminal orbifold point of type $\frac{1}{r}(1, -1, b)$ will be denoted as (b, r) with $b \leq r/2$.
I–3. Baskets and Weighted Complete Intersections (WCI)

I–3.1. Baskets of Terminal Orbifold Points

- A terminal orbifold point of type $\frac{1}{r}(1, -1, b)$ will be denoted as (b, r) with $b \leq r/2$.
- A basket, which is a collection of terminal orbifold points, is written as $\mathcal{B} = \{ n_i \times (b_i, r_i) \}$ where n_i denotes the multiplicities.
I–3.2. Plurigenus Formula

- **Reid’s** Riemann-Roch formula for singular threefolds:

\[
\chi(\mathcal{O}_X(D)) = \chi(\mathcal{O}_X) + \frac{1}{12} D(D - K_X)(2D - K_X) + \frac{1}{12} (D.c_2(X)) \\
+ \sum_{P \in B(X)} \left(-i_P \cdot \frac{r_P^2 - 1}{12r_P} + \sum_{j=1}^{i_P - 1} \frac{j b_P(r_P - j b_P)}{2r_P} \right),
\]

where \(B(X) = \{(b_P, r_P)\} \) is the basket data of \(X \) and \(i_P \) is the local index of \(D \) such that \(\mathcal{O}_X(D) \cong \mathcal{O}_X(i_P K_X) \) near \(P \).
I–3.3. Plurigenus Formula

• Take $D = K_X$, then one gets

$$(K_X . c_2(X)) = -24 \chi(O_X) + \sum_{P \in B_X} \left(r_P - \frac{1}{r_P} \right).$$
I–3.3. Plurigenus Formula

- Take $D = K_X$, then one gets

$$(K_X.c_2(X)) = -24\chi(O_X) + \sum_{P \in B_X} \left(r_P - \frac{1}{r_P} \right).$$

- Taking $D = mK_X$. One gets the following plurigenus formula (due to Reid):

$$\chi_m = \frac{1}{12} m(m - 1)(2m - 1)K^3 + (1 - 2m)\chi + l(m), \quad (1)$$

where $\chi = \chi(O_X)$, $K^3 = K_X^3$, $\chi_m = \chi(O_X(mK_X))$ and

$$l(m) = \sum_{P \in B_X} \sum_{j=1}^{m-1} \frac{j b_P(r_P - \overline{j b_P})}{2r_P}. \quad (2)$$
I–3.4. Weighted Baskets

• We call the triple $\mathbb{B} = \{B, \chi_2, \chi\}$ a weighted basket.
We call the triple $\mathbb{B} = \{ B, \chi_2, \chi \}$ a weighted basket.

The triple (B_X, χ_2, χ) determines χ_m for all $m \geq 3$.
I–3.4. Weighted Baskets

- We call the triple $\mathbb{B} = \{B, \chi_2, \chi\}$ a weighted basket.
- The triple (B_X, χ_2, χ) determines χ_m for all $m \geq 3$.
- The triple (B_X, χ_2, χ) determines $K^3(\mathbb{B})$.
Given a basket

\[B = \{(b_1, r_1), (b_2, r_2), \ldots, (b_k, r_k)\}, \]

we call the basket

\[B' = \{(b_1 + b_2, r_1 + r_2), (b_3, r_3), \ldots, (b_k, r_k)\} \]

a packing of \(B \), written as \(B \succ B' \).
I-3. Baskets and Weighted Complete Intersections (WCI)

I–3.5. “Packings” between Baskets

- Given a basket

\[B = \{(b_1, r_1), (b_2, r_2), \ldots, (b_k, r_k)\}, \]

we call the basket

\[B' = \{(b_1 + b_2, r_1 + r_2), (b_3, r_3), \ldots, (b_k, r_k)\} \]

a packing of \(B \), written as \(B \succ B' \).

- If \(b_1 r_2 - b_2 r_1 = 1 \), then we call \(B \succ B' \) a prime packing.
I–3.6. The canonical Sequence of a Basket

- The packing of baskets naturally induces the packing of weighted baskets, namely we define

\[\mathcal{B} = \{ B, \chi_2, \chi \} \succ \{ B', \chi_2, \chi \} = \mathcal{B}' \]

if \(B \succ B' \).
I–3.6. The canonical Sequence of a Basket

- The packing of baskets naturally induces the packing of weighted baskets, namely we define

\[\mathcal{B} = \{ B, \chi_2, \chi \} \succeq \{ B', \chi_2, \chi \} = \mathcal{B}' \]

if \(B \succeq B' \).

- The “canonical sequence of a basket”:

\[B^{(0)}(B) \succeq B^{(5)}(B) \succeq ... \succeq B^{(n)}(B) \succeq ... \succeq B. \]
I-3. Baskets and Weighted Complete Intersections (WCI)

I–3.6. The canonical Sequence of a Basket

• The packing of baskets naturally induces the packing of weighted baskets, namely we define

\[\mathcal{B} = \{ B, \chi_2, \chi \} \cong \{ B', \chi_2, \chi \} = \mathcal{B}' \]

if \(B \supseteq B' \).

• The “canonical sequence of a basket”:

\[B^{(0)}(B) \cong B^{(5)}(B) \cong \ldots \cong B^{(n)}(B) \cong \ldots \cong B. \]

• The basket \(B^{(0)} \), called the initial basket, consists of orbifold points of the form \((1, r_i) \).
Proposition

Assume \(B \succeq B' \). Then

\[P_m(B) \geq P_m(B') \text{ for all } m \geq 2; \]
I–3.7. Main Properties of the Packing

Proposition

Assume \(B \succcurlyeq B' \). Then

- \(P_m(B) \geq P_m(B') \) for all \(m \geq 2 \);
- \(K^3(B) \geq K^3(B') \).
I-3.8. The Key Inequality

- The canonical sequence provide many new inequalities among the Euler characteristic.
 Of which the most interesting one is:

\[2\chi_5 + 3\chi_6 + \chi_8 + \chi_{10} + \chi_{12} \geq \chi + 10\chi_2 + 4\chi_3 + \chi_7 + \chi_{11} + \chi_{13} + R, \quad (3) \]

where \(R \) is certain non-negative combination of all initial baskets with higher indices.
General applications:

- K_X (resp. $-K_X$) is nef and big, then $\chi_m = P_m$ for $m \geq 2$
 (resp. $m \leq -1$)
I–3.9. Application of Basket Theory

General applications:

- K_X (resp. $-K_X$) is nef and big, then $\chi_m = P_m$ for $m \geq 2$
 (resp. $m \leq -1$)
- Suppose that $\chi_m \geq 2$ for some $m \leq m_0$, then there exists a non-trivial φ_m.
 One can study the geometry of X by using the map φ_m.
I–3. Baskets and Weighted Complete Intersections (WCI)

I–3.9. Application of Basket Theory

General applications:

- K_X (resp. $-K_X$) is nef and big, then $\chi_m = P_m$ for $m \geq 2$ (resp. $m \leq -1$)
- Suppose that $\chi_m \geq 2$ for some $m \leq m_0$, then there exists a non-trivial φ_m.
- One can study the geometry of X by using the map φ_m.
- The set $\{\mathcal{B} | \chi_m(\mathcal{B}) < 2, m \leq m_0\}$ is finite and can be classified.
I–3.9. Application of Basket Theory

General applications:

- K_X (resp. $-K_X$) is nef and big, then $\chi_m = P_m$ for $m \geq 2$ (resp. $m \leq -1$)
- Suppose that $\chi_m \geq 2$ for some $m \leq m_0$, then there exists a non-trivial φ_m.
 One can study the geometry of X by using the map φ_m.
- The set $\{B | \chi_m(B) < 2, m \leq m_0\}$ is finite and can be classified.
- For any given weighted basket, one can find $m'(B)$ such that $p_{m'} = \chi_{m'}(B) \geq 2$.
Fletcher gave lists of canonically polarized (resp. anti-canonically polarized) weighted complete intersections threefolds of codimension ≤ 5 (resp. 3) of degree ≤ 100.

Jungkai A. Chen & Meng Chen (NTU & Fudan)

On Explicit Aspect of Pluricanonical Maps of Projective Varieties
Fletcher gave lists of canonically polarized (resp. anti-canonically polarized) weighted complete intersections threefolds of codimension ≤ 5 (resp. 3) of degree ≤ 100.

We prove there is no more examples if codimension > 5 (resp. > 3).
I–3.10. Weighted Complete Intersection

Fletcher gave lists of canonically polarized (resp. anti-canonically polarized) weighted complete intersections threefolds of codimension ≤ 5 (resp. 3) of degree ≤ 100.

We prove there is no more examples if codimension > 5 (resp. > 3).

We also prove that there is no more example if degree > 100, by using theory of baskets.
Fletcher gave lists of canonically polarized (resp. anti-canonically polarized) weighted complete intersections threefolds of codimension ≤ 5 (resp. 3) of degree ≤ 100.

We prove there is no more examples if codimension > 5 (resp. > 3).

We also prove that there is no more example if degree > 100, by using theory of baskets.

—The end of part one—
II–1. The case $r_X = 1$ (—“Gorenstein minimal”)

- Let X be a minimal 3-fold of general type. Recall the **canonical stability index**

$$r_s(X) = \min\{ t \in \mathbb{Z}_{>0} \mid \varphi_{m,X} \text{ is birational for all } m \geq t \}.$$
II–1.1. The case $r_X = 1$ (—“Gorenstein minimal”)

- Let X be a minimal 3-fold of general type. Recall the **canonical stability index**

$$r_s(X) = \min\{ t \in \mathbb{Z}_{>0} \mid \varphi_{m,X} \text{ is birational for all } m \geq t \}.$$

- When X is smooth and minimal, Wilson proved $r_s(X) \leq 25$. Then improved, chronologically, by Benveniste (≤ 9), Matsuki (≤ 7) and M. Chen (≤ 6).
II–1. Explicit birational geometry for 3-folds of general type

II–1.1. The case $r_X = 1$ (—“Gorenstein minimal”)

- Let X be a minimal 3-fold of general type. Recall the
 canonical stability index

 $$r_s(X) = \min\{ t \in \mathbb{Z}_{>0} \mid \varphi_{m,X} \text{ is birational for all } m \geq t \}.$$

- When X is smooth and minimal, **Wilson** proved $r_s(X) \leq 25$. Then improved, chronologically, by **Benveniste** (≤ 9), **Matsuki** (≤ 7) and **M. Chen** (≤ 6).

- Finally proved by **Chen-Chen-Zhang (2007):**

Theorem

Let X be a minimal projective 3-fold of general type with $r_X = 1$. Then $\varphi_{m,X}$ is a birational morphism for every integer $m \geq 5$.
II–1.2. Kollár’s Method

- **Kollár’s result in 1986:**

Theorem

Let V be a nonsingular projective 3-fold of general type with $P_k(V) \geq 2$ for some integer $k > 0$. Then φ_{11k+5} is birational.
II–1.2. Kollár’s Method

- **Kollár’s result in 1986:**

Theorem

Let V be a nonsingular projective 3-fold of general type with $P_k(V) \geq 2$ for some integer $k > 0$. Then φ_{11k+5} is birational.

- **Kollár’s method:** taking a sub-pencil $\Lambda \subset |kK_V|$, one gets a surjective morphism $f : V \rightarrow \Gamma \cong \mathbb{P}^1$. One has the inclusion $\mathcal{O}(1) \hookrightarrow f_*\omega^k_V$ and then, for any $p \geq 5$,

$$f_*\omega^p_{V/\Gamma} \otimes \mathcal{O}(1) \hookrightarrow f_*\omega^{(2p+1)k+p}_V.$$

Since the 5-canonical map of the general fiber is birational and by the semi-positivity of $f_*\omega^p_{V/\Gamma}$, one sees that φ_{11k+5} is birational by simply taking $p = 5$.
• Proved by M. Chen in 2004:

Theorem

Let V be a nonsingular projective 3-fold of general type with $P_k(V) \geq 2$ for some integer $k > 0$. Then φ_m is birational for all $m \geq 5k + 6$.
II–1.3. Improved form of Kollár’s Theorem

- Proved by M. Chen in 2004:

Theorem

Let V be a nonsingular projective 3-fold of general type with $P_k(V) \geq 2$ for some integer $k > 0$. Then φ_m is birational for all $m \geq 5k + 6$.

- Kollár’s method + the geometry of linear systems
II–1.4. The case $r_X \geq 2$

- Suppose $\chi(O_X) < 0$. Reid’s Riemann-Roch formula implies $P_2(X) \geq 4$. Hence the question is solvable by Kollár’s theorem.
II-1.4. The case \(r_X \geq 2 \)

- Suppose \(\chi(\mathcal{O}_X) < 0 \). Reid’s Riemann-Roch formula implies \(P_2(X) \geq 4 \). Hence the question is solvable by Kollár’s theorem.
- Suppose that \(P_m \geq 2 \) for some \(m \leq 12 \), one applies Kollár’s method as well.
II-1.4. The case $r_X \geq 2$

- Suppose $\chi(O_X) < 0$. Reid’s Riemann-Roch formula implies $P_2(X) \geq 4$. Hence the question is solvable by Kollár’s theorem.
- Suppose that $P_m \geq 2$ for some $m \leq 12$, one applies Kollár’s method as well.
- The remain situation: $\chi(O_X) \geq 0$ and $P_k(X) \leq 1$ for all $2 \leq k \leq 12$. Key Inequality reads:

$$2P_5 + 3P_6 + P_8 + P_{10} + P_{12} \geq \chi(O_X) + 10P_2 + 4P_3 + P_7 + P_{11} + P_{13},$$

which directly implies that $\chi(O_X) \leq 8$, $P_{13} \leq 7$.
II-1.5. Boundedness Results

Now $B^{12}(X)$ has finite possibilities and $B^{12}(X) \subseteq B(X)$. So $B(X)$ has finite possibilities.
II–1.5. Boundedness Results

- Now $B^{12}(X)$ has finite possibilities and $B^{12}(X) \succeq B(X)$. So $B(X)$ has finite possibilities.
- Chen-Chen 2010-2015:

Theorem

Let X be a minimal projective 3-fold of general type. Then

1. $K^3_X \geq \frac{1}{1680};$
2. $\varphi_{m,X}$ is birational for all $m \geq 61;$
3. $P_{12} \geq 1$ and $P_{24} \geq 2.$
4. $K^3_X \geq \frac{1}{420}$ (optimal) if $\chi(O_X) \leq 1.$
II–1.6. Explicit Classifications

- Define the **pluricanonical section index** $\delta(X)$ to be the minimal integer so that $P_\delta \geq 2$.

Theorem

Let X be a minimal projective 3-fold of general type. Then

1. $\delta(X) \leq 18$;
2. $\delta(X) = 18$ if and only if $\mathbb{B}(X) = \{B_{2a}, 0, 2\}$;
3. $\delta(X) \neq 16, 17$;
4. $\delta(X) = 15$ if and only if $\mathbb{B}(X)$ belongs to one of the types in [CC3, Table F–1];
5. $\delta(X) = 14$ if and only if $\mathbb{B}(X)$ belongs to one of the types in [CC3, Table F–2];
6. $\delta(X) = 13$ if and only if $\mathbb{B}(X) = \{B_{41}, 0, 2\}$.
II–1.7. The Up-to-date Result!

- Recently M. Chen showed $r_3 \leq 57$ on the basis of above classifications. Therefore, $27 \leq r_3 \leq 57$.

"Jungkai A. Chen & Meng Chen (NTU & Fudan)"

"On Explicit Aspect of Pluricanonical Maps of Projective Varieties"
II–1.7. The Up-to-date Result!

• Recently M. Chen showed $r_3 \leq 57$ on the basis of above classifications. Therefore, $27 \leq r_3 \leq 57$.
• For 3-folds with $\delta = 1$, M. Chen proved the following optimal results:

Theorem

Let X be a minimal projective 3-fold of general type with $p_g(X) \geq 2$. Then

1. $K_X^3 \geq \frac{1}{3}$;
2. $\varphi_{8,X}$ is birational onto its image.
Recently M. Chen showed $r_3 \leq 57$ on the basis of above classifications. Therefore, $27 \leq r_3 \leq 57$.

For 3-folds with $\delta = 1$, M. Chen proved the following optimal results:

Theorem

Let X be a minimal projective 3-fold of general type with $p_g(X) \geq 2$. Then

1. $K_X^3 \geq \frac{1}{3}$;
2. $\varphi_{8,X}$ is birational onto its image.

For 3-folds with $\delta = 2$, Chen-Chen proved that $r_s(X) \leq 11$ (optimal).
II–2.1. \(\mathbb{Q} \)-Fano 3-folds

A normal projective 3-fold \(X \) is called a \underline{weak \(\mathbb{Q} \)-Fano 3-fold} (resp. \underline{\(\mathbb{Q} \)-Fano 3-fold}) if the anti-canonical divisor \(-K_X \) is nef and big (resp. ample). A \underline{canonical} (resp. \underline{terminal}) weak \(\mathbb{Q} \)-Fano 3-fold is a weak \(\mathbb{Q} \)-Fano 3-fold with at worst canonical (resp. terminal) singularities.
II–2.1. **Q-Fano 3-folds**

- A normal projective 3-fold X is called a **weak Q-Fano 3-fold** (resp. **Q-Fano 3-fold**) if the anti-canonical divisor $-K_X$ is nef and big (resp. ample). A **canonical** (resp. **terminal**) weak Q-Fano 3-fold is a weak Q-Fano 3-fold with at worst canonical (resp. terminal) singularities.

- Take the weighted basket

$$\mathcal{B}(X) = \{ B_X, P_{-1}, \chi(\mathcal{O}_X) \}.$$

By the duality and the vanishing of higher cohomology, we always have $\chi_m = -P_{-(m-1)}$ for all $m \geq 2$. Hence the basket theory has a parallel version in Fano case.
In 2008, Chen-Chen applied the basket theory to prove the following theorem:

Theorem

Let X be a terminal (or canonical) weak \mathbb{Q}-Fano 3-fold. Then

1. $P_{-4} > 0$ with possibly one exception of a basket of singularities;
2. $P_{-6} > 0$ and $P_{-8} > 1$;
3. $-K^3_X \geq \frac{1}{330}$. Furthermore $-K^3_X = -\frac{1}{330}$ if and only if the basket of singularities is $\{(1, 2), (2, 5), (1, 3), (2, 11)\}$.

The above theorem is optimal according to Fletcher: $X_{66} \subset \mathbb{P}(1, 5, 6, 22, 33)$.
• **M. Chen** started to study the constant m_3 in 2011.
II–2.3. The Anti-pluricanonical Birationality

- M. Chen started to study the constant m_3 in 2011.
- Chen-Jiang proved in 2016:

Theorem

Let X be a terminal \mathbb{Q}-Fano 3-fold of Picard number one. Then $\varphi_{-m,X}$ is birational for all $m \geq 39$.

Theorem

Let X be a canonical weak \mathbb{Q}-Fano 3-fold. Then $\varphi_{-m,X}$ is birational for all $m \geq 97$.
II–2.4. The Anti-pluricanonical Birationality

• “$m_3 \leq 97$” is far from being optimal!
II–2.4. The Anti-pluricanonical Birationality

- “$m_3 \leq 97$” is far from being optimal!
- Chen–Jiang proved in 2017:

Theorem

Let V be a canonical weak \mathbb{Q}-Fano 3-fold. Then, for any K-Mori fiber space Y of V, $\varphi_{-m,Y}$ is birational for all $m \geq 52$.
II–3. The Noether inequality for algebraic 3-folds

II–3.1. Recall–The Surface Geography

- **General strategy of the geography**

![Diagram](image)

- Miyaoka-Yau inequality
- The Noether inequality

\[c_1^2 \]

\[O \]
II–3.2. The Noether Inequality

• There is no effective 3-dimensional analogy of Miyaoka-Yau inequality \(K_S^2 \leq 9 \chi(\mathcal{O}_S) \), since \(-\infty < \chi(\mathcal{O}_X) < +\infty \).
II–3. The Noether inequality for algebraic 3-folds

II–3.2. The Noether Inequality

- There is **no effective** 3-dimensional analogy of Miyaoka-Yau inequality “$K_S^2 \leq 9\chi(\mathcal{O}_S)$”, since $-\infty < \chi(\mathcal{O}_X) < +\infty$.

- **Seek for the Noether inequality!**
• X minimal, the Cartier index $r_X \geq 1$.

$$X \text{ is Gorenstein } \iff r_X = 1$$

$\{\text{smooth minimals}\} \subset \{\text{Gorenstein minimals}\} \subset \{\text{General minimals}\}$
II–3.3. History of 3-Dimensional Noether Inequality

• X minimal, the Cartier index $r_X \geq 1$.

X is Gorenstein $\iff r_X = 1$

$\{\text{smooth minimals}\} \subset \{\text{Gorenstein minimals}\} \subset \{\text{General minimals}\}$

• The possible Noether type inequality is of the form:

$$K_X^3 \geq ap_g(X) - b$$

$a, b \in \mathbb{Q}_{>0}$.
II–3.4. The Noether Inequality for Gorenstein Minimal 3-folds

- **Kobayashi (1992)**: an infinite series of examples of canonically polarized 3-folds satisfying $K_X^3 = \frac{4}{3} p_g(X) - \frac{10}{3}$.
II–3.4. The Noether Inequality for Gorenstein Minimal 3-folds

- **Kobayashi (1992)**: an infinite series of examples of canonically polarized 3-folds satisfying $K_X^3 = \frac{4}{3} p_g(X) - \frac{10}{3}$.
- **M. Chen (2004)**: $K_X^3 \geq \frac{4}{3} p_g(X) - \frac{10}{3}$ for canonically polarized 3-folds.
II–3.4. The Noether Inequality for Gorenstein Minimal 3-folds

- **Kobayashi (1992)**: an infinite series of examples of canonically polarized 3-folds satisfying \(K_X^3 = \frac{4}{3} p_g(X) - \frac{10}{3} \).
- **M. Chen (2004)**: \(K_X^3 \geq \frac{4}{3} p_g(X) - \frac{10}{3} \) for canonically polarized 3-folds.
- **Catanese-Chen-Zhang (2006)**: \(K_X^3 \geq \frac{4}{3} p_g(X) - \frac{10}{3} \) for smooth minimal 3-folds of general type.
II–3.4. The Noether Inequality for Gorenstein Minimal 3-folds

- **Kobayashi (1992)**: an infinite series of examples of canonically polarized 3-folds satisfying $K_X^3 = \frac{4}{3}p_g(X) - \frac{10}{3}$.

- **M. Chen (2004)**: $K_X^3 \geq \frac{4}{3}p_g(X) - \frac{10}{3}$ for canonically polarized 3-folds.

- **Catanese-Chen-Zhang (2006)**: $K_X^3 \geq \frac{4}{3}p_g(X) - \frac{10}{3}$ for smooth minimal 3-folds of general type.

- **Chen-Chen (2015)**: $K_X^3 \geq \frac{4}{3}p_g(X) - \frac{10}{3}$ for Gorenstein minimal 3-folds of general type.
• May always assume $p_g(X) \geq 2$, since $K_X^3 > 0$. So $\varphi|_{K_X}$ is non-trivial.
• May **always assume** $p_g(X) \geq 2$, since $K_X^3 > 0$. So $\varphi_{|K_X|}$ is non-trivial.

• Set up for $\varphi_1 = \varphi_{|K_X|}$. Set $d_X = \dim(\Gamma)$.
II–3.6. The main statement

Theorem

Let X be a minimal projective 3-fold of general type. Assume that one of the following holds:

- $d_X \geq 2$; or
- $d_X = 1$ and $|K_X|$ is not composed with a rational pencil of $(1, 2)$-surfaces; or
- $d_X = 1$, $|K_X|$ is composed with a rational pencil of $(1, 2)$-surfaces, and either $p_g(X) \leq 4$ or $p_g(X) \geq \frac{2}{\text{glct}(1,2)} + 1$.

Then the inequality

$$K_X^3 \geq \frac{4}{3} p_g(X) - \frac{10}{3}$$

holds.
II–3.7. The Noether Inequality for Algebraic 3-folds

- János Kollár: $\text{glct}(1, 2) \geq \frac{1}{10}$ (optimal).
II–3.7. The Noether Inequality for Algebraic 3-folds

- János Kollár: $\text{glct}(1, 2) \geq \frac{1}{10}$ (optimal).
- Chen-Chen-Jiang (2018) proved the following:

Theorem

Let X be a minimal projective 3-fold of general type and either $p_g(X) \leq 4$ or $p_g(X) \geq 21$. Then the inequality holds:

$$K^3_X \geq \frac{4}{3} p_g(X) - \frac{10}{3}.$$

Corollary

The inequality $K^3_X \geq \frac{4}{3} p_g(X) - \frac{10}{3}$ holds except for finite number of families of 3-folds of general type.
II–3.8. Conjecture A

• The 3D-Noether Inequality

Conjecture

The inequality $K^3 \geq \frac{4}{3} p_g - \frac{10}{3}$ holds for all minimal 3-folds of general type with $5 \leq p_g \leq 20$.
II-3. The Noether inequality for algebraic 3-folds

II–3.8. Conjecture A

- The 3D-Noether Inequality

Conjecture

The inequality $K^3 \geq \frac{4}{3} p_g - \frac{10}{3}$ holds for all minimal 3-folds of general type with $5 \leq p_g \leq 20$.

- Projective varieties with very large canonical volumes. For $n \geq 2$, recall:

 $$r_n = \max \{ r_s(X) \mid X \text{ is a } n\text{-fold of general type} \};$$

 $$r_n^+ = \max \{ r_s(X) \mid X \text{ is a } n\text{-fold of general type with } p_g > 0 \};$$
II–3. The Noether inequality for algebraic 3-folds

II–3.8. Conjecture A

- The 3D-Noether Inequality

Conjecture

The inequality $K^3 \geq \frac{4}{3} p_g - \frac{10}{3}$ holds for all minimal 3-folds of general type with $5 \leq p_g \leq 20$.

- Projective varieties with very large canonical volumes. For $n \geq 2$, recall:

 \[r_n = \max \{ r_s(X) \mid X \text{ is a n-fold of general type} \}; \]

 \[r_n^+ = \max \{ r_s(X) \mid X \text{ is a n-fold of general type with } p_g > 0 \}; \]

- By definition, one has $r_n^+ \leq r_n$.
II–3.9. Conjecture B and Conjecture C

- Conjecture B.

Conjecture

There exists a function $K(n)$ such that $r_s(X) \leq r_{n-1}$ holds for any $n \geq 5$ and for any minimal projective n-fold X with $K_X^n > K(n)$.
II–3.9. Conjecture B and Conjecture C

- Conjecture B.

Conjecture

There exists a function $K(n)$ such that $r_s(X) \leq r_{n-1}^+ \leq 1$ holds for any $n \geq 5$ and for any minimal projective n-fold X with $K^n_X > K(n)$.

- Conjecture C.

Conjecture

There exists a function $L(n)$ such that $r_s(X) \leq r_{n-1}^+ \leq 1$ holds for any $n \geq 6$ and for any minimal projective n-fold X of general type with $p_g > L(n)$.
II-3. The Noether inequality for algebraic 3-folds

Thank you very much!