Negative algebraic K-theory

Moritz Kerz
Fakultät für Mathematik
Universität Regensburg

2018-08-06
Overview

\(X \) noetherian scheme \(\leadsto \) non-connective algebraic \(K \)-theory spectra \(K(X) \) (Thomason)
\(K_i(X) = \pi_i K(X) \)

Theorem (Weibel’s Conjecture (1980))

For \(d = \text{dim}(X) \) we have

(i) \(K_i(X) = 0 \) for \(i < -d \),

(ii) \(K_i(X) \xrightarrow{\sim} K_i(X[t_1, \ldots, t_r]) \) is an isomorphism for \(i \leq -d \).

Convention for talk

All (derived) schemes are noetherian.
Overview

X noetherian scheme \rightsquigarrow
non-connective algebraic K-theory spectra $K(X)$ (Thomason)
$K_i(X) = \pi_iK(X)$

Theorem (Weibel’s Conjecture (1980))

For $d = dim(X)$ we have

(i) $K_i(X) = 0$ for $i < -d$,

(ii) $K_i(X) \xrightarrow{\sim} K_i(X[t_1, \ldots t_r])$ is an isomorphism for $i \leq -d$.

Convention for talk

All (derived) schemes are noetherian.
Overview

X noetherian scheme $\xrightarrow{\sim}$ non-connective algebraic K-theory spectra $K(X)$ (Thomason)

$K_i(X) = \pi_i K(X)$

Theorem (Weibel’s Conjecture (1980))

For $d = \text{dim}(X)$ we have

1. $K_i(X) = 0$ for $i < -d$,
2. $K_i(X) \xrightarrow{\sim} K_i(X[t_1, \ldots, t_r])$ is an isomorphism for $i \leq -d$.

Convention for talk

All (derived) schemes are noetherian.
Remarks

- For (commutative) ring A and $i < 0$ the group $K_i(A)$ was calculated by Bass for $\dim(A) \leq 1$ (1968)
- For $\dim(X) \leq 2$ conjecture was shown by Weibel using reductions of ideals (2001)
- For X alg. variety in characteristic zero conjecture was shown by Cortinas-Haesemeyer-Schlichting-Weibel (2008)
- For X alg. variety in positive characteristic part of conjecture shown assuming strong resolution of singularities by Geisser-Hesselholt, Krishna and up to p-torsion by Kelly
- General case K-Strunk-Tamme (2016)
Remarks

- For (commutative) ring A and $i < 0$ the group $K_i(A)$ was calculated by Bass for $\dim(A) \leq 1$ (1968)
- For $\dim(X) \leq 2$ conjecture was shown by Weibel using reductions of ideals (2001)
- For X alg. variety in characteristic zero conjecture was shown by Cortinas-Haesemeyer-Schlichting-Weibel (2008)
- For X alg. variety in positive characteristic part of conjecture shown assuming strong resolution of singularities by Geisser-Hesselholt, Krishna and up to p-torsion by Kelly
- General case K-Strunk-Tamme (2016)
Remarks

- For (commutative) ring A and $i < 0$ the group $K_i(A)$ was calculated by Bass for $\dim(A) \leq 1$ (1968).

- For $\dim(X) \leq 2$ conjecture was shown by Weibel using reductions of ideals (2001).

- For X alg. variety in characteristic zero conjecture was shown by Cortinas-Haesemeyer-Schlichting-Weibel (2008).

- For X alg. variety in positive characteristic part of conjecture shown assuming strong resolution of singularities by Geisser-Hesselholt, Krishna and up to p-torsion by Kelly.

For (commutative) ring A and $i < 0$ the group $K_i(A)$ was calculated by Bass for $\dim(A) \leq 1$ (1968)

For $\dim(X) \leq 2$ conjecture was shown by Weibel using reductions of ideals (2001)

For X alg. variety in characteristic zero conjecture was shown by Cortinas-Haesemeyer-Schlichting-Weibel (2008)

For X alg. variety in positive characteristic part of conjecture shown assuming strong resolution of singularities by Geisser-Hesselholt, Krishna and up to p-torsion by Kelly

General case K-Strunk-Tamme (2016)
Remarks

- For (commutative) ring A and $i < 0$ the group $K_i(A)$ was calculated by Bass for $\dim(A) \leq 1$ (1968).
- For $\dim(X) \leq 2$ conjecture was shown by Weibel using reductions of ideals (2001).
- For X alg. variety in characteristic zero conjecture was shown by Cortinas-Haesemeyer-Schlichting-Weibel (2008).
- For X alg. variety in positive characteristic part of conjecture shown assuming strong resolution of singularities by Geisser-Hesselholt, Krishna and up to p-torsion by Kelly.
Examples

Example

For $R = \mathbb{C}[t, s]/(s^2 - (t^2 + s^3))$ we have $K_{-1}(R) = \mathbb{Z}$ and $K_n(R) = 0$ for $n < -1$.

More generally, for $\dim(X) \leq 1$ and X excellent we have $K_i(X) = 0$ for $i < -1$ and $K_{-1}(X) = \mathbb{Z}^\rho$ (Bass).

Example

For a field k and the normal surface $R = k[x, y, z]/(z^2 - x^3 - y^7)$ we have $K_{-1}(R) = k$ and $K_i(R) = 0$ for $i < -1$.

More generally, for a normal surface X we have $K_i(X) = 0$ for $i < -2$ and $K_{-2}(X) = \mathbb{Z}^\rho$ with ρ the number of loops in the exceptional divisor of a desingularization of X (Weibel).
Examples

Example

For $R = \mathbb{C}[t, s]/(s^2 - (t^2 + s^3))$ we have $K_{-1}(R) = \mathbb{Z}$ and $K_n(R) = 0$ for $n < -1$.

More generally, for $\dim(X) \leq 1$ and X excellent we have $K_i(X) = 0$ for $i < -1$ and $K_{-1}(X) = \mathbb{Z}\rho$ (Bass).

Example

For a field k and the normal surface $R = k[x, y, z]/(z^2 - x^3 - y^7)$ we have $K_{-1}(R) = k$ and $K_i(R) = 0$ for $i < -1$.

More generally, for a normal surface X we have $K_i(X) = 0$ for $i < -2$ and $K_{-2}(X) = \mathbb{Z}\rho$ with ρ the number of loops in the exceptional divisor of a desingularization of X (Weibel).
Examples

Example

For \(R = \mathbb{C}[t, s]/(s^2 - (t^2 + s^3)) \) we have \(K_{-1}(R) = \mathbb{Z} \) and \(K_n(R) = 0 \) for \(n < -1 \).

More generally, for \(\dim(X) \leq 1 \) and \(X \) excellent we have \(K_i(X) = 0 \) for \(i < -1 \) and \(K_{-1}(X) = \mathbb{Z}^{\rho} \) (Bass).

Example

For a field \(k \) and the normal surface \(R = k[x, y, z]/(z^2 - x^3 - y^7) \) we have \(K_{-1}(R) = k \) and \(K_i(R) = 0 \) for \(i < -1 \).

More generally, for a normal surface \(X \) we have \(K_i(X) = 0 \) for \(i < -2 \) and \(K_{-2}(X) = \mathbb{Z}^{\rho} \) with \(\rho \) the number of loops in the exceptional divisor of a desingularization of \(X \) (Weibel).
Examples

Example

For $R = \mathbb{C}[t, s]/(s^2 - (t^2 + s^3))$ we have $K_{-1}(R) = \mathbb{Z}$ and $K_n(R) = 0$ for $n < -1$.

More generally, for $\dim(X) \leq 1$ and X excellent we have $K_i(X) = 0$ for $i < -1$ and $K_{-1}(X) = \mathbb{Z}^\rho$ (Bass).

Example

For a field k and the normal surface $R = k[x, y, z]/(z^2 - x^3 - y^7)$ we have $K_{-1}(R) = k$ and $K_i(R) = 0$ for $i < -1$.

More generally, for a normal surface X we have $K_i(X) = 0$ for $i < -2$ and $K_{-2}(X) = \mathbb{Z}^\rho$ with ρ the number of loops in the exceptional divisor of a desingularization of X (Weibel).
Cohomological properties of negative K-groups

■ (Fundamental Theorem) We have canonically split exact sequence

$$0 \to K_i(X) \to K_i(X[t]) \times K_i(X[t^{-1}]) \to K_i(X[t, t^{-1}]) \to K_{i-1}(X) \to 0.$$

■ (Zariski Mayer-Vietoris) For open covering $X = U \cup V$ we get exact sequence

$$\cdots \to K_i(X) \to K_i(U) \oplus K_i(V) \to K_i(U \cap V) \to K_{i-1}(X) \to \cdots.$$

■ (Excision) For ring homomorphism $A \to A'$, $I \subset A$ ideal mapping isomorphically onto ideal $I' \subset A'$, $i \leq 0$ we get isomorphism

$$K_i(A, I) \xrightarrow{\sim} K_i(A', I').$$
(Fundamental Theorem) We have canonically split exact sequence

\[
0 \to K_i(X) \to K_i(X[t]) \times K_i(X[t^{-1}]) \to
K_i(X[t, t^{-1}]) \to K_{i-1}(X) \to 0.
\]

(Zariski Mayer-Vietoris) For open covering \(X = U \cup V\) we get exact sequence

\[
\cdots \to K_i(X) \to K_i(U) \oplus K_i(V) \to K_i(U \cap V) \to K_{i-1}(X) \to \cdots.
\]

(Excision) For ring homomorphism \(A \to A', I \subset A\) ideal mapping isomorphically onto ideal \(I' \subset A', i \leq 0\) we get isomorphism

\[
K_i(A, I) \xrightarrow{\sim} K_i(A', I').
\]
Cohomological properties of negative \(K \)-groups

- **(Fundamental Theorem)** We have canonically split exact sequence

\[
0 \rightarrow K_i(X) \rightarrow K_i(X[t]) \times K_i(X[t^{-1}]) \rightarrow K_i(X[t, t^{-1}]) \rightarrow K_{i-1}(X) \rightarrow 0.
\]

- **(Zariski Mayer-Vietoris)** For open covering \(X = U \cup V \) we get exact sequence

\[
\cdots \rightarrow K_i(X) \rightarrow K_i(U) \oplus K_i(V) \rightarrow K_i(U \cap V) \rightarrow K_{i-1}(X) \rightarrow \cdots.
\]

- **(Excision)** For ring homomorphism \(A \rightarrow A', \ I \subset A \) ideal mapping isomorphically onto ideal \(I' \subset A' \), \(i \leq 0 \) we get isomorphism

\[
K_i(A, I) \xrightarrow{\sim} K_i(A', I').
\]
Grothendieck/SGA 6

For X q-p (quasi-projective over noetherian ring)

$$K_0(X) = \mathbb{Z}\langle \mathcal{V} | \text{loc. free, fin. gen. } \mathcal{O}_X \text{-module } \mathcal{V} \rangle / R$$

R generated by $[\mathcal{V}] - [\mathcal{V}'] - [\mathcal{V}'']$ for short exact sequences $0 \to \mathcal{V}' \to \mathcal{V} \to \mathcal{V}'' \to 0$.

Consequence of Fundamental Theorem (Bass)

For X q-p, $X' = X \times \mathbb{G}_m$

$$K_{-j}(X) = \mathbb{Z}\langle \mathcal{W} | \text{loc. free, fin. gen. } \mathcal{O}_{X'} \text{-module } \mathcal{W} \rangle / R'$$

R' contains $[\mathcal{W}|_{X'}]$ for with \mathcal{W} loc. free, fin. gen. $\mathcal{O}_{X \times \mathbb{A}^1}$-module.
Elementary description of negative K-groups

\[K_0(X) = \mathbb{Z}\langle V \mid \text{loc. free, fin. gen. } \mathcal{O}_X\text{-module } V \rangle / R \]

R generated by $[V] - [V'] - [V'']$ for short exact sequences $0 \to V' \to V \to V'' \to 0$.

Consequence of Fundamental Theorem (Bass)

For X q-p, $X' = X \times \mathbb{G}_m^j$

\[K_{-j}(X) = \mathbb{Z}\langle V \mid \text{loc. free, fin. gen. } \mathcal{O}_{X'}\text{-module } V \rangle / R' \]

R' contains $[W|_{X'}]$ for with W loc. free, fin. gen. $\mathcal{O}_{X \times \mathbb{A}^j}$-module.
Vanishing propositions

Vanishing Proposition I (via regularity)

For regular scheme X we have $K_i(X) = 0$ for $i < 0$.

Assume $X = \text{Spec}(A)$, $i = -1$.

Let P be a f.g. projective $A[t, t^{-1}]$-module, then we show $[P] = 0 \in K_{-1}(A)$. Choose a f.g. $A[t]$-module P' with $P' \otimes_{A[t]} A[t, t^{-1}] \cong P$. Then choose finite resolution P'_\bullet of P' by f.g. projective $A[t]$-modules. Then $\sum_i (-1)^i [P'_i] \in K_0(A[t])$ extends $[P] \in K_0(A[t, t^{-1}])$.

Vanishing Proposition II (via platification, K-Strunk)

For X q-p reduced scheme, $i < 0$ and $\gamma \in K_i(X)$ there exists a blow-up $q : \tilde{X} = \text{Bl}_Z X \to X$ ($Z \subset X$ nowhere dense) such that $q^*(\gamma) = 0 \in K_i(\tilde{X})$.

Note: This is clear if there exists a desingularization $q : \tilde{X} \to X$.

Moritz Kerz Negative algebraic K-theory
Vanishing propositions

Vanishing Proposition I (via regularity)
For regular scheme X we have $K_i(X) = 0$ for $i < 0$.

Assume $X = \text{Spec}(A)$, $i = -1$.
Let P be a f.g. projective $A[t, t^{-1}]$-module, then we show $[P] = 0 \in K_{-1}(A)$. Choose a f.g. $A[t]$-module P' with $P' \otimes_{A[t]} A[t, t^{-1}] \cong P$. Then choose finite resolution P'_\bullet of P' by f.g. projective $A[t]$-modules. Then $\sum_i (-1)^i[P'_i] \in K_0(A[t])$ extends $[P] \in K_0(A[t, t^{-1}])$.

Vanishing Proposition II (via platification, K-Strunk)
For X q-p reduced scheme, $i < 0$ and $\gamma \in K_i(X)$ there exists a blow-up $q : \tilde{X} = \text{Bl}_Z X \to X$ ($Z \subset X$ nowhere dense) such that $q^*(\gamma) = 0 \in K_i(\tilde{X})$.

Note: This is clear if there exists a desingularization $q : \tilde{X} \to X$.
Vanishing propositions

Vanishing Proposition I (via regularity)

For regular scheme X we have $K_i(X) = 0$ for $i < 0$.

Assume $X = \text{Spec}(A)$, $i = -1$. Let P be a f.g. projective $A[t, t^{-1}]$-module, then we show $[P] = 0 \in K_{-1}(A)$. Choose a f.g. $A[t]$-module P' with $P' \otimes_{A[t]} A[t, t^{-1}] \cong P$. Then choose finite resolution P'_\bullet of P' by f.g. projective $A[t]$-modules. Then $\sum_i (-1)^i [P'_i] \in K_0(A[t])$ extends $[P] \in K_0(A[t, t^{-1}])$.

Vanishing Proposition II (via platification, K-Strunk)

For X q-p reduced scheme, $i < 0$ and $\gamma \in K_i(X)$ there exists a blow-up $q : \tilde{X} = \text{Bl}_Z X \to X$ ($Z \subset X$ nowhere dense) such that $q^*(\gamma) = 0 \in K_i(\tilde{X})$.

Note: This is clear if there exists a desingularization $q : \tilde{X} \to X$.

Moritz Kerz
Negative algebraic K-theory
Vanishing propositions

Vanishing Proposition I (via regularity)

For regular scheme X we have $K_i(X) = 0$ for $i < 0$.

Assume $X = \text{Spec}(A)$, $i = -1$.
Let P be a f.g. projective $A[t, t^{-1}]$-module, then we show $[P] = 0 \in K_{-1}(A)$. Choose a f.g. $A[t]$-module P' with $P' \otimes_{A[t]} A[t, t^{-1}] \cong P$. Then choose finite resolution P'_\bullet of P' by f.g. projective $A[t]$-modules. Then $\sum_i (-1)^i [P'_i] \in K_0(A[t])$ extends $[P] \in K_0(A[t, t^{-1}])$.

Vanishing Proposition II (via platification, K-Strunk)

For X q-p reduced scheme, $i < 0$ and $\gamma \in K_i(X)$ there exists a blow-up $q : \tilde{X} = \text{Bl}_Z X \to X$ ($Z \subset X$ nowhere dense) such that $q^*(\gamma) = 0 \in K_i(\tilde{X})$.

Note: This is clear if there exists a desingularization $q : \tilde{X} \to X$.

Moritz Kerz
Negative algebraic K-theory
Topological blow-ups (motivation)

Consider cartesian “blow-up square” of “nice” topological spaces (CW-complexes ...):

\[
\begin{array}{ccc}
\tilde{X} & \leftarrow & E \\
\downarrow & & \downarrow \\
q & & i \\
\downarrow & & \downarrow \\
X & \leftarrow & Y
\end{array}
\]

with \(q \) proper, \(i \) closed immersion,

\[\tilde{X} \setminus E \cong X \setminus Y. \]

Topological descent theorem/Excision

For a generalized cohomology theory \(H^* \) we get a long exact descent sequence

\[
\cdots \rightarrow H^n(X) \rightarrow H^n(Y) \oplus H^n(\tilde{X}) \rightarrow H^n(E) \rightarrow H^{n+1}(X) \rightarrow \cdots
\]
Topological blow-ups (motivation)

Consider cartesian “blow-up square” of “nice” topological spaces (CW-complexes ...):

\[
\begin{array}{ccc}
\tilde{X} & \leftarrow & E \\
\downarrow & & \downarrow \\
X & \leftarrow & Y
\end{array}
\]

with \(q \) proper, \(i \) closed immersion,

\[\tilde{X} \setminus E \cong X \setminus Y. \]

Topological descent theorem/Excision

For a generalized cohomology theory \(H^* \) we get a long exact descent sequence

\[
\cdots \rightarrow H^n(X) \rightarrow H^n(Y) \oplus H^n(\tilde{X}) \rightarrow H^n(E) \rightarrow H^{n+1}(X) \rightarrow \cdots
\]
Use induction on \(d = \dim(X) \).
Let \(\gamma \in K_i(X) \) with \(i < -d \) \((X = X_{\text{red}} \text{ q-p wlog})\)
By Vanishing Proposition there exists a blow-up \(\tilde{X} = \text{Bl}_Y X \rightarrow X \)
with \(q^*(\gamma) = 0 \).
Assume we have an exact descent sequence
\[
\cdots \rightarrow K_{i+1}(E) \rightarrow K_i(X) \rightarrow K_i(Y) \oplus K_i(\tilde{X}) \rightarrow \cdots.
\]
As \(\dim(Y), \dim(E) < d \) we have \(K_{i+1}(E) = 0 = K_i(Y) \) (induction assumption), so \(K_i(X) \xrightarrow{q^*} K_i(\tilde{X}) \) is injective \(\Rightarrow \gamma = 0 \). \(\square \)
Use induction on \(d = \text{dim}(X) \).
Let \(\gamma \in K_i(X) \) with \(i < -d \) \((X = X_{\text{red}} \text{ q-p wlog})\)
By Vanishing Proposition there exists a blow-up \(\tilde{X} = \text{Bl}_Y X \xrightarrow{q} X \)
with \(q^*(\gamma) = 0 \).
Assume we have an exact descent sequence
\[
\cdots \to K_{i+1}(E) \to K_i(X) \to K_i(Y) \oplus K_i(\tilde{X}) \to \cdots .
\]
As \(\text{dim}(Y), \text{dim}(E) < d \) we have \(K_{i+1}(E) = 0 = K_i(Y) \) (induction assumption), so \(K_i(X) \xrightarrow{q^*} K_i(\tilde{X}) \) is injective \(\Rightarrow \gamma = 0 \). \(\square \)
Use induction on $d = \dim(X)$. Let $\gamma \in K_i(X)$ with $i < -d$ ($X = X_{\text{red}}$ q-p wlog). By Vanishing Proposition there exists a blow-up $\tilde{X} = \text{Bl}_Y X \xrightarrow{q} X$ with $q^*(\gamma) = 0$. Assume we have an exact descent sequence

$$\cdots \to K_{i+1}(E) \to K_i(X) \to K_i(Y) \oplus K_i(\tilde{X}) \to \cdots.$$

As $\dim(Y), \dim(E) < d$ we have $K_{i+1}(E) = 0 = K_i(Y)$ (induction assumption), so $K_i(X) \xrightarrow{q^*} K_i(\tilde{X})$ is injective $\Rightarrow \gamma = 0$. \square
Heuristic proof of Weibel’s conjecture (part (i))

Use induction on $d = \dim(X)$.

Let $\gamma \in K_i(X)$ with $i < -d$ ($X = X_{\text{red}}$ q-p wlog)

By Vanishing Proposition there exists a blow-up $\tilde{X} = \text{Bl}_Y X \xrightarrow{q} X$

with $q^*(\gamma) = 0$.

Assume we have an exact descent sequence

$$
\cdots \to K_{i+1}(E) \to K_i(X) \to K_i(Y) \oplus K_i(\tilde{X}) \to \cdots
$$

As $\dim(Y), \dim(E) < d$ we have $K_{i+1}(E) = 0 = K_i(Y)$ (induction assumption), so $K_i(X) \xrightarrow{q^*} K_i(\tilde{X})$ is injective $\Rightarrow \gamma = 0$. □
Use induction on $d = \dim(X)$.

Let $\gamma \in K_i(X)$ with $i < -d$ ($X = X_{\text{red}}$ q-p wlog)

By Vanishing Proposition there exists a blow-up $\tilde{X} = \text{Bl}_Y X \xrightarrow{q} X$

with $q^*(\gamma) = 0$.

Assume we have an exact descent sequence

$$\cdots \to K_{i+1}(E) \to K_i(X) \to K_i(Y) \oplus K_i(\tilde{X}) \to \cdots.$$

As $\dim(Y), \dim(E) < d$ we have $K_{i+1}(E) = 0 = K_i(Y)$ (induction assumption), so $K_i(X) \xrightarrow{q^*} K_i(\tilde{X})$ is injective $\Rightarrow \gamma = 0$. \square
Mayer-Vietories induces the Zariski descent spectral sequence (for \(\dim(X) < \infty \)):

\[
E_2^{pq} = H^p(X, K_{\sim -q, X}) \Rightarrow K_{-p-q}(X)
\]

\(\rightsquigarrow \) wlog \(X \) local, reduced scheme in proof of Weibel’s conjecture.

Descent Proposition for blow-ups

Consider local scheme \(X \) (\(d = \dim(X) \)), \(Y \hookrightarrow X \),
\(q : \tilde{X} = \text{Bl}_Y X \to X \) and \(E = q^{-1}(Y) \rightsquigarrow \) exact descent sequence

\[
K_{-d+1}(E) \to K_{-d}(X) \to K_{-d}(Y) \oplus K_{-d}(\tilde{X}) \to K_{-d}(E) \to \cdots
\]
Mayer-Vietories induces the Zariski descent spectral sequence (for \(\dim(X) < \infty \)):

\[
E_2^{pq} = H^p(X, K_{-q,X}) \Rightarrow K_{-p-q}(X)
\]

\(\rightsquigarrow\) wlog \(X\) local, reduced scheme in proof of Weibel’s conjecture.

Descent Proposition for blow-ups

Consider local scheme \(X\) (\(d = \dim(X)\)), \(Y \hookrightarrow X\),
\(q : \tilde{X} = \text{Bl}_Y X \rightarrow X\) and \(E = q^{-1}(Y) \rightsquigarrow\) exact descent sequence

\[
K_{-d+1}(E) \rightarrow K_{-d}(X) \rightarrow K_{-d}(Y) \oplus K_{-d}(\tilde{X}) \rightarrow K_{-d}(E) \rightarrow \cdots.
\]
Derived algebraic geometry

Definition (Toën-Vezzosi, Lurie)

A **derived scheme** is a topological space $|\mathcal{X}|$ together with an ∞-sheaf $\mathcal{O}_\mathcal{X} : \text{Opn}(|\mathcal{X}|)^{\text{op}} \to \text{sRing}$, where $\text{sRing} = (\text{com. simplicial rings})/(\text{weak eq.})$ is an $(\infty, 1)$-category, s.t.

- $t\mathcal{X} := (|\mathcal{X}|, \pi_0 \mathcal{O}_\mathcal{X})$ is a scheme,
- $\pi_i \mathcal{O}_\mathcal{X}$ is a quasi-coherent sheaf.

Note that t is a functor from derived schemes to schemes preserving finite limits.

Example

Commutative simplicial ring $A \rightsquigarrow$ affine derived scheme $\mathcal{X} = \text{Spec}(A)$ with $t\mathcal{X} = \text{Spec}(\pi_0 A)$ and $\Gamma(|\mathcal{X}|, \pi_i \mathcal{O}_\mathcal{X}) = \pi_i A$.
Definition (Toën-Vezzosi, Lurie)

A *derived scheme* is topological space $|\mathcal{X}|$ together with an ∞-sheaf $\mathcal{O}_\mathcal{X} : \text{Opn}(|\mathcal{X}|)^\text{op} \to \text{sRing}$, where $\text{sRing} = (\text{com. simplicial rings})/\text{(weak eq.)}$ is an $(\infty, 1)$-category, s.t.

- $t\mathcal{X} := (|\mathcal{X}|, \pi_0 \mathcal{O}_\mathcal{X})$ is a scheme,
- $\pi_i \mathcal{O}_\mathcal{X}$ is a quasi-coherent sheaf.

Note that t is a functor from derived schemes to schemes preserving finite limits.

Example

Commutative simplicial ring $A \mapsto$ affine derived scheme $\mathcal{X} = \text{Spec}(A)$ with $t\mathcal{X} = \text{Spec}(\pi_0 A)$ and $\Gamma(|\mathcal{X}|, \pi_i \mathcal{O}_\mathcal{X}) = \pi_i A$.
Definition (Toën-Vezzosi, Lurie)

A derived scheme is topological space $|\mathcal{X}|$ together with an ∞-sheaf $\mathcal{O}_X : \text{Opn}(|\mathcal{X}|)^{\text{op}} \to \text{sRing}$, where

$\text{sRing} = (\text{com. simplicial rings})/(\text{weak eq.})$ is an $(\infty, 1)$-category, s.t.

- $t\mathcal{X} := (|\mathcal{X}|, \pi_0 \mathcal{O}_X)$ is a scheme,
- $\pi_i \mathcal{O}_X$ is a quasi-coherent sheaf.

Note that t is a functor from derived schemes to schemes preserving finite limits.

Example

Commutative simplicial ring $A \rightsquigarrow$ affine derived scheme $\mathcal{X} = \text{Spec}(A)$ with $t\mathcal{X} = \text{Spec}(\pi_0 A)$ and $\Gamma(|\mathcal{X}|, \pi_i \mathcal{O}_X) = \pi_i A$.
\(\mathcal{X} \) derived scheme \(\leadsto \) stable \(\infty \)-category \(\text{Perf}(\mathcal{X}) \) of perfect \(\mathcal{O}_{\mathcal{X}} \)-modules \(\leadsto K(\mathcal{X}) = K(\text{Perf}(\mathcal{X})) \) non-connective \(K \)-theory spectrum (via Waldhausen construction + delooping technique)

Proposition (Clausen-Mathew-Naumann-Noel)

\(K \)-theory of derived schemes satisfies Zariski Mayer-Vietoris.

Example

For \(\mathcal{X} \) affine and \(i \leq 1 \) we have \(K_i(\mathcal{X}) \xrightarrow{\sim} K_i(t\mathcal{X}) \).

Corollary

If \(\mathcal{X} \) is separated and covered by \(r + 1 \) affines then \(K_i(\mathcal{X}) \xrightarrow{\sim} K_i(t\mathcal{X}) \) for \(i \leq -r + 1 \).
\mathcal{X} derived scheme \leadsto stable ∞-category $\text{Perf}(\mathcal{X})$ of perfect $\mathcal{O}_\mathcal{X}$-modules $\leadsto K(\mathcal{X}) = K(\text{Perf}(\mathcal{X}))$ non-connective K-theory spectrum (via Waldhausen construction + delooping technique)

Proposition (Clausen-Mathew-Naumann-Noel)

K-theory of derived schemes satisfies Zariski Mayer-Vietoris.

Example

For \mathcal{X} affine and $i \leq 1$ we have $K_i(\mathcal{X}) \xrightarrow{\sim} K_i(t\mathcal{X})$.

Corollary

If \mathcal{X} is separated and covered by $r + 1$ affines then $K_i(\mathcal{X}) \xrightarrow{\sim} K_i(t\mathcal{X})$ for $i \leq -r + 1$.
The derived scheme \mathcal{X} is equivalent to a stable ∞-category $\text{Perf}(\mathcal{X})$ of perfect $\mathcal{O}_\mathcal{X}$-modules, which is equivalent to $K(\mathcal{X}) = K(\text{Perf}(\mathcal{X}))$ non-connective K-theory spectrum (via Waldhausen construction + delooping technique).

Proposition (Clausen-Mathew-Naumann-Noel)

The K-theory of derived schemes satisfies the Zariski Mayer-Vietoris property.

Example

For \mathcal{X} affine and $i \leq 1$ we have $K_i(\mathcal{X}) \xrightarrow{\sim} K_i(t\mathcal{X})$.

Corollary

If \mathcal{X} is separated and covered by $r + 1$ affines then $K_i(\mathcal{X}) \xrightarrow{\sim} K_i(t\mathcal{X})$ for $i \leq -r + 1$.
Proposition (Clausen-Mathew-Naumann-Noel)

\[K \text{-theory of derived schemes satisfies Zariski Mayer-Vietoris.} \]

Example

For \(\mathcal{X} \) affine and \(i \leq 1 \) we have \(K_i(\mathcal{X}) \cong K_i(t\mathcal{X}). \)

Corollary

If \(\mathcal{X} \) is separated and covered by \(r + 1 \) affines then \(K_i(\mathcal{X}) \cong K_i(t\mathcal{X}) \) for \(i \leq -r + 1. \)
Derived blow-ups

Given an (ordinary) affine scheme $X = \text{Spec}(A)$ and a sequence $a = (a_0, \ldots, a_r) \in A^{r+1}$, there is a commutative diagram of derived schemes (derived blow-up square)

\[
\begin{array}{ccc}
\tilde{X} & \xleftarrow{\varepsilon} & E \\
\downarrow & & \downarrow \\
X & \xleftarrow{\eta} & Y
\end{array}
\]

Properties:

- $Y = \text{Spec}(B)$ with $\pi_i B = H_i(A, a)$ (Koszul homology).
- For a regular we have $\tilde{X} = \text{Bl}_{(a)}(X)$ and square is Cartesian in the category of schemes.
- Derived blow-up squares are compatible with (derived) pullback along morphism of affine schemes $X' = \text{Spec}(A') \to X$.
Derived blow-ups

Given an (ordinary) affine scheme \(X = \text{Spec}(A) \) and a sequence \(\mathbf{a} = (a_0, \ldots, a_r) \in A^{r+1} \)
\(\leadsto \) commutative diagram of derived schemes (\textit{derived blow-up square})

\[
\begin{array}{ccc}
\tilde{X} & \xleftarrow{\epsilon} & \mathcal{E} \\
\downarrow & & \downarrow \\
X & \xleftarrow{\psi} & \mathcal{Y}
\end{array}
\]

Properties:

- \(\mathcal{Y} = \text{Spec}(B) \) with \(\pi_i B = H_i(A, \mathbf{a}) \) (Koszul homology).
- For \(\mathbf{a} \) regular we have \(\tilde{X} = \text{Bl}_{(\mathbf{a})}(X) \) and square is Cartesian in the category of schemes.
- Derived blow-up squares are compatible with (derived) pullback along morphism of affine schemes \(X' = \text{Spec}(A') \rightarrow X \).
Derived blow-ups

Given an (ordinary) affine scheme $X = \text{Spec}(A)$ and a sequence $a = (a_0, \ldots, a_r) \in A^{r+1}$, the derived blow-up \tilde{X} is given by a commutative diagram of derived schemes (derived blow-up square):

\[
\begin{array}{ccc}
\tilde{X} & \xleftarrow{\mathcal{E}} & Y \\
\downarrow & & \downarrow \\
X & \leftarrow & Y
\end{array}
\]

Properties:

- $Y = \text{Spec}(B)$ with $\pi_i B = H_i(A, a)$ (Koszul homology).
- For a regular we have $\tilde{X} = \text{Bl}_a(X)$ and square is Cartesian in the category of schemes.
- Derived blow-up squares are compatible with (derived) pullback along morphism of affine schemes $X' = \text{Spec}(A') \to X$.
Derived blow-ups

Given an (ordinary) affine scheme $X = \text{Spec}(A)$ and a sequence $a = (a_0, \ldots, a_r) \in A^{r+1}$, we have a commutative diagram of derived schemes (derived blow-up square)

\[
\begin{array}{ccc}
\tilde{X} & \leftarrow & \mathcal{E} \\
\downarrow & & \downarrow \\
X & \leftarrow & Y
\end{array}
\]

Properties:

- $Y = \text{Spec}(B)$ with $\pi_i B = H_i(A, a)$ (Koszul homology).
- For a regular we have $\tilde{X} = \text{Bl}_a(X)$ and square is Cartesian in the category of schemes.
- Derived blow-up squares are compatible with (derived) pullback along morphism of affine schemes $X' = \text{Spec}(A') \to X$.
Derived blow-ups

Given an (ordinary) affine scheme $X = \text{Spec}(A)$ and a sequence $a = (a_0, \ldots, a_r) \in A^{r+1}$

\[\rightsquigarrow \text{commutative diagram of derived schemes (derived blow-up square)} \]

\[\tilde{X} \leftarrow \mathcal{E} \]

\[\downarrow \quad \downarrow \]

\[X \leftarrow \mathcal{Y} \]

Properties:

- $\mathcal{Y} = \text{Spec}(B)$ with $\pi_i B = H_i(A, a)$ (Koszul homology).
- For a regular we have $\tilde{X} = \text{Bl}_a(X)$ and square is Cartesian in the category of schemes.
- Derived blow-up squares are compatible with (derived) pullback along morphism of affine schemes $X' = \text{Spec}(A') \to X$.

Moritz Kerz
Negative algebraic K-theory
Blow-up Theorem (Thomason, K-Strunk-Tamme)

\[\cdots \to K_{i+1}(\mathcal{E}) \to K_i(X) \to K_i(Y) \oplus K_i(\tilde{X}) \to K_i(\mathcal{E}) \to \cdots \]

or equivalently \(K(X, Y) \cong K(\tilde{X}, \mathcal{E}) \).

Idea of proof: The perfect modules on \(\mathcal{E} = \mathbb{P}^r_Y \) have a filtration

\[\text{Perf}_l(\mathcal{E}) = \langle \mathcal{O}_\mathcal{E}(0), \ldots, \mathcal{O}_\mathcal{E}(-l) \rangle, \quad l \in \{0, \ldots, r\} \]

with graded pieces \(\text{gr}_l(\mathcal{E}) \cong \text{Perf}(Y) \).

Similar filtration for perfect modules on \(\tilde{X} \) with \(\text{gr}_0(\tilde{X}) \cong \text{Perf}(X) \) and \(\text{gr}_l(\tilde{X}) \cong \text{Perf}(Y) \) for \(l > 0 \).

□
Blow-up Theorem (Thomason, K-Strunk-Tamme)

K-theory satisfies descent for derived blow-up squares, i.e. we get a long exact sequence

$$\cdots \to K_{i+1}(\mathcal{E}) \to K_i(X) \to K_i(Y) \oplus K_i(\tilde{X}) \to K_i(\mathcal{E}) \to \cdots$$

or equivalently $K(X, Y) \cong K(\tilde{X}, \mathcal{E})$.

Idea of proof: The perfect modules on $\mathcal{E} = \mathbb{P}_Y^r$ have a filtration

$$\text{Perf}_l(\mathcal{E}) = \langle \mathcal{O}_X(0), \ldots, \mathcal{O}_X(-l) \rangle, \quad l \in \{0, \ldots, r\}$$

with graded pieces $\text{gr}_l(\mathcal{E}) \cong \text{Perf}(Y)$.

Similar filtration for perfect modules on \tilde{X} with $\text{gr}_0(\tilde{X}) \cong \text{Perf}(X)$ and $\text{gr}_l(\tilde{X}) \cong \text{Perf}(Y)$ for $l > 0$. \qed
Proof of the Descent Proposition

Let $X = \text{Spec}(A)$, $Y = \text{Spec}(A/I)$. Choose reduction $(a_0, \ldots, a_r) \subset I$ with $r < d = \dim(X) \Rightarrow$ derived blow-up square $\sim K(X, Y) \simeq K(\tilde{X}, \mathcal{E})$. We get isomorphisms

$$K_i(X, Y = tY) \overset{\sim}{=} K_i(X, Y) \overset{\text{b-u thm.}}{=} K_i(\tilde{X}, \mathcal{E}) \overset{\text{cor., } i \leq -r}{=} K_i(t\tilde{X}, t\mathcal{E}) \overset{\text{excision, } i < -d}{=} K_i(\tilde{X}, E)$$

The isomorphism $K_i(X, Y) \simeq K_i(\tilde{X}, E)$ for $(i < -d)$ induces the long exact sequence of the Descent Proposition. \qed
Proof of the Descent Proposition

Let $X = \text{Spec}(A)$, $Y = \text{Spec}(A/I)$. Choose reduction $(a_0, \ldots, a_r) \subseteq I$ with $r < d = \dim(X) \Rightarrow$ derived blow-up square $\Rightarrow K(X, Y) \simeq K(\tilde{X}, \mathcal{E})$. We get isomorphisms

$$K_i(X, Y = tY) \overset{\cong}{=} K_i(X, Y) \overset{\text{b-u thm.}}{=} K_i(\tilde{X}, \mathcal{E}) \overset{\cong}{=} K_i(t\tilde{X}, t\mathcal{E}) \overset{\text{excision, } i < -d}{=} K_i(\tilde{X}, E)$$

The isomorphism $K_i(X, Y) \cong K_i(\tilde{X}, E)$ for $(i < -d)$ induces the long exact sequence of the Descent Proposition.
Proof of the Descent Proposition

Let \(X = \text{Spec}(A) \), \(Y = \text{Spec}(A/I) \). Choose reduction \((a_0, \ldots, a_r) \subset I\) with \(r < d = \dim(X) \) \(\leadsto \) derived blow-up square \(\leadsto K(X, Y) \cong K(\tilde{X}, \mathcal{E}) \). We get isomorphisms

\[
K_i(X, Y = tY) \cong K_i(X, Y) \cong K_i(\tilde{X}, \mathcal{E}) \cong K_i(t\tilde{X}, t\mathcal{E}) \cong K_i(\tilde{X}, E)
\]

The isomorphism \(K_i(X, Y) \cong K_i(\tilde{X}, E) \) for \((i < -d) \) induces the long exact sequence of the Descent Proposition. \(\square \)
cdh-cohomology

The cdh-topology of a scheme \(X \) is generated Zariski covers + covers \(\tilde{X} \amalg Y \to X \) with \(Y \to X \) closed immersion and with \(\tilde{X} \to X \) proper, isomorphism away from \(Y \) (Voevodsky).

Theorem (K-Strunk-Tamme, Cortinas-Haesemeyer-Schlichting-Weibel)

For \(d = \text{dim}(X) < \infty \) there is an isomorphism \(K_{-d}(X) \cong H^d(X_{cdh}, \mathbb{Z}) \).

Example

If \(X \) has only an isolated singularity \(x \) with desingularization \(q : \tilde{X} \to X, E = q^{-1}(x) \) then \(K_{-d}(X) \cong H^{d-1}(\text{Com}(E), \mathbb{Z}) \).

Here \(\text{Com}(E) \) is the configuration complex (points of \(\text{Com}(E) \cong \text{irred. comp.} \ (E) \)).
The cdh-topology of a scheme X is generated Zariski covers $\tilde{X} \amalg Y \to X$ with $Y \hookrightarrow X$ closed immersion and with $\tilde{X} \to X$ proper, isomorphism away from Y (Voevodsky).

Theorem (K-Strunk-Tamme, Cortinas-Haesemeyer-Schlichting-Weibel)

For $d = \dim(X) < \infty$ there is an isomorphism $K_{-d}(X) \cong H^d(X_{\text{cdh}}, \mathbb{Z})$.

Example

If X has only an isolated singularity x with desingularization $q : \tilde{X} \to X$, $E = q^{-1}(x)$ then $K_{-d}(X) \cong H^{d-1}(\text{Com}(E), \mathbb{Z})$. Here $\text{Com}(E)$ is the configuration complex (points of $\text{Com}(E) \cong \text{irred. comp.} (E)$).
The cdh-topology of a scheme X is generated Zariski covers $+$ covers $\tilde{X} \bigsqcup Y \to X$ with $Y \hookrightarrow X$ closed immersion and with $\tilde{X} \to X$ proper, isomorphism away from Y (Voevodsky).

Theorem (K-Strunk-Tamme, Cortinas-Haesemeyer-Schlichting-Weibel)

For $d = \dim(X) < \infty$ there is an isomorphism $K_{-d}(X) \cong H^d(X_{\text{cdh}}, \mathbb{Z})$.

Example

If X has only an isolated singularity x with desingularization $q : \tilde{X} \to X$, $E = q^{-1}(x)$ then $K_{-d}(X) \cong H^{d-1}(\text{Com}(E), \mathbb{Z})$. Here $\text{Com}(E)$ is the configuration complex (points of $\text{Com}(E) \cong \text{irred. comp. } (E)$).
Continuous K-theory of affinoid algebras I

k non-archimedean valued field, A/k affinoid algebra

Definition (Karoubi-Villamayor, Calvo)

- $K_{0}^{\text{cont}}(A) = K_{0}(A)$,
- $K_{i}^{\text{cont}}(A) = \text{coker}(K_{i+1}^{\text{cont}}(A[t])) \times K_{i+1}^{\text{cont}}(A[t^{-1}]) \to K_{i+1}^{\text{cont}}(A[t, t^{-1}]))$ for $i < 0$.

Here $A[t] \subset A[[t]]$ consists of power series $a_0 + a_1 t + \cdots$ with $\lim_i |a_i| = 0$ etc.

Remark

In order to extend K^{cont} in a sensible way to positive degrees one has to work with pro-abelian groups (Morrow, K-Saito-Tamme).
Continuous K-theory of affinoid algebras I

k non-archimedean valued field, A/k affinoid algebra

Definition (Karoubi-Villamayor, Calvo)

- $K_0^{\text{cont}}(A) = K_0(A)$,
- $K_i^{\text{cont}}(A) = \text{coker}(K_{i+1}^{\text{cont}}(A[t]) \times K_{i+1}^{\text{cont}}(A[t^{-1}]) \to K_{i+1}^{\text{cont}}(A[t, t^{-1}])))$ for $i < 0$.

Here $A[t] \subset A[[t]]$ consists of power series $a_0 + a_1 t + \cdots$ with $\lim_i |a_i| = 0$ etc.

Remark

In order to extend K^{cont} in a sensible way to positive degrees one has to work with pro-abelian groups (Morrow, K-Saito-Tamme).
Continuous K-theory of affinoid algebras I

k non-archimedean valued field, A/k affinoid algebra

Definition (Karoubi-Villamayor, Calvo)

- $K_0^{\text{cont}}(A) = K_0(A)$,
- $K_i^{\text{cont}}(A) = \text{coker}(K_{i+1}^{\text{cont}}(A\langle t \rangle) \times K_{i+1}^{\text{cont}}(A\langle t^{-1} \rangle) \rightarrow K_{i+1}^{\text{cont}}(A\langle t, t^{-1} \rangle))$ for $i < 0$.

Here $A\langle t \rangle \subset A[t]$ consists of power series $a_0 + a_1 t + \cdots$ with $\lim_i |a_i| = 0$ etc.

Remark

In order to extend K^{cont} in a sensible way to positive degrees one has to work with pro-abelian groups (Morrow, K-Saito-Tamme).
As an analog of Weibel’s conjecture one proves:

Theorem (K)

If \(k \) is discretely valued and \(d = \text{dim}(X) \) we have

(i) \(K^\text{cont}_i(A) = 0 \) for \(i < -d \),

(ii) \(K^\text{cont}_i(A) \xrightarrow{\cong} K^\text{cont}_i(A\langle t_1, \ldots, t_r \rangle) \) is an isomorphism for \(i \leq -d \).

An analog of the cdh-topology calculation would be:

Conjecture

For \(d = \text{dim}(A) \) there is an isomorphism

\[
K_{-d}^\text{cont}(A) \cong H^d(\mathcal{M}(A), \mathbb{Z}).
\]

Here \(\mathcal{M}(A) \) is the Berkovich space of mult. seminorms of \(A \).
As an analog of Weibel’s conjecture one proves:

Theorem (K)

If k is discretely valued and $d = \dim(X)$ we have

(i) $K_i^{\text{cont}}(A) = 0$ for $i < -d$,

(ii) $K_i^{\text{cont}}(A) \cong K_i^{\text{cont}}(A\langle t_1, \ldots, t_r \rangle)$ is an isomorphism for $i \leq -d$.

An analog of the cdh-topology calculation would be:

Conjecture

For $d = \dim(A)$ there is an isomorphism $K_{-d}^{\text{cont}}(A) \cong H^d(\mathcal{M}(A), \mathbb{Z})$.

Here $\mathcal{M}(A)$ is the Berkovich space of mult. seminorms of A.