Perfectoid spaces and the homological conjectures

Yves André

ICM, Rio de Janeiro, August 7, 2018
An encounter between two domains

Commutative algebra $\dashrightarrow \dashrightarrow \dashrightarrow \dashrightarrow \dashrightarrow \dashrightarrow \dashrightarrow \dashrightarrow$ p-adic Hodge theory

(Hilbert, Krull, ...) (Tate, Fontaine, ...)

Noetherian world

(non-Noetherian world

(finite-dimensional rings, non-archimedean Banach algebras...)

Homological conjectures \leftarrow perfectoid theory

(Peskine-Szpiro, Hochster...) (Faltings, Scholze, ...)

Yves André
Perfectoid spaces and homological conjectures
Direct summand conjecture

(1st instance of this encounter).

R: Noetherian commutative ring,

$R \subset S$: finite extension (of commutative rings)

\Rightarrow exact sequence of finite R-modules:

$$0 \longrightarrow R \longrightarrow S \longrightarrow S/R \longrightarrow 0.$$

Question: does this sequence splits?

(equivalently: is R a direct summand in S? Is there an R-linear map $S \rightarrow R$ which sends 1 to 1?)

Ex. Split if R is a normal \mathbb{Q}-algebra (divide the trace by the degree).

C.Ex. Non-split if $R = \mathbb{Q}[x, y]$, (xy) and $S =$ its normalization.

Non-split for some normal \mathbb{F}_p-algebras.
Hochster’s direct summand conjecture (1969):

The sequence splits if \(R \) is regular.

(motivated by the homological conjectures, see later).

\[R \cong W(\mathbb{k})[[x_2, \ldots, x_d]], (x_1 = p) \]
Hochster’s direct summand conjecture (1969):
The sequence splits if R is regular.

(motivated by the homological conjectures, see later).

- Hochster gave (short) proofs when R contains a field.

Theorem 1 \[A. 2016\]

DSC holds: any finite extension of a regular ring splits (as a module).
Hochster’s direct summand conjecture (1969): *The sequence splits if R is regular.*

(motivated by the homological conjectures, see later).

1. Hochster gave (short) proofs when R contains a field.
2. He reduced the problem to the unramified complete local case with perfect residue field k of char. p:

$$R \cong W(k)[[x_2, \ldots, x_d]], \ (x_1 = p).$$
Hochster’s direct summand conjecture (1969): \(\text{The sequence splits if } R \text{ is regular.} \)

(motivated by the homological conjectures, see later).

1. Hochster gave (short) proofs when \(R \) contains a field.
2. He reduced the problem to the unramified complete local case with perfect residue field \(k \) of char. \(p \):

\[
R \cong W(k)[[x_2, \cdots, x_d]], \ (x_1 = p).
\]

3. Heitmann (2002) gave a proof in dimension \(d \leq 3 \).
Hochster’s direct summand conjecture (1969):
The sequence splits if R is regular.

(motivated by the homological conjectures, see later).

1. Hochster gave (short) proofs when R contains a field.
2. He reduced the problem to the unramified complete local case with perfect residue field k of char. p:

$$R \cong W(k)[[x_2, \ldots, x_d]], \quad (x_1 = p).$$

Theorem 1 [A. 2016]

DSC holds: any finite extension of a regular ring splits (as a module).
Direct summand conjecture: strategy

Theorem 1 [A. 2016]

DSC holds: any finite extension of a regular ring splits (as a module).

Observations:
Direct summand conjecture: strategy

Theorem 1 [A. 2016]

DSC holds: any finite extension of a regular ring splits (as a module).

Observations:

1. a finite extension $R \subset S$ splits iff it is pure, i.e. universally injective.

2. If a composition $R \rightarrow S \rightarrow T$ is pure, so is $R \rightarrow S$.

3. Any faithfully flat $R \rightarrow T$ is pure.

4. Hence it suffices to construct an S-algebra T (possibly big, i.e. non-Noetherian) which is R-faithfully flat.

5. If T is p-torsion free and p-adically complete, this amounts to: T/pT is R/pR-faithfully flat.
Direct summand conjecture: strategy

Theorem 1 [A. 2016]

DSC holds: any finite extension of a regular ring splits (as a module).

Observations:

1. A finite extension $R \subset S$ splits iff it is pure, i.e. universally injective.

2. If a composition $R \to S \to T$ is pure, so is $R \to S$.

Yves André

Perfectoid spaces and homological conjectures
Direct summand conjecture: strategy

Theorem 1 [A. 2016]

DSC holds: any finite extension of a regular ring splits (as a module).

Observations:

1. a finite extension \(R \subset S \) splits iff it is pure, i.e. universally injective.
2. If a composition \(R \to S \to T \) is pure, so is \(R \to S \).
3. Any faithfully flat \(R \to T \) is pure.
Theorem 1 [A. 2016]

DSC holds: any finite extension of a regular ring splits (as a module).

Observations:

1. A finite extension $R \subset S$ splits iff it is pure, i.e. universally injective.
2. If a composition $R \to S \to T$ is pure, so is $R \to S$.
3. Any faithfully flat $R \to T$ is pure.
4. Hence it suffices to construct an S-algebra T (possibly big, i.e. non-Noetherian) which is R-faithfully flat.
Direct summand conjecture: strategy

Theorem 1 [A. 2016]
DSC holds: any finite extension of a regular ring splits (as a module).

Observations:
1. a finite extension $R \subset S$ splits iff it is pure, i.e. universally injective.
2. If a composition $R \to S \to T$ is pure, so is $R \to S$.
3. Any faithfully flat $R \to T$ is pure.
4. Hence it suffices to construct an S-algebra T (possibly big, i.e. non-Noetherian) which is R-faithfully flat.
5. If T is p-torsion free and p-adically complete, this amounts to: T/pT is R/pR-faithfully flat.

Yves André
Perfectoid spaces and homological conjectures
The strategy works in char. p (not the shortest way!):

- R: complete regular local domain of char. p, S finite extension domain;
- R^{1/p^∞}: perfect closure; R-faithfully flat (Kunz); may not contain S;
- R^+: absolute integral closure of R (i.e. integral closure in an algebraic closure of the fraction field); contains SR^{1/p^∞} and is R-faithfully flat (Hochster-Huneke).

We now turn to the mixed characteristic case

$$R = W(k)[[x_2, \ldots, x_d]].$$

Replace $\overline{R^{1/p^\infty}}$ by introducing p^{th}-power roots of the system of parameters $x_1 = p, x_2, \ldots, x_d \leadsto \text{perfectoid world.}$
K: complete non-archimedean field
K^0: valuation ring, K^{oo}: valuation ideal.
Assume that the valuation is not discrete (equivalently: $K^{oo} = (K^{oo})^2$), and that the residue field k is of char. $p > 0$.
Perfectoid notions

Proposition [Gabber-Ramero]

\[K^0 / p \xrightarrow{\sim} K^0 / p \] is surjective iff for each finite separable \(L/K \), \(L^0 \) is almost etale over \(K^0 \), i.e. \(\Omega_{L^0/K^0} \) is killed by \(K^{oo} \).
Proposition [Gabber-Ramero]

$K^o/p \xrightarrow{\times_p} K^o/p$ is surjective iff for each finite separable L/K, L^o is almost etale over K^o, i.e. Ω_{L^o/K^o} is killed by K^{oo}.

In this case, K is a perfectoid field (k is then perfect).

Ex. $K^o = W(k)[p^{1/p\infty}]$, $K = K^o[\frac{1}{p}]$ (basic perfectoid field in the sequel).
Here, **almost** is used in the sense of Almost Algebra: given a commutative ring \mathcal{V} and an idempotent ideal m, “neglect" all \mathcal{V}-module killed by m.

Almost algebra (Faltings, Gabber-Ramero) goes much beyond mere categorical localization: notions of almost finite, almost flat, almost etale...

When $(\mathcal{V}, m) = (K^o, K^{ oo} = p^{1/p^\infty} K^o)$ as above, we say p^{1/p^∞}-almost: “p^{1/p^∞}-almost zero" means “killed by p^{1/p^∞}".
Perfectoid notions

A: Banach K-algebra.

A^o: sub-K^o-algebra of power-bounded elements.

A is a perfectoid K-algebra if $A^o/p^{1/p} \xrightarrow{x \mapsto x^p} A^o/p$ is an isomorphism.

This implies that the norm of A is equivalent to the spectral norm, and A^o is the unit ball for the latter.

Ex. $A^o = R_{\infty} := \bigcup W(k)[p^{1/p}][[x_2^{p^i}, \cdots, x_d^{p^i}]], \ A = R_{\infty}[\frac{1}{p}].$
A: Banach K-algebra.
A^0: sub-K^0-algebra of power-bounded elements.

A is a perfectoid K-algebra if $A^0/p^{1/p} \xrightarrow{\phi} A^0/p$ is an isomorphism.

This implies that the norm of A is equivalent to the spectral norm, and A^0 is the unit ball for the latter.

Ex. $A^0 = R_\infty := \bigcup W(k)[1/p^j]\{[x_2^p, \ldots, x_d^p]\}, \quad A = R_\infty[1/p]$.

Theorem 2 (Almost purity [Faltings; Scholze, Kedlaya-Liu])

A: perfectoid K-algebra; B: finite etale A-algebra.
Then B is perfectoid, and B^0 is an p^{-1/p^∞}-almost finite etale A^0 algebra.
Perfectoid Abhyankar lemma

In the situation of DSC, $B = S \otimes_R R_{\infty}[\frac{1}{p}]$ may not be etale over $A = R_{\infty}[\frac{1}{p}]$, so Almost Purity does not apply (in fact, a finite extension of a perfectoid algebra need not be perfectoid).

Abhyankar’s classical lemma: under appropriate assumptions, one can achieve etaleness by adjoining roots of the discriminant.

We follow this strategy.

$g \in R = \mathcal{W}(k)[[x_2, \cdots, x_d]]$: a discriminant of $S[\frac{1}{p}]/R[\frac{1}{p}]$. We first note that adjoining p^{th}-power roots of g, in the (non-naive) sense of considering $R_{\infty}[\frac{1}{p}]\langle g^{1/p_{\infty}} \rangle^o$, is “harmless”:

Theorem 3 [A.]

$R_{\infty,g} := R_{\infty}[\frac{1}{p}]\langle g^{1/p_{\infty}} \rangle^o$ is $p^{1/p_{\infty}}$-almost faithfully flat over R_{∞}.

Yves André Perfectoid spaces and homological conjectures
Perfectoid Abhyankar lemma

The following is both a perfectoid version of Abhyankar’s lemma, and a ramified version of the Almost Purity theorem.

Theorem 4 [A.]

- **A**: perfectoid K-algebra, containing a sequence of p^{th}-power roots of a non-zero divisor $g \in A^o$ (Ex: $A = R_{\infty,g[\frac{1}{p}]}$).
- **B'**: finite etale $A[\frac{1}{g}]$-algebra.
- **B^o**: integral closure of A^o in B' (hence $B^o[\frac{1}{pg}] = B'$).

Then for any n, B^o/p^n is an $(pg)^{\cdot\frac{1}{p^\infty}}$-almost finite etale A^o/p^n algebra.
Perfectoid Abhyankar lemma

The proofs of both theorems use deformation arguments of perfectoid spaces.

For Th. 3:

Theorem 3 [A.]

\[R_{\infty}g := R_{\infty}[\frac{1}{p}]\langle g^{\frac{1}{p^\infty}} \rangle^o \text{ is } p\frac{1}{p^\infty} \text{-almost faithfully flat over } R_{\infty}. \]

Spread out the perfectoid space \(X \) attached to \(R_{\infty} = \mathcal{O}^+(X) \).

\(X^{<\varepsilon} \): (perfectoid) \(\varepsilon \)-tubular neighborhood of \(X \).

- \(R_{\infty}g \) is \(p\frac{1}{p^\infty} \)-almost equal to \(\varprojlim_{\varepsilon} \mathcal{O}^+(X^{<\varepsilon}) \).

- Using Scholze’s (almost) description of \(\mathcal{O}^+(X^{<\varepsilon})/p^\varepsilon \) in terms of "Puiseux-like" series with coefficients in \(\mathcal{O}^+(X)/p^\varepsilon \), show that \(\mathcal{O}^+(X^{<\varepsilon})/p^\varepsilon \) is almost faithfully flat over \(\mathcal{O}^+(X)/p^\varepsilon \).
Perfectoid Abhyankar lemma

For Th. 4:
X: perfectoid space X attached to $A^0 = \mathcal{O}^+(X)$,
$X_{>\varepsilon}$: (perfectoid) complement of ε-tubular neighborhood of the discriminant locus $g = 0$.

- $\mathcal{O}^+(X)$ is $(pg)^{1/\varphi}\overline{\mathcal{O}^{\infty}}$-almost equal to $\lim_{\varepsilon} \mathcal{O}^+(X_{>\varepsilon})$ (by Scholze’s perfectoid Riemann extension theorem).
- By almost purity over $X_{>\varepsilon}$, $(B'(\mathcal{O}(X_{>\varepsilon})))^+$ is almost finite etale over $\mathcal{O}^+(X_{>\varepsilon})$.
- Pass to the limit (main step).
\(R = W(k)[[x_2, \cdots, x_d]], \) \(S \) finite extension, etale outside \(pg = 0. \)

\(A = R_{\infty, g}[\frac{1}{p}], B' = S \otimes_R A[\frac{1}{g}] \leadsto S\)-algebra \(B^0 \) sitting on top of a tower

\[
R \xrightarrow{\alpha} R_{\infty} \xrightarrow{\beta} R_{\infty, g} \xrightarrow{\gamma} B^0
\]

where \(\alpha \) is faithfully flat,
\(\beta \) is \(p^{p^{\infty}} \)-almost faithfully flat,
\(\gamma \) is \((pg)^{p^{\infty}}\)-almost faithfully flat mod. \(p \).

Thus \(B^0 \) is "almost" our wanted \(T \).

How to get rid of "almost"?
(detour through Cohen-Macaulay notions)

S: Noetherian local ring, T: (possibly big) extension.

T is a (big) Cohen-Macaulay S-algebra if any sequence of parameters x_1, \ldots, x_d of S becomes regular in T

(i.e. x_1 is non-zero-divisor in T, x_2 is non-zero divisor in T/x_1 etc, and $T \neq (x_1, \ldots, x_d)T$).

Hochster conjectured that such a T always exists.

Ex. If S complete of char. p, S^+ is a big Cohen-Macaulay S-algebra (Hochster-Huneke).
Lemma

Assume S is a complete local domain, hence a finite extension of complete regular local ring R (Cohen).
Then T is a (big) Cohen-Macaulay S-algebra iff T is R-faithfully flat.

Back to DSC: our B^0 is only an almost Cohen-Macaulay S-algebra. But one can pass from an Cohen-Macaulay S-algebra to a genuine Cohen-Macaulay S-algebra T using either
- Hochster’s (classical) technique of algebra modifications, or
- Gabber’s ultraproduct (new) technique.
This is the last step in the proof of DSC and of Hochster’s conjectured existence of big CM algebras.
Main Theorem 5 [A. 2016, 2018]

- Any Noetherian local ring S admits a big CM algebra T.
- For any local morphism $S \rightarrow S'$ of Noetherian complete local domains, there is morphism of respective big CM algebras $T \rightarrow T'$.
Main Theorem 5 [A. 2016, 2018]

• Any Noetherian local ring S admits a big CM algebra T.
• For any local morphism $S \to S'$ of Noetherian complete local domains, there is morphism of respective big CM algebras $T \to T'$.

Corollary [Heitmann-Ma; A.]

Any subring of a regular ring, which is a direct summand as a module, is Cohen-Macaulay.
Big Cohen-Macaulay algebras

Theorem 6

- [A., Shimomoto] Any Noetherian complete local domain S of char. $(0, p)$ admits an (integral) **perfectoid** CM algebra T.
- [Ma-Schwede] Any two such T are dominated by a third.

This allows Ma and Schwede to develop
- an analog of **tight closure theory** (Hochster-Huneke) in mixed characteristic,
- in-depth study of **singularities in mixed characteristic**, where perfectoid CM algebras play somehow the role of resolution of singularities in equal char. 0.
Kunz’ theorem in mixed characteristic

- R: Noetherian ring of char. p.
 Kunz’ classical theorem:
 R is regular iff $R \xrightarrow{x \mapsto x^p} R$ is flat,
 iff there exists a perfect, faithfully flat R-algebra.

- R: Noetherian p-adically complete ring.

Theorem 7 [Bhatt-Iyengar-Ma 2018]

R is regular iff there exists an integral perfectoid, faithfully flat R-algebra.
Applications to singularities

\(S \): local domain, essentially of finite type over \(\mathbb{C} \).

Rational singularity? (i.e. \(R \cong R\Gamma_{\mathcal{O}_Y} \) for a log-resolution \(Y \))

Criteria by reduction mod. \(p \) after spreading out.

\(S \) rational singularity
\(\iff (S \mod. p) \text{ } F\text{-rational singularity for } p \gg 0 \) (i.e. local cohomology = simple Frob.-module - checkable on Macaulay2)

\(M\text{-}S. \iff (S \mod. p) \text{ } F\text{-rational singularity for some } p. \)

\(\leadsto \) algorithm. Ma-Schwede use a perfectoid avatar of rational singularity in mixed char. as link between char. \(p \) and char. 0.
Applications to the homological conjectures

Homological turn in commutative algebra in the 60’s:
study of noetherian rings and their ideals (Krull, Zariski...) →
homological properties of their modules (Auslander, Serre...)

Ex. R (local) is regular iff every finite R-module has a finite free resolution.

Peskine-Szpiro: reduction techniques to char. p + extension of Kunz’ theorem: Frobenius preserves finite free resolutions.

Ex. of application [P.-S., Roberts]. S (local) is Cohen-Macaulay iff there is an S-module of finite length with a finite free resolution.
Homological conjectures

\(S \): Noetherian local ring. \(M \): finite \(S \)-module with a finite free resolution.

Theorem 8 [Evans-Griffiths; Hochster, Ogoma]

(Under DSC)

Let \(0 \rightarrow S^{b_s} \rightarrow S^{b_{s-1}} \rightarrow \ldots \rightarrow S^{b_0} \rightarrow M \rightarrow 0 \) be a minimal free resolution of \(M \).

Then \(b_i \geq 2i + 1 \) if \(i < s - 1 \), and \(b_{s-1} \geq s \).

Thanks to the perfectoid techniques, these optimal bounds are now *unconditional*.

In fact, all homological conjectures which were standing for a while on Hochster’s list are now solved, as consequences of the above theorems — but Hochster recently added a few more to his list...