Sphere packing and Fourier interpolation

M. Viazovska

École Polytechnique Fédérale de Lausanne

ICM 2018
Let \mathbb{R}^d be Euclidean vector space. For $x \in \mathbb{R}^d$ and $r \in \mathbb{R}_{>0}$ we denote by $B_d(x, r)$ the ball in \mathbb{R}^d with center x and radius r.
Let \mathbb{R}^d be Euclidean vector space. For $x \in \mathbb{R}^d$ and $r \in \mathbb{R}_{>0}$ we denote by $B_d(x, r)$ the ball in \mathbb{R}^d with center x and radius r.

Let $X \subset \mathbb{R}^d$ be a set of points such that $\|x - y\| \geq 2$ for any distinct $x, y \in X$. Then the union

$$\mathcal{P} = \bigcup_{x \in X} B_d(x, 1)$$

is a sphere packing.
The finite density of a packing \mathcal{P} is defined as

$$
\Delta_{\mathcal{P}}(r) := \frac{\text{Vol}(\mathcal{P} \cap B_d(0, r))}{\text{Vol}(B_d(0, r))}, \quad r > 0.
$$
The *finite density* of a packing \mathcal{P} is defined as

$$\Delta_{\mathcal{P}}(r) := \frac{\text{Vol}(\mathcal{P} \cap B_d(0, r))}{\text{Vol}(B_d(0, r))}, \quad r > 0.$$

We define the *density* of a packing \mathcal{P} as the limit superior

$$\Delta_{\mathcal{P}} := \limsup_{r \to \infty} \Delta_{\mathcal{P}}(r).$$
The *finite density* of a packing \mathcal{P} is defined as

$$\Delta_{\mathcal{P}}(r) := \frac{\operatorname{Vol}(\mathcal{P} \cap B_d(0, r))}{\operatorname{Vol}(B_d(0, r))}, \quad r > 0.$$

We define the *density* of a packing \mathcal{P} as the limit superior

$$\Delta_{\mathcal{P}} := \limsup_{r \to \infty} \Delta_{\mathcal{P}}(r).$$

The *sphere packing constant* is the supremum over all possible packing densities

$$\Delta_d := \sup_{\mathcal{P} \subset \mathbb{R}^d \text{ sphere packing}} \Delta_{\mathcal{P}}.$$
What is known about Δ_d?

$\Delta_1 = 1$

$\Delta_2 = \frac{\pi}{\sqrt{12}} \approx 0.9069$

$\Delta_3 = \frac{\pi}{\sqrt{18}} \approx 0.7405$
What is known about Δ_d

The best known density

Cohn-Elkies upper bound

M. Viazovska

Sphere packing and Fourier interpolation
The E_8-lattice $\Lambda_8 \subset \mathbb{R}^8$ is given by

$$\Lambda_8 = \{(x_i) \in \mathbb{Z}^8 \cup (\mathbb{Z} + \frac{1}{2})^8 | \sum_{i=1}^{8} x_i \equiv 0 \pmod{2}\}.$$
The E_8-lattice $\Lambda_8 \subset \mathbb{R}^8$ is given by

$$\Lambda_8 = \{ (x_i) \in \mathbb{Z}^8 \cup (\mathbb{Z} + \frac{1}{2})^8 | \sum_{i=1}^{8} x_i \equiv 0 \pmod{2} \}.$$

Λ_8 is the unique even, unimodular lattice of rank 8.
The E_8-lattice $\Lambda_8 \subset \mathbb{R}^8$ is given by

$$\Lambda_8 = \{(x_i) \in \mathbb{Z}^8 \cup (\mathbb{Z} + \frac{1}{2})^8 | \sum_{i=1}^{8} x_i \equiv 0 \pmod{2}\}.$$

Λ_8 is the unique even, unimodular lattice of rank 8.
The minimal distance between two points in Λ_8 is $\sqrt{2}$.

Theorem (V. 2016)
No packing of unit balls in Euclidean space \mathbb{R}^8 has density greater than that of the E_8-lattice packing. Therefore $\Delta_8 = \pi \frac{4}{384} \approx 0.25367$.

M. Viazovska
Sphere packing and Fourier interpolation
The E_8-lattice $\Lambda_8 \subset \mathbb{R}^8$ is given by

$$\Lambda_8 = \{(x_i) \in \mathbb{Z}^8 \cup (\mathbb{Z} + \frac{1}{2})^8 | \sum_{i=1}^{8} x_i \equiv 0 \pmod{2}\}.$$

Λ_8 is the unique even, unimodular lattice of rank 8. The minimal distance between two points in Λ_8 is $\sqrt{2}$. The E_8-lattice sphere packing is the packing of unit balls with centers at $\sqrt{2}\Lambda_8$.

Theorem (V. 2016)

No packing of unit balls in Euclidean space \mathbb{R}^8 has density greater than that of the E_8-lattice packing. Therefore $\Delta_8 = \frac{\pi}{4} \frac{384}{3} \approx 0.25367$.

M. Viazovska
Sphere packing and Fourier interpolation
The E_8-lattice $\Lambda_8 \subset \mathbb{R}^8$ is given by

$$\Lambda_8 = \{(x_i) \in \mathbb{Z}^8 \cup (\mathbb{Z} + \frac{1}{2})^8 | \sum_{i=1}^{8} x_i \equiv 0 \pmod{2}\}.$$

Λ_8 is the unique even, unimodular lattice of rank 8.

The minimal distance between two points in Λ_8 is $\sqrt{2}$. The E_8-lattice sphere packing is the packing of unit balls with centers at $\sqrt{2}\Lambda_8$.

Theorem (V. 2016)

No packing of unit balls in Euclidean space \mathbb{R}^8 has density greater than that of the E_8-lattice packing. Therefore $\Delta_8 = \frac{\pi^4}{384} \approx 0.25367$.
The Leech lattice Λ_{24} is an even, unimodular lattice of rank 24.

The minimal distance between two points in Λ_{24} is 2. The Λ_{24}-lattice sphere packing is the packing of unit balls with centers at Λ_{24}.

Theorem (Cohn, Kumar, Miller, Radchenko, V. 2016) No packing of unit balls in Euclidean space \mathbb{R}^{24} has density greater than that of the Λ_{24}-lattice packing. Therefore $\Delta_{24} = \frac{\pi}{12} \frac{1}{12!} \approx 0.00193$.

M. Viazovska Sphere packing and Fourier interpolation
The Leech lattice Λ_{24} is an even, unimodular lattice of rank 24. The minimal distance between two points in Λ_{24} is 2.
The Leech lattice Λ_{24} is an even, unimodular lattice of rank 24. The minimal distance between two points in Λ_{24} is 2. The Λ_{24}-lattice sphere packing is the packing of unit balls with centers at Λ_{24}.

Theorem (Cohn, Kumar, Miller, Radchenko, V. 2016) No packing of unit balls in Euclidean space \mathbb{R}^{24} has density greater than that of the Λ_{24}-lattice packing. Therefore $\Delta_{24} = \frac{\pi}{12} \approx 0.00193$.

M. Viazovska Sphere packing and Fourier interpolation
The Leech lattice Λ_{24} is an even, unimodular lattice of rank 24. The minimal distance between two points in Λ_{24} is 2.
The Λ_{24}-lattice sphere packing is the packing of unit balls with centers at Λ_{24}.

Theorem (Cohn, Kumar, Miller, Radchenko, V. 2016)
No packing of unit balls in Euclidean space \mathbb{R}^{24} has density greater than that of the Λ_{24}-lattice packing. Therefore $\Delta_{24} = \frac{\pi^{12}}{12!} \approx 0.00193$.
Theorem (Cohn, Elkies 2003)

Suppose that $r_0 > 0$ and $f : \mathbb{R}^d \to \mathbb{R}$ is a Schwartz function such that:

- $f(x) \leq 0$ for $\|x\| \geq r_0$
- $\hat{f}(x) \geq 0$ for all $x \in \mathbb{R}^d$
- $f(0) = \hat{f}(0) = 1$

Then

$$\Delta_d \leq \text{Vol}(B_d(0, r_0/2)).$$
Proof

Let $X \subset \mathbb{R}^d$ and $\|x - y\| \geq r_0$ for any distinct $x, y \in X$
Proof

Let $X \subset \mathbb{R}^d$ and $\|x - y\| \geq r_0$ for any distinct $x, y \in X$
Suppose that X is L-periodic.
Proof

Let \(X \subset \mathbb{R}^d \) and \(\| x - y \| \geq r_0 \) for any distinct \(x, y \in X \).

Suppose that \(X \) is \(L \)-periodic.

\[
\#(X/L) \cdot f(0) \geq
\]
Let $X \subset \mathbb{R}^d$ and $\|x - y\| \geq r_0$ for any distinct $x, y \in X$

Suppose that X is L-periodic.

$$\#(X/L) \cdot f(0) \geq$$

$$\geq \sum_{x \in X} \sum_{y \in X/L} f(x - y) = \sum_{x \in X/L} \sum_{y \in X/L} \sum_{l \in L} f(x - y + l)$$
Proof

Let $X \subset \mathbb{R}^d$ and $\|x - y\| \geq r_0$ for any distinct $x, y \in X$

Suppose that X is L-periodic.

$$\#(X/L) \cdot f(0) \geq \sum_{x \in X} \sum_{y \in X/L} f(x - y) = \sum_{x \in X/L} \sum_{y \in X/L} \sum_{\ell \in L} f(x - y + \ell)$$

$$= \sum_{x \in X/L} \sum_{y \in X/L} \frac{1}{\text{vol}(\mathbb{R}^d/L)} \sum_{m \in L^*} \hat{f}(m) e^{2\pi im(x - y)}$$

M. Viazovska Sphere packing and Fourier interpolation
Proof

Let \(X \subseteq \mathbb{R}^d \) and \(\|x - y\| \geq r_0 \) for any distinct \(x, y \in X \).
Suppose that \(X \) is \(L \)-periodic.

\[
\#(X/L) \cdot f(0) \geq \sum_{x \in X} \sum_{y \in X/L} f(x - y) = \sum_{x \in X/L} \sum_{y \in X/L} \sum_{\ell \in L} f(x - y + \ell)
\]

\[
= \sum_{x \in X/L} \sum_{y \in X/L} \frac{1}{\text{vol}(\mathbb{R}^d/L)} \sum_{m \in L^*} \hat{f}(m) e^{2\pi i m(x - y)}
\]

\[
= \frac{1}{\text{vol}(\mathbb{R}^d/L)} \sum_{m \in L^*} \hat{f}(m) \cdot \left| \sum_{x \in X/L} e^{2\pi i m x} \right|^2 \geq \#(X/L) \cdot f(0).
\]

M. Viazovska Sphere packing and Fourier interpolation
Proof

Let $X \subset \mathbb{R}^d$ and $\|x - y\| \geq r_0$ for any distinct $x, y \in X$. Suppose that X is L-periodic.

$$\#(X/L) \cdot f(0) \geq \sum_{x \in X} \sum_{y \in X/L} f(x - y) = \sum_{x \in X/L} \sum_{y \in X/L} \sum_{\ell \in L} f(x - y + \ell)$$

$$= \sum_{x \in X/L} \sum_{y \in X/L} \frac{1}{\text{vol}(\mathbb{R}^d/L)} \sum_{m \in L^*} \hat{f}(m) e^{2\pi im(x - y)}$$

$$= \frac{1}{\text{vol}(\mathbb{R}^d/L)} \sum_{m \in L^*} \hat{f}(m) \cdot \sum_{x \in X/L} |e^{2\pi imx}|^2 \geq \#(X/L)^2 \cdot \hat{f}(0).$$
Theorem (Cohn, Elkies 2003)

\[\Delta_8 \leq 1.00016 \Delta_{E_8}, \]

\[\Delta_{24} \leq 1.019 \Delta_{\Lambda_{24}}. \]
Theorem (V 2016)
There exists a radial Schwartz function $f_{E_8} : \mathbb{R}^8 \to \mathbb{R}$ which satisfies:

\[
\begin{align*}
 f_{E_8}(x) &\leq 0 \text{ for } \|x\| \geq \sqrt{2} \\
 \hat{f}_{E_8}(x) &\geq 0 \text{ for all } x \in \mathbb{R}^8 \\
 f_{E_8}(0) &= \hat{f}_{E_8}(0) = 1.
\end{align*}
\]
Solution of the Cohn-Elkies linear programming problem

Theorem (Cohn, Kumar, Miller, Radchenko, V 2016)
There exists a radial Schwartz function $f_{\Lambda_{24}} : \mathbb{R}^{24} \rightarrow \mathbb{R}$ which satisfies:

\[f_{\Lambda_{24}}(x) \leq 0 \quad \text{for} \quad \|x\| \geq 2 \]
\[\hat{f}_{\Lambda_{24}}(x) \geq 0 \quad \text{for all} \quad x \in \mathbb{R}^{24} \]
\[f_{\Lambda_{24}}(0) = \hat{f}_{\Lambda_{24}}(0) = 1. \]
Plot of the “magic” function f_{E_8} and its Fourier transform \hat{f}_{E_8}

$$f_{E_8}(x) e^{\pi \|x\|^2}$$

$$\hat{f}_{E_8}(y) e^{\pi \|y\|^2}$$
Remark 1
Without loss of generality we may assume that f_{E_8} is radial.
Remarks

Remark 1
Without loss of generality we may assume that f_{E_8} is radial.

Remark 2
By the Poisson summation formula we have

$$f_{E_8}(0) \geq \sum_{\ell \in \Lambda_8} f_{E_8}(\ell) = \sum_{\ell \in \Lambda_8} \hat{f}_{E_8}(\ell) \geq \hat{f}_{E_8}(0).$$

This can happen only if

$$f_{E_8}(\sqrt{2n}) = \hat{f}_{E_8}(\sqrt{2n}) = 0 \text{ for all } n \in \mathbb{Z}_{>0}.$$
Remarks

Remark 1
Without loss of generality we may assume that f_{E_8} is radial.

Remark 2
By the Poisson summation formula we have
$$f_{E_8}(0) \geq \sum_{\ell \in \Lambda_8} f_{E_8}(\ell) = \sum_{\ell \in \Lambda_8} \hat{f}_{E_8}(\ell) \geq \hat{f}_{E_8}(0).$$
This can happen only if $f_{E_8}(\sqrt{2n}) = \hat{f}_{E_8}(\sqrt{2n}) = 0$ for all $n \in \mathbb{Z}_{>0}$.

Remark 3
We have constructed the function f_{E_8} in the form
$$f_{E_8}(r) = \sin(\pi r^2/2)^2 \int_0^\infty \varphi(it) e^{-\pi r^2 t} dt$$
where φ is a holomorphic function on the upper half-plane.
Let \mathbb{H} be the upper half-plane $\{z \in \mathbb{C} | \Im(z) > 0\}$. Consider the modular group $\Gamma_1 := \text{PSL}_2(\mathbb{Z})$. The group Γ_1 acts on \mathbb{H} by linear fractional transformations

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} z := \frac{az + b}{cz + d}.$$
Fourier interpolation

The idea behind our construction of f_{E_8} and $f_{\Lambda_{24}}$ is the hypothesis that a radial Schwartz function p can be uniquely reconstructed from the values

$$\{p(\sqrt{2n}), p'(\sqrt{2n}), \hat{p}(\sqrt{2n}), \hat{p}'(\sqrt{2n})\}_{n=0}^{\infty}.$$
The idea behind our construction of f_{E_8} and $f_{\Lambda_{24}}$ is the hypothesis that a radial Schwartz function p can be uniquely reconstructed from the values
\[
\{p(\sqrt{2n}), p'(\sqrt{2n}), \tilde{p}(\sqrt{2n}), \tilde{p}'(\sqrt{2n})\}_{n=0}^{\infty}.
\]

The proof of this statement is a goal an ongoing project of the author in collaboration with H. Cohn, A. Kumar, S. D. Miller, and D. Radchenko.
Theorem (Radchenko, V. 2017)

There exists a collection of Schwartz functions $c_0, a_n : \mathbb{R} \rightarrow \mathbb{R}$ with the property that for any Schwartz function $p : \mathbb{R} \rightarrow \mathbb{R}$ and any $x \in \mathbb{R}$ we have

$$p(x) = c_0(x) \ p'(0) + \sum_{n \in \mathbb{Z}} a_n(x) \ p(\text{sign}(n) \sqrt{|n|})$$

$$+ \hat{c}_0(x) \ \hat{p}'(0) + \sum_{n \in \mathbb{Z}} \hat{a}_n(x) \hat{p}(\text{sign}(n) \sqrt{|n|}),$$

where the right-hand side converges absolutely.
Interpolating basis functions

Figure: Plots of \(b_n(x) := a_n(x) + a_n(-x) \) and \(\hat{b}_n \) for \(n = 0, 1, 2 \).
A crystalline measure on \mathbb{R}^d is a tempered distribution μ such that μ and $\hat{\mu}$ are both charges with locally finite support.
A crystalline measure on \mathbb{R}^d is a tempered distribution μ such that μ and $\hat{\mu}$ are both charges with locally finite support.

\[
\mu = \sum_{x \in X} \alpha_x \delta_x \\
\hat{\mu} = \sum_{y \in Y} \beta_y \delta_y
\]
A **crystalline measure** on \mathbb{R}^d is a tempered distribution μ such that μ and $\hat{\mu}$ are both charges with locally finite support.

\[
\mu = \sum_{x \in X} \alpha_x \delta_x \\
\hat{\mu} = \sum_{y \in Y} \beta_y \delta_y
\]

Example

Dirac comb

\[
\mu_{\text{Dirac}} = \sum_{x \in \mathbb{Z}} \delta_x.
\]
A **crystalline measure** on \mathbb{R}^d is a tempered distribution μ such that μ and $\hat{\mu}$ are both charges with locally finite support.

$$\mu = \sum_{x \in X} \alpha_x \delta_x$$
$$\hat{\mu} = \sum_{y \in Y} \beta_y \delta_y$$

Example

Dirac comb

$$\mu_{\text{Dirac}} = \sum_{x \in \mathbb{Z}} \delta_x.$$
Crystalline measures

Theorem (Lev, Olevskii 2013)

If μ is a crystalline measure, and X and Y are uniformly discrete, then μ is a generalized Dirac comb.

The interpolation formula implies that there exists a continuous family of exotic crystalline measures

$$\mu_x := \delta_x - \sum_{n=0}^{\infty} b_n(x) \delta_{\sqrt{n}}.$$
Theorem (Lev, Olevskii 2013)
If μ is a crystalline measure, and X and Y are uniformly discrete, then μ is a generalized Dirac comb.

The interpolation formula implies that there exists a continuous family of exotic crystalline measures

$$\mu_x := \delta_x - \sum_{n=0}^{\infty} b_n(x) \delta_{\sqrt{n}}.$$
Proof of the interpolation formula: explicit construction of the interpolation basis

We will separately consider the odd and even components of the Schwartz functions
Proof of the interpolation formula: explicit construction of the interpolation basis

We will separately consider the odd and even components of the Schwartz functions

For $x \in \mathbb{R}$ and $\tau \in \mathbb{H}$ we define

$$G(x, \tau) := \sum_{n=0}^{\infty} b_n(x) e^{\pi in\tau}$$

$$\tilde{G}(x, \tau) := \sum_{n=0}^{\infty} \hat{b}_n(x) e^{\pi in\tau}.$$
The interpolation formula applied to the Gaussian $e^{\pi ix^2\tau}$ gives

$$e^{\pi ix^2\tau} = G(x, \tau) + \frac{1}{\sqrt{-i\tau}} \tilde{G}(x, \frac{-1}{\tau}).$$

We solve this functional equation explicitly using the Eichler cohomology and the theory of modular integrals.
Warning

⚠️ Work in progress

- Interpolation for the Goursat problem
 Joint work with Andrew Bakan, Haakan Hedenmalm, Alfonso Montes-Rodriguez, Danilo Radchenko

- Universal optimality of E_8 and Λ_{24}
 Joint work with Henry Cohn, Abhinav Kumar, Stephen D. Miller, Danylo Radchenko
Goursat problem

Find a function $U : \mathbb{R}^2 \to \mathbb{R}$ such that

$$U_{xy} + U = 0, \ x, y \in \mathbb{R}; \quad U(x, 0) = \varphi(x), \ U(0, y) = \psi(y), \ x, y \in \mathbb{R}, \quad (1)$$

for given $\varphi, \psi \in C(\mathbb{R})$ satisfying $\varphi(0) = \psi(0)$.

M. Viazovska

Sphere packing and Fourier interpolation
Interpolation for the Goursat problem

Goursat problem

Find a function $U : \mathbb{R}^2 \to \mathbb{R}$ such that

$$U_{xy} + U = 0, \; x, y \in \mathbb{R}; \quad U(x, 0) = \varphi(x), \; U(0, y) = \psi(y), \; x, y \in \mathbb{R},$$

for given $\varphi, \psi \in C(\mathbb{R})$ satisfying $\varphi(0) = \psi(0)$.

Growth condition

$$|U(x, y)| \leq C \exp(\theta(|x| + |y|)), \quad \theta \in [0, 1).$$
Interpolation for the Goursat problem

Goursat problem
Find a function $U : \mathbb{R}^2 \to \mathbb{R}$ such that

$$U_{xy} + U = 0, \quad x, y \in \mathbb{R}; \quad U(x, 0) = \varphi(x), \quad U(0, y) = \psi(y), \quad x, y \in \mathbb{R},$$

(1)

for given $\varphi, \psi \in C(\mathbb{R})$ satisfying $\varphi(0) = \psi(0)$.

Growth condition

$$|U(x, y)| \leq C \exp\left(\theta(|x| + |y|)\right), \quad \theta \in [0, 1).$$

Theorem (H. Hedenmalm, A. Montes-Rodriguez)
Suppose that $U(x, y) = \int_{\mathbb{R}} e^{ixt + iy/t} a(t)dt$ for some $a \in L_1(\mathbb{R})$. Then the equalities

$U(\pi n, 0) = U(0, -\pi n) = 0, \quad n \in \mathbb{N}_0 := \{0, 1, 2, \ldots\}$

imply $U(x, -y) = 0$ for all $x, y \geq 0$ and therefore, such U is uniquely determined by its values at the points $\{ (\pi n, 0) \}_{n \in \mathbb{N}_0}$ and $\{ (0, -\pi n) \}_{n \in \mathbb{N}}$.

M. Viazovska Sphere packing and Fourier interpolation
Interpolation for the Goursat problem

Let U be a real-valued continuous solution of the canonical telegraph PDE

$$U_{xy} + U = 0, \ (x, y) \in \mathbb{R}_+ \times \mathbb{R}_-, \$$

satisfying

$$|U(x, y)| \leq C e^{\theta(|x| + |y|)}, \ (x, y) \in \mathbb{R}_+ \times \mathbb{R}_-, \$$

for some $\theta \in [0, 1)$ and $C \in (0, \infty)$. Suppose that $U(x, y) = \int_{\mathbb{R}} e^{ixt + iy/t} a(t) dt$ for some $a \in L_1(\mathbb{R})$.

M. Viazovska
Sphere packing and Fourier interpolation
Interpolation for the Goursat problem

Theorem (Bakan, Hedenmalm, Montes-Rodriguez, Radchenko, V. 2018+)

1. There exist continuous solutions \(\{ R_n \} \) of the canonical telegraph PDE such that each \(R_n \) is uniformly bounded on \(\mathbb{R}_+ \times \mathbb{R}_- \),

\[
(a) \quad R_0(\pi m, 0) = \delta_{0m}, \quad R_0(0, -\pi m) = \delta_{0m}, \quad m \geq 0,
\]

\[
(b) \quad R_n(\pi m, 0) = \delta_{nm}, \quad R_n(0, -\pi m) = 0, \quad m \geq 0, \quad n \geq 1,
\]

and the functions \(R_n(t, -y), R_n(x, -t) \) of \(t \) belong to \(S(\mathbb{R}_+) \) for every \(n \geq 0 \) and \(x, y \geq 0 \).

2. If \(\sum_{n \geq 1} \sqrt{n} (|U(\pi n, 0)| + |U(0, -\pi n)|) < +\infty \) then for arbitrary \((x, y) \in \mathbb{R}_+ \times \mathbb{R}_- \) we have the following absolutely convergent expansion

\[
U(x, y) = U(0, 0) R_0(x, y) + \sum_{n \geq 1} \left[U(\pi n, 0) R_n(x, y) + U(0, -\pi n) R_n(-y, -x) \right].
\]
Potential energy

Given a potential function $p: (0, \infty) \to \mathbb{R}$, we define the potential energy of a finite subset C of \mathbb{R}^d to be

$$\frac{1}{|C|} \sum_{x,y \in C, \ x \neq y} p(|x - y|).$$
Potential energy

Given a potential function $p: (0, \infty) \rightarrow \mathbb{R}$, we define the potential energy of a finite subset C of \mathbb{R}^d to be

$$\frac{1}{|C|} \sum_{x,y \in C, x \neq y} p(|x - y|).$$

Let C be a discrete, closed subset of \mathbb{R}^d. We say C has density ρ if

$$\lim_{r \to \infty} \frac{|C \cap B_d(0, r)|}{\text{vol}(B_d(0, r))} = \rho.$$
Potential energy

Given a potential function $p: (0, \infty) \to \mathbb{R}$, we define the potential energy of a finite subset C of \mathbb{R}^d to be

$$\frac{1}{|C|} \sum_{x,y \in C, x \neq y} p(|x - y|).$$

Let C be a discrete, closed subset of \mathbb{R}^d. We say C has density ρ if

$$\lim_{r \to \infty} \frac{|C \cap B_d(0, r)|}{\text{vol}(B_d(0, r))} = \rho.$$

The lower p-energy of a nonempty, discrete, closed subset C of \mathbb{R}^d is

$$E_p(C) := \liminf_{r \to \infty} \frac{1}{|C \cap B_d(0, r)|} \sum_{x,y \in C \cap B_d(0, r), x \neq y} p(|x - y|).$$

If the limit of the above quantity exists then we call $E_p(C)$ the p-energy of C.

M. Viazovska
Sphere packing and Fourier interpolation
Let C be a discrete subset of \mathbb{R}^d with density ρ, where $\rho > 0$, and let $p : (0, \infty) \to \mathbb{R}$ be any function. We say that C minimizes energy for p if its p-energy $E_p(C)$ exists and every configuration in \mathbb{R}^d of density ρ has lower p-energy at least $E_p(C)$. We also call C a ground state for p.
Let C be a discrete subset of \mathbb{R}^d with density ρ, where $\rho > 0$. We say C is *universally optimal* if it minimizes p-energy whenever $p: (0, \infty) \to \mathbb{R}$ is a completely monotonic function of squared distance.
Let \mathcal{C} be a discrete subset of \mathbb{R}^d with density ρ, where $\rho > 0$. We say \mathcal{C} is universally optimal if it minimizes p-energy whenever $p: (0, \infty) \to \mathbb{R}$ is a completely monotonic function of squared distance.

Conjecture (Cohn, Kumar)
The lattices \mathbb{Z}, A_2, Λ_8 and Λ_{24} are universally optimal.
Let C be a discrete subset of \mathbb{R}^d with density ρ, where $\rho > 0$. We say C is universally optimal if it minimizes p-energy whenever $p: (0, \infty) \to \mathbb{R}$ is a completely monotonic function of squared distance.

Conjecture (Cohn, Kumar)
The lattices $\mathbb{Z}, A_2, \Lambda_8$ and Λ_{24} are universally optimal.

Theorem (Cohn, Kumar)
The lattice \mathbb{Z} is universally optimal.
Let C be a discrete subset of \mathbb{R}^d with density ρ, where $\rho > 0$. We say C is universally optimal if it minimizes p-energy whenever $p: (0, \infty) \to \mathbb{R}$ is a completely monotonic function of squared distance.

Conjecture (Cohn, Kumar)
The lattices $\mathbb{Z}, A_2, \Lambda_8$ and Λ_{24} are universally optimal.

Theorem (Cohn, Kumar)
The lattice \mathbb{Z} is universally optimal.

Theorem (Cohn, Kumar, Miller, Radchenko, V 2018+)
The lattices Λ_8 and Λ_{24} are universally optimal.
Idea of the proof: linear programming

Theorem (Cohn, Kumar)

Let $p : (0, \infty) \to \mathbb{R}$ be any function, and suppose $f : \mathbb{R}^d \to \mathbb{R}$ is a Schwartz function. If $f(x) \leq p(|x|)$ for all $x \in \mathbb{R}^d \setminus \{0\}$ and $\hat{f}(y) \geq 0$ for all $y \in \mathbb{R}^d$, then every subset of \mathbb{R}^d with density ρ has lower p-energy at least $\rho \hat{f}(0) - f(0)$.
Theorem (2018+)

Let \((d, n_0)\) be \((8, 1)\) or \((24, 2)\). There exists a collection of radial Schwartz functions \(a_n, b_n, \tilde{a}_n, \tilde{b}_n : \mathbb{R}^d \to \mathbb{R}\) such that for every \(f \in S_{\text{rad}}(\mathbb{R}^d)\) and \(x \in \mathbb{R}^d\),

\[
f(x) = \sum_{n=n_0}^{\infty} f(\sqrt{2n}) a_n(x) + \sum_{n=n_0}^{\infty} f'(\sqrt{2n}) b_n(x)
+ \sum_{n=n_0}^{\infty} \hat{f}(\sqrt{2n}) \tilde{a}_n(x) + \sum_{n=n_0}^{\infty} \hat{f}'(\sqrt{2n}) \tilde{b}_n(x),
\]

and these series converge absolutely.
Construction of “Magic functions”

Let $p : (0, \infty) \to \mathbb{R}$ be a strictly monotonic potential function. The only possible “magic” function f that could prove a sharp bound for E_8 or the Leech lattice under a potential p:

$$f(x) = \sum_{n=n_0}^{\infty} p(\sqrt{2n}) a_n(x) + \sum_{n=n_0}^{\infty} p'(\sqrt{2n}) b_n(x).$$ \hfill (2)
Let $p : (0, \infty) \rightarrow \mathbb{R}$ be a strictly monotonic potential function. The only possible “magic” function f that could prove a sharp bound for E_8 or the Leech lattice under a potential p:

$$f(x) = \sum_{n=n_0}^{\infty} p(\sqrt{2n}) a_n(x) + \sum_{n=n_0}^{\infty} p'(\sqrt{2n}) b_n(x). \quad (2)$$

In order to prove that E_8 or the Leech lattice minimize the p-energy, it suffices to show that $f(x) \leq p(|x|)$ for all $x \in \mathbb{R}^d \setminus \{0\}$ and $\hat{f}(y) \geq 0$ for all $y \in \mathbb{R}^d$.
Let \(p : (0, \infty) \to \mathbb{R} \) be a strictly monotonic potential function. The only possible “magic” function \(f \) that could prove a sharp bound for \(E_8 \) or the Leech lattice under a potential \(p \):

\[
f(x) = \sum_{n=n_0}^{\infty} p(\sqrt{2n}) \ a_n(x) + \sum_{n=n_0}^{\infty} p'(\sqrt{2n}) \ b_n(x).
\] (2)

In order to prove that \(E_8 \) or the Leech lattice minimize the \(p \)-energy, it suffices to show that \(f(x) \leq p(|x|) \) for all \(x \in \mathbb{R}^d \setminus \{0\} \) and \(\hat{f}(y) \geq 0 \) for all \(y \in \mathbb{R}^d \).

If a configuration is a ground state for every Gaussian \(r \mapsto e^{-\alpha r^2} \), then the same is true for every completely monotonic function of squared distance.
Consider the generating functions

\[F(\tau, x) = \sum_{n \geq n_0} a_n(x) e^{2\pi i n \tau} + 2\pi i \tau \sum_{n \geq n_0} \sqrt{2n} b_n(x) e^{2\pi i n \tau} \]

and

\[\tilde{F}(\tau, x) = \sum_{n \geq n_0} \tilde{a}_n(x) e^{2\pi i n \tau} + 2\pi i \tau \sum_{n \geq n_0} \sqrt{2n} \tilde{b}_n(x) e^{2\pi i n \tau}, \]

The interpolation formula for the complex Gaussian \(x \mapsto e^{\pi i \tau |x|^2} \) is equivalent to

\[F(\tau, x) + \left(i/\tau \right)^{d/2} \tilde{F}(-1/\tau, x) = e^{\pi i \tau |x|^2}. \]
Solving the functional equation

Using the methods developed in the theory of automorphic forms and by improving these techniques we can explicitly solve the functional equation

\[
F(\tau + 2, x) - 2F(\tau + 1, x) + F(\tau, x) = 0
\]
\[
\tilde{F}(\tau + 2, x) - 2\tilde{F}(\tau + 1, x) + \tilde{F}(\tau, x) = 0
\]
\[
F(\tau, x) + (i/\tau)^{d/2}\tilde{F}(-1/\tau, x) = e^{\pi i |x|^2}
\]
Using the methods developed in the theory of automorphic forms and by improving these techniques we can explicitly solve the functional equation

\[F(\tau + 2, x) - 2F(\tau + 1, x) + F(\tau, x) = 0 \]

\[\tilde{F}(\tau + 2, x) - 2\tilde{F}(\tau + 1, x) + \tilde{F}(\tau, x) = 0 \]

\[F(\tau, x) + (i/\tau)^{d/2}\tilde{F}(-1/\tau, x) = e^{\pi i |x|^2} \]

Moderate growth of \(F \) implies the interpolation formula
Solving the functional equation

Using the methods developed in the theory of automorphic forms and by improving these techniques we can \textit{explicitly} solve the functional equation

\begin{align*}
F(\tau + 2, x) - 2F(\tau + 1, x) + F(\tau, x) &= 0 \\
\tilde{F}(\tau + 2, x) - 2\tilde{F}(\tau + 1, x) + \tilde{F}(\tau, x) &= 0 \\
F(\tau, x) + (i/\tau)^{d/2}\tilde{F}(-1/\tau, x) &= e^{\pi i |x|^2}
\end{align*}

Moderate growth of F implies the interpolation formula

The inequality $F(it, x) > 0$ for $t \in (0, \infty)$ implies the universal optimality of Λ_8 and Λ_{24}.

M. Viazovska
Sphere packing and Fourier interpolation
Thank you for your attention.
Thank you for your attention.

Please ask questions.