Recursive combinatorial aspects of compactified moduli spaces

Lucia Caporaso
Department of Mathematics and Physics,
Roma Tre University - Rome, Italy

ICM 2018 - 02/08/2018
A moduli space, M, has a natural algebraic structure, not complete (i.e. degenerations must occur).

Step 1: A completion, \overline{M}, of M has a recursive structure by topological/combinatorial type.

Step 2: There is a "cone complex", $\Sigma(M)$, associated to this structure which is also a moduli space for combinatorial objects.

Step 3: $\Sigma(M)$ is also the skeleton of the analytification, M_{an}, of M.

The retraction $\rho: M_{\text{an}} \to \Sigma(M)$ has a remarkable geometric interpretation in terms of the all moduli spaces involved.
The program in general

A moduli space, M, has a natural algebraic structure, not complete (i.e. degenerations must occur).

Step 1: A completion, \overline{M}, of M has a recursive structure by topological/combinatorial type.

Step 2: There is a “cone complex”, $\Sigma(\overline{M})$, associated to this structure which is also a moduli space for combinatorial objects.
A moduli space, M, has a natural algebraic structure, not complete (i.e. degenerations must occur).

Step 1: A completion, \overline{M}, of M has a recursive structure by topological/combinatorial type.

Step 2: There is a “cone complex”, $\Sigma(\overline{M})$, associated to this structure which is also a moduli space for combinatorial objects.

Step 3: $\Sigma(\overline{M})$ is also the skeleton of the analytification, \overline{M}^{an}, of \overline{M}.
A moduli space, M, has a natural algebraic structure, not complete (i.e. degenerations must occur).

Step 1: A completion, \overline{M}, of M has a recursive structure by topological/combinatorial type.

Step 2: There is a “cone complex”, $\Sigma(\overline{M})$, associated to this structure which is also a moduli space for combinatorial objects.

Step 3: $\Sigma(\overline{M})$ is also the skeleton of the analytification, \overline{M}^{an}, of \overline{M}.

The retraction $\rho : \overline{M}^{an} \longrightarrow \Sigma(\overline{M})$ has a remarkable geometric interpretation in terms of the all moduli spaces involved.
Program applies to moduli of smooth/stable curves

\[M = \mathcal{M}_{g,n} \] is the moduli stack of smooth \(n \)-pointed curves of genus \(g \).

\[\overline{M}_{g,n} \] is the moduli stack of stable \(n \)-pointed curves of genus \(g \).

[Deligne-Mumford, Knudsen]
$M = \mathcal{M}_{g,n}$ moduli stack of smooth n-pointed curves of genus g.

$\overline{\mathcal{M}}_{g,n}$ moduli stack of stable n-pointed curves of genus g.

[Deligne-Mumford, Knudsen]

$\mathcal{G}_{g,n}$ graded poset of stable graphs of genus g with n legs.

$\sigma_M : \overline{\mathcal{M}}_{g,n} \to \mathcal{G}_{g,n}; \quad X \mapsto G$ dual graph (topological type) of X
Program applies to moduli of smooth/stable curves

\[M = \mathcal{M}_{g,n} \text{ moduli stack of smooth } n\text{-pointed curves of genus } g. \]

\[\overline{\mathcal{M}}_{g,n} \text{ moduli stack of stable } n\text{-pointed curves of genus } g. \]

[Deligne-Mumford, Knudsen]

\[G_{g,n} \text{ graded poset of stable graphs of genus } g \text{ with } n \text{ legs.} \]

\[\sigma_M : \overline{\mathcal{M}}_{g,n} \rightarrow G_{g,n}; \quad X \mapsto G \text{ dual graph (topological type) of } X \]

The fibers of \(\sigma_M \) form a recursive stratification of \(\overline{\mathcal{M}}_{g,n} \):

\[\overline{\mathcal{M}}_{g,n} = \bigsqcup_{G \in G_{g,n}} \mathcal{M}_G \]

\[\mathcal{M}_G := \sigma_M^{-1}(G). \]
Curves over \mathbb{C} and their dual graph: $g = 3$, $n = 0$
Stable graphs of genus 2 with no legs

The graded poset $G_{2,0}$
Program applies to moduli of smooth/stable curves

$\overline{M}_{g,n}$ moduli stack of stable $(n$-pointed, genus g) curves.
$\mathcal{G}_{g,n}$ stable graphs (of genus g with n legs).

$$\sigma_M : \overline{M}_{g,n} \rightarrow \mathcal{G}_{g,n}; \quad X \mapsto G \text{ dual graph (topological type) of } X$$

$\Sigma(\overline{M}_{g,n})$ is the colimit of a cone complex on the graded poset $\mathcal{G}_{g,n}$.

Program applies to moduli of smooth/stable curves

\(\overline{\mathcal{M}}_{g,n} \) moduli stack of stable \((n\text{-pointed, genus } g)\) curves.
\(\mathcal{G}_{g,n} \) stable graphs \((\text{of genus } g \text{ with } n \text{ legs})\).

\[\sigma_M : \overline{\mathcal{M}}_{g,n} \longrightarrow \mathcal{G}_{g,n}; \quad X \mapsto G \] dual graph (topological type) of \(X \)

\(\Sigma(\overline{\mathcal{M}}_{g,n}) \) is the colimit of a cone complex on the graded poset \(\mathcal{G}_{g,n} \).

\(\Sigma(\overline{\mathcal{M}}_{g,n}) \cong \overline{\mathcal{M}}^{\text{trop}}_{g,n} \) moduli space of \((\text{extended}) \ n\text{-pointed tropical curves}. \ [\text{Mikhalkin, Brannetti-Melo-Viviani, Abramovich-C-Payne}] \)
Program applies to moduli of smooth/stable curves

$\overline{M}_{g,n}$ moduli stack of stable (n-pointed, genus g) curves.
$G_{g,n}$ stable graphs (of genus g with n legs).

$$\sigma_M : \overline{M}_{g,n} \to G_{g,n}; \quad X \mapsto G \text{ dual graph (topological type) of } X$$

$\Sigma(\overline{M}_{g,n})$ is the colimit of a cone complex on the graded poset $G_{g,n}$.

$\Sigma(\overline{M}_{g,n}) \cong \overline{M}_{g,n}^{\text{trop}}$ moduli space of (extended) n-pointed tropical curves. [Mikhalkin, Brannetti-Melo-Viviani, Abramovich-C-Payne]

$\overline{M}^{\text{an}}_{g,n}$ Berkovich analytification of $\overline{M}_{g,n}$, parametrizes stable curves over non-Archimedean valuation fields up to equivalence.

[Berkovich, Thuillier]
The tropicalization map

A K-point in $\overline{\mathcal{M}}_{g,n}^{an}$ is a stable curve $\mathcal{X}_K \to \text{Spec } K$ over the non-Archimedean valuation field K, up to equivalence.
The tropicalization map

A K-point in $\overline{M}_{g,n}^{an}$ is a stable curve $\mathcal{X}_K \to \text{Spec } K$ over the non-Archimedean valuation field K, up to equivalence.

A point in $\overline{M}_{g,n}^{\text{trop}}$ is a tropical curve (G, ℓ) up to equivalence, where $\ell : E(G) \to \mathbb{R}_{>0} \cup \infty$.

Lucia Caporaso Department of Mathematics and Physics, Roma Tre University - Rome, Italy
Recursive combinatorial aspects of compactified moduli spaces
The tropicalization map

A K-point in $\overline{\mathcal{M}}_{g,n}^{\text{an}}$ is a stable curve $\mathcal{X}_K \to \text{Spec } K$ over the non-Archimedean valuation field K, up to equivalence.

A point in $\overline{\mathcal{M}}_{g,n}^{\text{trop}}$ is a tropical curve (G, ℓ) up to equivalence, where $\ell : E(G) \to \mathbb{R}_{>0} \cup \{\infty\}$.

The tropicalization map \cite{Baker-Payne-Rabinoff, Tyomkin, Viviani, Abramovich-C-Payne}:

\[
trop : \overline{\mathcal{M}}_{g,n}^{\text{an}} \xrightarrow{\rho} \Sigma(\overline{\mathcal{M}}_{g,n}) \cong \overline{\mathcal{M}}_{g,n}^{\text{trop}}
\]

\[
[\mathcal{X}_K \to \text{Spec } K] \to [(G, \ell)]
\]
The tropicalization map

A K-point in $\overline{M}^{an}_{g,n}$ is a stable curve $\mathcal{X}_K \to \text{Spec } K$ over the non-Archimedean valuation field K, up to equivalence.

A point in $\overline{M}^{\text{trop}}_{g,n}$ is a tropical curve (G, ℓ) up to equivalence, where $\ell : E(G) \to \mathbb{R}_{>0} \cup \infty$.

The tropicalization map [Baker-Payne-Rabinoff, Tyomkin, Viviani, Abramovich-C-Payne]

$$\text{trop} : \overline{M}^{an}_{g,n} \xrightarrow{\rho} \Sigma(\overline{M}_{g,n}) \xrightarrow{\cong} \overline{M}^{\text{trop}}_{g,n}$$

$$[\mathcal{X}_K \to \text{Spec } K] \mapsto [(G, \ell)]$$

G is the dual graph of the reduction, a stable curve X, of $\mathcal{X}_K \to \text{Spec } K$ over $\text{Spec } R$ ($R \subset K$ the valuation ring of K).
The tropicalization map

A K-point in $\overline{M}^{an}_{g,n}$ is a stable curve $X_K \to \text{Spec } K$ over the non-Archimedean valuation field K, up to equivalence.

A point in $\overline{M}^{trop}_{g,n}$ is a tropical curve (G, ℓ) up to equivalence, where $\ell : E(G) \to \mathbb{R}_{>0} \cup \infty$.

The tropicalization map \cite{Baker-Payne-Rabinoff, Tyomkin, Viviani, Abramovich-C-Payne}

\[
\text{trop} : \overline{M}^{an}_{g,n} \xrightarrow{\rho} \Sigma(\overline{M}_{g,n}) \xrightarrow{\cong} \overline{M}^{trop}_{g,n}
\]

$[X_K \to \text{Spec } K] \xrightarrow{} [(G, \ell)]$

G is the dual graph of the reduction, a stable curve X, of $X_K \to \text{Spec } K$ over $\text{Spec } R$ ($R \subset K$ the valuation ring of K).

$\ell : E(G) \to \mathbb{R}_{>0} \cup \infty$ measures, by the valuation of K, the local geometry of the total space at X.

Lucia Caporaso Department of Mathematics and Physics, Roma Tre University - Rome, Italy

Recursive combinatorial aspects of compactified moduli spaces
Program applies to Hurwitz space/admissible covers

$\mathcal{H}_\bullet = \mathcal{H}_{g,h}(\pi) =$ Hurwitz space of degree-d covers of a smooth curve of genus h by a smooth curve of genus g with exactly b branch points and ramification prescribed by $\pi = (\pi_1, \ldots, \pi_b)$, with π_i a partition of d. It is not complete

$\overline{\mathcal{H}}_\bullet = \overline{\mathcal{H}}_{g,h}(\pi)$ moduli stack of admissible covers.

[Harris-Mumford, Mochizuchi, Abramovich-Corti-Vistoli]
Program applies to Hurwitz space/admissible covers

\[\mathcal{H}_\bullet = \mathcal{H}_{g,h}(\pi) = \text{Hurwitz space of degree-} d \text{ covers of a smooth curve of genus } h \text{ by a smooth curve of genus } g \text{ with exactly } b \text{ branch points and ramification prescribed by } \pi = (\pi_1, \ldots, \pi_b), \text{ with } \pi_i \text{ a partition of } d. \text{ It is not complete} \]

\[\mathcal{H}_\bullet = \mathcal{H}_{g,h}(\pi) \text{ moduli stack of admissible covers.} \]

[Harris-Mumford, Mochizuchi, Abramovich-Corti-Vistoli]

There are two canonical morphisms, mapping an admissible cover to its target, or its source (for suitable \(m, n \in \mathbb{N} \))

\[\overline{\mathcal{M}}_{h,m} \xleftarrow{\text{tgt}} \overline{\mathcal{H}}_{g,h}(\pi) \xrightarrow{\text{src}} \overline{\mathcal{M}}_{g,n} \]
Program applies to Hurwitz space/admissible covers

Hurwitz space \(\mathcal{H}_\bullet \subset \overline{\mathcal{H}}_\bullet = \) moduli stack of admissible covers.

\(\mathcal{A}_\bullet \) \textit{admissible covers of graphs}, a graded poset. The recursive stratification [Cavalieri-Markwig-Ranganathan]:

\[
\sigma_{\mathcal{H}} : \overline{\mathcal{H}}_\bullet \longrightarrow \mathcal{A}_\bullet ; \quad [C' \rightarrow C] \mapsto [G' \rightarrow G] \text{ dual graph cover}
\]
Program applies to Hurwitz space/admissible covers

Hurwitz space = $\mathcal{H}_\bullet \subset \overline{\mathcal{H}}_\bullet = \text{moduli stack of admissible covers.}$

$\mathcal{A}_\bullet \text{ admissible covers of graphs}$, a graded poset.

The recursive stratification \cite{Cavalieri-Markwig-Ranganathan}:

$$\sigma_{\mathcal{H}} : \overline{\mathcal{H}}_\bullet \to \mathcal{A}_\bullet; \quad [C' \to C] \mapsto [G' \to G] \quad \text{dual graph cover}$$

$\Sigma(\overline{\mathcal{H}}_\bullet)$ is the colimit of a cone complex on \mathcal{A}_\bullet.

$\Sigma(\overline{\mathcal{H}}_\bullet) \cong \overline{\mathcal{H}}^{\text{trop}}_\bullet$ moduli space of tropical admissible covers.

$$\text{trop} : \overline{\mathcal{H}}^\text{an}_\bullet \to \overline{\mathcal{H}}^{\text{trop}}_\bullet$$

Compatible with the program for $\overline{\mathcal{M}}_{g,n}$ via the canonical maps src and tgt, and their tropical and analytic counterparts.
Compatibility of tropicalization maps with canonical maps

A commutative diagram

\[\begin{array} {ccc}
\mathcal{M}_{h,m}^{\text{an}} & \xrightarrow{\text{tgt}^{\text{an}}} & \mathcal{H}^{\text{an}} \\
\downarrow \text{trop} & & \downarrow \text{trop} \\
\mathcal{M}_{h,m}^{\text{trop}} & \xrightarrow{\text{tgt}^{\text{trop}}} & \mathcal{H}^{\text{trop}} \\
\downarrow \text{trop} & & \downarrow \text{trop} \\
\mathcal{M}_{g,n}^{\text{trop}} & \xrightarrow{\text{src}^{\text{trop}}} & \mathcal{M}_{g,n}^{\text{an}}
\end{array} \]

[Cavalieri-Markwig-Ranganathan]

Lucia Caporaso Department of Mathematics and Physics, Roma Tre University - Rome, Italy
Recursive combinatorial aspects of compactified moduli spaces
Compatibly of tropicalization maps with canonical maps

A commutative diagram

\mathcal{H}^an

$\mathcal{M}^\text{an}_{h,m}$

$\mathcal{M}^\text{trop}_{h,m}$

\mathcal{Trop}

\mathcal{M}^trop

\mathcal{Trop}

\mathcal{M}^an

$\mathcal{M}^\text{an}_{g,n}$

$\mathcal{M}^\text{trop}_{g,n}$

$\mathcal{G}_{g,n}$

[Cavalieri-Markwig-Ranganathan]
Compatibility of tropicalization maps with canonical maps

A commutative diagram

\[
\begin{array}{ccc}
\mathcal{H}^{an} & \xrightarrow{\text{tgt}^{an}} & \mathcal{H}^{an} \\
\downarrow \text{trop} & & \downarrow \text{trop} \\
\overline{\mathcal{M}}^{an}_{h,m} & & \overline{\mathcal{M}}^{an}_{g,n} \\
\end{array}
\]

\[
\begin{array}{ccc}
\mathcal{H}^{trop} & \xrightarrow{\text{src}^{trop}} & \mathcal{H}^{trop} \\
\downarrow \text{tgt}^{trop} & & \downarrow \text{trop} \\
\overline{\mathcal{M}}^{trop}_{h,m} & & \overline{\mathcal{M}}^{trop}_{g,n} \\
\end{array}
\]

\[
\begin{array}{ccc}
\mathcal{A} & \xrightarrow{\sigma_M} & \mathcal{M}^{g,n} \\
\downarrow \sigma_H & & \downarrow \sigma_H \\
\overline{\mathcal{M}}^{g,n} & & \overline{\mathcal{M}}^{g,n} \\
\end{array}
\]

\[\begin{array}{ccc}
\mathcal{H}^{an} & \xrightarrow{\text{src}^{an}} & \mathcal{H}^{an} \\
\downarrow \text{trop} & & \downarrow \text{trop} \\
\overline{\mathcal{M}}^{an}_{h,m} & & \overline{\mathcal{M}}^{an}_{g,n} \\
\end{array}\]

\[
\begin{array}{ccc}
\mathcal{H}^{trop} & \xrightarrow{\text{src}^{trop}} & \mathcal{H}^{trop} \\
\downarrow \text{tgt}^{trop} & & \downarrow \text{trop} \\
\overline{\mathcal{M}}^{trop}_{h,m} & & \overline{\mathcal{M}}^{trop}_{g,n} \\
\end{array}
\]

[161] [Cavalieri-Markwig-Ranganathan]
Moduli of line bundles on a stable curve

X stable curve, G its dual graph,
$E(G) =$ nodes of X and $V(G) =$ irreducible components of X.
$\text{Pic}^d(X) = \bigsqcup_{|d| = d} \text{Pic}^d(X)$ is the moduli space of line bundles of degree d on X.
$\text{Pic}^d(X) \cong \text{Jac}(X)$ for all $d \in \mathbb{Z}^{V(G)}$. It is not complete.
Moduli of line bundles on a stable curve

X stable curve, G its dual graph, $E(G) =$ nodes of X and $V(G) =$ irreducible components of X. $\text{Pic}^d(X) = \bigsqcup_{|d|=d} \text{Pic}^d(X)$ is the moduli space of line bundles of degree d on X. $\text{Pic}^d(X) \cong \text{Jac}(X)$ for all $d \in \mathbb{Z}^{V(G)}$. It is not complete.

There exist compactifications over \overline{M}_g for all $d \in \mathbb{Z}$

$$
\psi_d : \overline{P}_g^d \longrightarrow \overline{M}_g
$$

$\overline{P}_X^d := \psi_d^{-1}(X)$ is the degree-d compactified Jacobian.

If X is smooth $\overline{P}_X^d \cong \text{Pic}^d(X)$.

Lucia Caporaso Department of Mathematics and Physics, Roma Tre University - Rome, Italy
Recursive combinatorial aspects of compactified moduli spaces
Compactified Jacobian in degree g for a curve X

G dual graph of X and $E(G) =$ nodes of X.

For $F \subset E(G)$ let X_F^ν be the desingularization of X at F.

Case $d = g$ (Néron compactified Jacobian).
Recursive stratification [C-Christ]:

$$\overline{P}_X^g = \bigsqcup_{O_H \in \overline{OP}_G^1} \text{Pic}^{d_{OH}}(X_F^\nu)$$
Compactified Jacobian in degree g for a curve X

G dual graph of X and $E(G) =$ nodes of X.

For $F \subset E(G)$ let X_F^ν be the desingularization of X at F.

Case $d = g$ (Néron compactified Jacobian).
Recursive stratification [C-Christ]:

$$\overline{P}^g_X = \bigsqcup_{O_H \in \overline{OP}^1_G} \text{Pic}^{d_OH}(X_F^\nu)$$

$\overline{OP}^1_G =$ graded poset of rooted orientations on (connected) spanning subgraphs of G, up to equivalence.

O_H is the class of a rooted orientation on $H = G - F_H$.

Lucia Caporaso Department of Mathematics and Physics, Roma Tre University - Rome, Italy
Recursive combinatorial aspects of compactified moduli spaces
Compactified Jacobian in degree g for a curve X

G dual graph of X and $E(G) =$ nodes of X.

For $F \subset E(G)$ let X^ν_F be the desingularization of X at F.

Case $d = g$ (Néron compactified Jacobian).
Recursive stratification $[C$-Christ$]:$

$$\overline{P}^g_X = \bigsqcup_{O_H \in \overline{OP}_G^1} \text{Pic}^d_{O_H}(X^\nu_{F_H})$$

$\overline{OP}_G^1 =$ graded poset of rooted orientations on (connected) spanning subgraphs of G, up to equivalence.
O_H is the class of a rooted orientation on $H = G - F_H$.

Only parts of the program are ok. $[Baker-Rabinoff, Christ]$
Compactified universal degree-g Jacobians

The recursive stratification over \overline{M}_g.

\[
\begin{array}{c}
\overline{P}_g \xrightarrow{\sigma_P} \overline{OP}_g \\
\downarrow \psi_g \quad \downarrow \\
\overline{M}_g \xrightarrow{\sigma_M} G_g
\end{array}
\]

rooted orientations

connected subgraphs

[C-Christ]
Compactified Néron models and degree-g Jacobians

The recursive stratification σ_N is via Néron models of all connected partial desingularizations of X.

$N_X = \text{special fiber of Néron model.}$

$$\overline{P}_X^g = \overline{N}_X = \bigsqcup_{H \in \mathcal{H}_g^1} N_{X_{FH}^\nu}$$
Compactified Jacobian in degree \(g - 1 \) for a curve \(X \)

\(G \) dual graph of \(X \), and \(E(G) = \) nodes of \(X \).

For \(F \subset E(G) \) let \(X_F^\nu \) be the desingularization of \(X \) at \(F \).

Case \(d = g - 1 \). The recursive stratification

\[
\bar{P}_X^{g-1} = \bigsqcup_{O_H \in \bar{P}_G^0} \text{Pic}^{d_{O_H}}(X_F^\nu)
\]
Compactified Jacobian in degree $g - 1$ for a curve X

G dual graph of X, and $E(G) =$ nodes of X.

For $F \subset E(G)$ let X_F^ν be the desingularization of X at F.

Case $d = g - 1$. The recursive stratification

$$
\overline{P}_{X}^{g-1} = \bigsqcup_{O_H \in \overline{OP}_G} \text{Pic}^{dO_H}(X_F^\nu) $$

\overline{OP}_G graded poset of \textit{totally cyclic} orientations on (bridgeless) spanning subgraphs of G, up to equivalence. O_H is the class of a totally cyclic orientation on $H = G - F_H$.

[Beauville, Alexeev, C-Viviani]
Compactified universal Jacobian in degree \(g - 1 \)

\[
\begin{align*}
\overline{P}_g^{g-1} & \xrightarrow{\sigma_P} \overline{OP}^0_g & \text{tot.cyc. orientations} \\
\psi_{g-1} & & \psi_{g-1} \\
\overline{M}_g & \xrightarrow{\sigma_M} \overline{G}_g & \text{bridgeless subgraphs}
\end{align*}
\]

Only the first step of the program is known. [C-Christ]
Moduli of stable spin curves

$\overline{P}_g^{-1} \xrightarrow{\sigma_P} \overline{OP}_g$ totally cyclic orientations

$\overline{P}_g \xrightarrow{\sigma_P} \overline{OP}_g$

$\overline{S}_g \xrightarrow{\pi} \overline{M}_g$

$\overline{S}_g \xrightarrow{\pi} \overline{M}_g$

$\overline{H}_g^0 \xrightarrow{\sigma_M} G_g$ bridgeless subgraphs

Lucia Caporaso
Department of Mathematics and Physics, Roma Tre University - Rome, Italy

Recursive combinatorial aspects of compactified moduli spaces
Moduli of stable spin curves

\mathcal{S}_g moduli of stable spin curves [Cornalba, Jarvis, Fontanari].

$S_g =$ Moduli stack of theta characteristics

$= \{(X, L) : X \in \overline{M}_g, L \in \text{Pic}(X) : L^2 \cong \omega_X\}.$
Program applies to theta characteristics/stable spin curves

\[S_X = \{ L \in \text{Pic}(X) : L^2 \cong \omega_X \} = \text{theta-characteristics on } X. \]

\[\bar{S}_X = \pi^{-1}(X) = \bigsqcup_{G-F \in C_G} S_{X_F} \]

\(C_G \) the cycle space of \(G \) (subgraphs of even degree) [C-Casagrande].
Program applies to theta characteristics/stable spin curves

\[S_X = \{ L \in \text{Pic}(X) : L^2 \cong \omega_X \} = \text{theta-characteristics on } X. \]

\[\overline{S}_X = \pi^{-1}(X) = \bigsqcup_{G-F \in C_G} S_{X_F^\nu} \]

C_G the cycle space of G (subgraphs of even degree) [C-Casagrande].

\(S\mathcal{P}_g \) stable spin graphs of genus \(g \).

The recursive stratification

\[\sigma_S : \overline{S}_g \longrightarrow S\mathcal{P}_g; \quad (X_F^\nu, L_F) \mapsto (G, G - F, s) \text{ dual spin graph} \]
Program applies to theta characteristics/stable spin curves

\[S_X = \{ L \in \text{Pic}(X) : L^2 \cong \omega_X \} = \text{theta-characteristics on } X. \]

\[\overline{S}_X = \pi^{-1}(X) = \bigsqcup_{G-F \in C_G} S_{X_F^\nu} \]

\(C_G \) the cycle space of \(G \) (subgraphs of even degree) [C-Casagrande].

\(S\mathcal{P}_g \) stable spin graphs of genus \(g \).

The recursive stratification

\[\sigma_S : \overline{S}_g \longrightarrow S\mathcal{P}_g; \quad (X_F^\nu, L_F) \mapsto (G, G-F, s) \text{ dual spin graph} \]

\[\overline{\Sigma}(\overline{S}_g) \cong \overline{S}_g^{\text{trop}} \text{ moduli space of (extended) tropical spin curves} \]

[Zharkov, C-Melo-Pacini(to appear)].

\[\text{trop} : \overline{S}_g^{\text{an}} \longrightarrow \overline{\Sigma}(\overline{S}_g) \cong \overline{S}_g^{\text{trop}} \]
Spin curves and universal Jacobian in degree $g - 1$

\[P_{g}^{g-1} \xrightarrow{\sigma_{P}} \overline{OP}_{g}^{0} \]
\[S_{g} \xrightarrow{\sigma_{S}} \mathcal{SP}_{g} \]
\[\mathcal{H}_{g}^{0} \leftarrow \mathcal{C}_{g} \]
\[\overline{M}_{g} \xrightarrow{\sigma_{M}} G_{g} \]

[totally cyclic orientations]

[Spin graphs]

[Cyclic subgraphs]

[C-Melo-Pacini(to appear)]

Lucia Caporaso Department of Mathematics and Physics, Roma Tre University - Rome, Italy

Recursive combinatorial aspects of compactified moduli spaces
Program applies to n-pointed stable spin curves
Program applies to n-pointed stable spin curves

Lucia Caporaso Department of Mathematics and Physics, Roma Tre University - Rome, Italy
Recursive combinatorial aspects of compactified moduli spaces