Numerical Mathematics of Quasicrystals

Pingwen Zhang

Peking University
Joint work with Kai Jiang
(Xiangtan University)
Outline

◆ Background

◆ Quasicrystals
 ➢ Mathematics
 ➢ Experiment
 ➢ Physics
 ➢ Numerical Methods

◆ Discussion
Tilings

Tiling: covering the plane without gaps or overlaps
Tilings

Tiling: covering the plane without gaps or overlaps

Equilateral polygons: Periodic tilings
Tilings

Tiling: covering the plane without gaps or overlaps

Equilateral polygons: Periodic tilings

Pentagon
Penrose Tiling

Aperiodic tiling: no invariance by translation

R. Penrose (1974)
Penrose Tiling

Aperiodic tiling: no invariance by translation

R. Penrose (1974)

A negative example to the Hilbert’s 18th problem
Penrose Tiling

Aperiodic tiling: no invariance by translation

R. Penrose (1974)

Building up of space from congruent polyhedra

A negative example to the Hilbert’s 18th problem
Quasicrystals

The Nobel Prize in Chemistry 2011 was awarded to Shechtman "for the discovery of quasicrystals".

Quasicrystals

The role of quasicrystals

Complete Order: Periodic Crystals

Complete Disorder: Non-Crystalline
Quasicrystals

The role of quasicrystals

Complete Order: Periodic Crystals

What’s More?

Complete Disorder: Non-Crystalline
Quasicrystals

The role of quasicrystals

Complete Order: Periodic Crystals

Complete Disorder: Non-Crystalline

Quasicrystals

What’s More?
Quasicrystals

The role of quasicrystals

Complete Order: Periodic Crystals

Quasicrystals

What’s More?

Complete Disorder: Non-Crystalline

Glass
Quasicrystals

The role of quasicrystals

What’s More?

Complete Order:
Periodic Crystals

Quasicrystals

What’s More?

Complete Disorder:
Non-Crystalline

unknown

Glas
Outline

Quasicrystals

> Mathematics
> Physics
> Experiment
> Numerical Methods
Almost Periodic Function

Periodicity

\[\cos(2\pi x) \]
Almost Periodic Function

Periodicity
Almost Periodic Function

Periodicity

\[
\cos\left(2\pi \sqrt{2} x\right)
\]
Almost Periodic Function

Periodicity

$$\cos(2\pi \sqrt{2} x)$$
Almost Periodic Function

Periodicity

$$\cos(2\pi x) + \cos(2\pi \sqrt{2}x)$$
Almost Periodic Function

Periodicity

\[\cos(2\pi x) + \cos(2\pi \sqrt{2}x) \]
Almost Periodic Function

Periodicity \rightarrow Quasi-Periodicity

\[\cos(2\pi x) + \cos(2\pi \sqrt{2}x) \]
Almost Periodic Function

Periodicity \rightarrow Quasi-Periodicity

$\cos(2\pi x) + \cos(2\pi \sqrt{2}x)$

In general, Almost Periodic Function

$$f(x) = \sum_{\lambda_n \in \Lambda} c_n e^{\lambda_n x}, \quad \Lambda \subset \mathbb{R}^d \text{ is a countable set.}$$
Yves Meyer

Meyer’s work:

✓ 1964-1973 QCs from Harmonic Analysis and Number Theory
✓ 1974-1984 Calderón-Zygmund operator theory
✓ 1983-1993 Wavelet
✓ 1994-1999 Navier-Stokes equation
✓ 2000-now QCs and Applications

2010 Gauss Prize
2017 Able Prize
Meyer’s work

Starting point: the local controls the global

\[\sup_{x \in \mathbb{R}} |f(x)| \leq C \sup_{x \in \mathcal{K}} |f(x)| \]

\[f(x) = \sum_{\lambda_n \in \Lambda} c_n e^{\lambda_n x}, \quad c_n \neq 0, \quad \Lambda \subset \mathbb{R}^d. \]
Meyer’s work

Starting point: the local controls the global

\[\sup_{x \in \mathbb{R}} |f(x)| \leq C \sup_{x \in \mathcal{K}} |f(x)| \]

\[f(x) = \sum_{\lambda_n \in \Lambda} c_n e^{\lambda_n x}, \quad c_n \neq 0, \quad \Lambda \subset \mathbb{R}^d. \]

Problems:

- How to construct \(\Lambda \)
- The properties of \(\Lambda \)
Meyer’s work

Starting point: the local controls the global

\[
\sup_{x \in \mathbb{R}} |f(x)| \leq C \sup_{x \in \mathcal{K}} |f(x)|
\]

\[
f(x) = \sum_{\lambda_n \in \Lambda} c_n e^{\lambda_n x}, \quad c_n \neq 0, \quad \Lambda \subseteq \mathbb{R}^d.
\]

Problems:

- How to construct \(\Lambda \)
- The properties of \(\Lambda \)

A trivial case: \(\Lambda = \mathbb{Z}, f(x) \) is a periodic function
Delone Set
Delone Set

Discrete
Delone Set

Discrete

Relatively dense
Meyer’s QCs

- A **Meyer’s QC** \(\Lambda \) is a Delone set s.t. \(\Lambda - \Lambda \subset \Lambda + F \) where \(F \) is a finite set.
Meyer’s QCs

- A **Meyer’s QC** Λ is a Delone set s.t. $\Lambda - \Lambda \subset \Lambda + F$ where F is a finite set.

- **Meyer’s QCs and Algebraic numbers**

 Theorem: If Λ is a **Meyer’s QC** and $\theta \Lambda \subset \Lambda \iff \theta$ is either a **Pisot number** or a **Salem number**.
Meyer’s QCs

- A **Meyer’s QC** Λ is a Delone set s.t. $\Lambda - \Lambda \subset \Lambda + F$ where F is a finite set.

- **Meyer’s QCs** and **Algebraic numbers**

 Theorem: If Λ is a **Meyer’s QC** and $\theta \Lambda \subset \Lambda \iff \theta$ is either a **Pisot number** or a **Salem number**.

- **Meyer’s QCs** and **Harmonic analysis**

 Theorem: By **duality theory**, f is a **almost periodic function** f when its spectrum lies in a **Meyer’s QC** Λ.
Cut-and-Project scheme

A constructive method (Meyer, 1972)

- High-D: Periodic Lattice
- Window: irrational slice
- Low-D: Meyer’s QCs

Cut-and-project scheme can generate tilings.

\[\tan \alpha = \frac{1 + \sqrt{5}}{2} \]
Dynamical System

Quasi-periodic Schrödinger operator

\[(\mathcal{L}y)(t) = -y''(t) + q(\theta + wt)y(t)\]

\(\theta, w\) is rational independent.
Dynamical System

Quasi-periodic Schrödinger operator

\[(\mathcal{L}y)(t) = -y''(t) + q(\theta + wt)y(t)\]

\(\theta, w\) is rational independent.

The dynamical system

\[(\mathcal{L}y)(t) = Ey(t)\]
Dynamical System

Quasi-periodic Schrödinger operator

$$(\mathcal{L}y)(t) = -y''(t) + q(\theta + wt)y(t)$$

θ, w is rational independent.

The dynamical system

$$(\mathcal{L}y)(t) = Ey(t)$$

Equivalently

$$\begin{cases}
\dot{x} = V_{E,q}(\theta)x, \\
\dot{\theta} = w, \\
V_{E,q}(\theta) = \begin{pmatrix} 0 & 1 \\
q(\theta) - E & 0 \end{pmatrix}
\end{cases}$$
Dynamical System

Quasi-periodic Schrödinger operator

\[(Ly)(t) = -y''(t) + q(\theta + wt)y(t)\]

\(\theta, w\) is rational independent.

The dynamical system

\[(Ly)(t) = Ey(t)\]

Equivalently

\[\begin{align*}
\dot{x} &= V_{E,q}(\theta)x, \\
\dot{\theta} &= w,
\end{align*}\]

\[V_{E,q}(\theta) = \begin{pmatrix} 0, & 1 \\ q(\theta) - E, & 0 \end{pmatrix} \]
The First Soft QCs

Dendrimer Liquid QC

$C_{12}H_{25}$
QCs: Discovery

Metallic QCs

<table>
<thead>
<tr>
<th>Type of quasicrystal</th>
<th>d-D</th>
<th>n-D</th>
<th>Metric</th>
<th>Symmetry</th>
<th>System</th>
<th>First Report</th>
</tr>
</thead>
<tbody>
<tr>
<td>Icosahedral</td>
<td>3D</td>
<td>6</td>
<td>(\sqrt{5})</td>
<td>m_35</td>
<td>AlMn</td>
<td>Shechtman et al., 1984</td>
</tr>
<tr>
<td>Tetrahedral</td>
<td>3D</td>
<td>6</td>
<td>(\sqrt{3})</td>
<td>m_3</td>
<td>AlLiCu</td>
<td>Donnadieu, 1994</td>
</tr>
<tr>
<td>Decagonal</td>
<td>2D</td>
<td>5</td>
<td>((\sqrt{5}))</td>
<td>10/mmm</td>
<td>AlMn</td>
<td>Chattopadhyay et al., 1985a and Bendersky, 1985</td>
</tr>
<tr>
<td>Dodecagonal</td>
<td>2D</td>
<td>5</td>
<td>(\sqrt{3})</td>
<td>12/mmm</td>
<td>NiCr</td>
<td>Ishimasa et al., 1985</td>
</tr>
<tr>
<td>Octagonal</td>
<td>2D</td>
<td>5</td>
<td>(\sqrt{2})</td>
<td>8/mmm</td>
<td>VNiSi, CrNiSi</td>
<td>Wang et al., 1987</td>
</tr>
<tr>
<td>Pentagonal</td>
<td>2D</td>
<td>5</td>
<td>((\sqrt{5}))</td>
<td>5m</td>
<td>AlCuFe</td>
<td>Bancel, 1993</td>
</tr>
<tr>
<td>Natural Icosahedral</td>
<td>3D</td>
<td>6</td>
<td>((\sqrt{5}))</td>
<td>m_35</td>
<td>khatyrkite</td>
<td>Bindi, 2009</td>
</tr>
</tbody>
</table>

Soft QCs

<table>
<thead>
<tr>
<th>Soft matter systems</th>
<th>Type of quasicrystal</th>
<th>First Report</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dendrimer liquid crystals</td>
<td>Dodecagonal</td>
<td>Zeng et al., 2004</td>
</tr>
<tr>
<td>ABC star copolymers</td>
<td>Dodecagonal</td>
<td>Hayashida et al., 2007</td>
</tr>
<tr>
<td>Colloidal nanoparticle</td>
<td>Dodecagonal</td>
<td>Talapin, 2009</td>
</tr>
<tr>
<td>Colloidal copolymer micelles nanoparticale</td>
<td>Dodecagonal</td>
<td>Talapin, 2009</td>
</tr>
<tr>
<td>ABA'C tetrablock terpolymers</td>
<td>Dodecagonal</td>
<td>Zhang, Bates, 2012</td>
</tr>
<tr>
<td>Mesoporous silica micelles</td>
<td>Dodecagonal</td>
<td>Xiao et al., 2012</td>
</tr>
<tr>
<td>Mesoporous silica nanoparticles</td>
<td>Dodecagonal</td>
<td>Sun et al. 2017</td>
</tr>
</tbody>
</table>

http://home.iitk.ac.in/~anandh/E-book/Quasicrystals.ppt
Experimental QCs

$\text{Mg}_{23}\text{Zn}_{68}\text{Y}_9$ alloy (5-fold)

\[\tau^2 \Lambda - \tau \Lambda = \Lambda \]
\[\tau = \frac{1+\sqrt{5}}{2} \text{ Pisot number} \]

Successive spots are at a distance inflated by τ
Successive spots are at a distance inflated by \(\tau \), where

\[
\tau^2 \Lambda - \tau \Lambda = \Lambda
\]

\[
\tau = \frac{1 + \sqrt{5}}{2}
\]

is a Pisot number.

Mg\(_{23}\)Zn\(_{68}\)Y\(_9\) alloy (5-fold)

Experimental QCs \(\cap \) Meyer’s QCs

\(\tau^1, \tau^2, \tau^3, \tau^4 \)
Quasicrystals: Quasiperiodic Crystals

(Levine-Steinhardt, 1986; Mermin, 1999)

\[f(x) = \sum_{k \in \Lambda} \hat{f}(k)e^{ikx}, \quad x \in \mathbb{R}^d \]

\[\Lambda: \{k = \sum_{j=1}^{n} h_j b_j, \ b_j \in \mathbb{R}^d, \ h_j \in \mathbb{Z}\} \]

\(b_j \) are reciprocal primitive vectors.

Diffraction of pattern of 10-fold symmetry in experiment
Outline

- Numerical Mathematics
 - Projection method
 - Crystalline approximant method
 - One/multi mode approximation
Difficulties in Computing QCs

- Infinite systems without decay
- Finite domains, suitable boundary conditions
- Evaluate the energy density to high precision
- Put different kinds of ordered structures on an equal footing
Diophantine Approximation

Approximate AP function

\[f(x) = \cos(2\pi x) + \cos(2\pi \sqrt{2} x) \]

\[|f(x + n) - f(x)| \leq 2|\sin(\pi \sqrt{2} n)| \leq 2\pi \sqrt{2} n \]
Diophantine Approximation

Approximate AP function

\[f(x) = \cos(2\pi x) + \cos(2\pi \sqrt{2} x) \]

\[|f(x + n) - f(x)| \leq 2|\sin(\pi \sqrt{2} n)| \leq 2\pi \sqrt{2} n \]

Diophantine inequality

\[\left| \theta - \frac{p}{q} \right| < \frac{1}{q^2} \]
Diophantine Approximation

Approximate AP function

\[f(x) = \cos(2\pi x) + \cos(2\pi \sqrt{2}x) \]

\[|f(x + n) - f(x)| \leq 2|\sin(\pi \sqrt{2}n)| \leq 2\pi \sqrt{2}n \]

Diophantine inequality

\[\left| \theta - \frac{p}{q} \right| < \frac{1}{q^2} \]

Continued fraction approximation

\[\frac{p}{q} : 1, \frac{3}{2}, \frac{7}{5}, \frac{17}{12}, \frac{41}{29}, \frac{99}{70}, \frac{239}{169}, \ldots \rightarrow \sqrt{2} \]
Diophantine Approximation

Approximate AP function

\[f(x) = \cos(2\pi x) + \cos(2\pi \sqrt{2} x) \]

\[|f(x + n) - f(x)| \leq 2|\sin(\pi \sqrt{2} n)| \leq 2\pi \sqrt{2} n \]

Diophantine inequality

\[\left| \theta - \frac{p}{q} \right| < \frac{1}{q^2} \]

Continued fraction approximation

\[\frac{p}{q} : 1, \frac{3}{2}, \frac{7}{5}, \frac{17}{12}, \frac{41}{29}, \frac{99}{70}, \frac{239}{169}, \ldots \rightarrow \sqrt{2} \]
Idea: use a (large) periodic crystal to approximate a QC

- **Frequency domain:** satisfies Diophantine inequality

\[
|Lk - [Lk]| < \varepsilon, \quad k \in \Lambda_{QC}
\]
Error of CAM

- Error: 1. Finity approx. Infinity (Diophantine Approximation error);
 2. Numerical error
Error of CAM

- Error: 1. Finity approx. Infinity (Diophantine Approximation error);
 2. Numerical error (small)
Error of CAM

- Error: 1. Infinity approx. Infinity (Diophantine Approximation error);
 2. Numerical error (small)

- 2D 12 fold symmetric QC

<table>
<thead>
<tr>
<th>E_{SDA}</th>
<th>0.19098</th>
<th>0.17486</th>
<th>0.07042</th>
<th>0.04953</th>
<th>0.03583</th>
<th>0.02961</th>
<th>0.01936</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>30</td>
<td>208</td>
<td>410</td>
<td>3404</td>
<td>6016</td>
<td>32312</td>
<td>82262</td>
</tr>
</tbody>
</table>

Computational domain: $[L \times 2\pi)^2$
Error of CAM

- **Error:**
 1. Infinity approx. Infinity (Diophantine Approximation error);
 2. Numerical error (small)

- **2D 12 fold symmetric QC**

```
<table>
<thead>
<tr>
<th>$E_{SDA}$</th>
<th>0.19098</th>
<th>0.17486</th>
<th>0.07042</th>
<th>0.04953</th>
<th>0.03583</th>
<th>0.02961</th>
<th>0.01936</th>
</tr>
</thead>
<tbody>
<tr>
<td>$L$</td>
<td>30</td>
<td>204</td>
<td>410</td>
<td>3404</td>
<td>6016</td>
<td>32312</td>
<td>82262</td>
</tr>
</tbody>
</table>
```

- **Computational domain:** $[L \times 2\pi)^2$

- **2D 10 fold symmetric QC**

```
<table>
<thead>
<tr>
<th>$E_{SDA}$</th>
<th>0.1669</th>
<th>0.0918</th>
<th>0.0374</th>
<th>0.0299</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>$L$</td>
<td>126</td>
<td>204</td>
<td>3372</td>
<td>53654</td>
<td>...</td>
</tr>
</tbody>
</table>
```
CAM

CAM: Fourier spectral method

\[
\phi(x) \approx \sum_{k \in \Lambda_{QC}} \hat{\phi}(Lk) e^{i[Lk] \cdot x}, \quad x \in [0, L \cdot 2\pi)^d
\]
CAM

◆ CAM: Fourier spectral method

\[
\phi(\mathbf{x}) \approx \sum_{\mathbf{k} \in \Lambda_{QC}} \hat{\phi}([L\mathbf{k}]) e^{i[L\mathbf{k}] \cdot \mathbf{x}}, \quad \mathbf{x} \in [0, L \cdot 2\pi)^d
\]

☐ Computational complexity: \(L \) should be small
CAM

CAM: **Fourier spectral method**

\[\phi(\mathbf{x}) \approx \sum_{\mathbf{k} \in \Lambda_{QC}} \hat{\phi}(\mathbf{Lk}) e^{i[\mathbf{Lk}] \cdot \mathbf{x}}, \quad \mathbf{x} \in [0, L \cdot 2\pi)^d \]

- Computational complexity: \(L \) should be small
- Precision: small SDA error requires that \(L \) is large
CAM

◆ CAM: **Fourier spectral method**

\[
\phi(x) \approx \sum_{k \in \Lambda_{QC}} \hat{\phi}([Lk]) e^{i[Lk] \cdot x}, \quad x \in [0, L \cdot 2\pi)^d
\]

- Computational complexity: \(L \) should be small **Contradiction**
- Precision: small SDA error requires that \(L \) is large
Projection Method: Motivation

Avoid Diophantine Approximation

\[f(x) = \cos(2\pi x) + \cos(2\pi \sqrt{2}x) \]
Projection Method: Motivation

Avoid Diophantine Approximation

\[f(x) = \cos(2\pi x) + \cos(2\pi \sqrt{2}x) \]

\[f(x) = \cos(2\pi x) + \cos(2\pi y) \]
Projection Method: Motivation
Projection Method: Motivation

12-fold symmetry in Fourier domain

\[k_1 = (1, 0), \quad k_2 = (0, 1) \]
Projection Method: Motivation

12-fold symmetry in Fourier domain

\[k_1 = (1, 0) \]
\[k_2 = (0, 1) \]
\[(\cos(\pi/6), \sin(\pi/6)) \]
\[(\cos(\pi/3), \sin(\pi/3)) \]
\[(\cos(\pi/3), -\sin(\pi/3)) \]
\[(-\cos(\pi/6), \sin(\pi/6)) \]
\[(-\cos(\pi/6), -\sin(\pi/6)) \]
\[(-\cos(\pi/3), \sin(\pi/3)) \]
\[(-\cos(\pi/3), -\sin(\pi/3)) \]
Projection Method: Motivation

12-fold symmetry in Fourier domain

irrational number

\[k_1 = (1, 0) \]

\[k_2 = (0, 1) \]

\[(-\cos(\pi/3), \sin(\pi/3)) \]

\[(\cos(\pi/3), -\sin(\pi/3)) \]

\[(-\cos(\pi/6), \sin(\pi/6)) \]

\[(\cos(\pi/6), -\sin(\pi/6)) \]

\[(-1, 0) \]

\[(\cos(\pi/3), \sin(\pi/3)) \]

\[(\cos(\pi/3), -\sin(\pi/3)) \]
Projection Method: Motivation

12-fold symmetry in Fourier domain
Projection Method: Motivation

12-fold symmetry in Fourier domain
Projection Method: Motivation

12-fold symmetry in Fourier domain

\(-1,0,1,0\) \((0,0,0,1)\) \((0,0,1,0)\)
\((0,-1,0,1)\) \((0,1,0,0)\)
\((-1,0,0,0)\) \((1,0,0,0)\)
\((0,-1,0,0)\) \((0,1,0,-1)\)
\((0,0,-1,0)\) \((1,0,-1,0)\)
\((0,0,0-1)\)
Projection Method: Motivation

12-fold symmetry in Fourier domain

\((-1, 0, 1, 0)\) \(\rightarrow\) \((0, 0, 0, 1)\) \(\rightarrow\) \((0, 0, 1, 0)\)

\((0, -1, 0, 1)\) \(\rightarrow\) \((0, 1, 0, 0)\)

\((-1, 0, 0, 0)\) \(\rightarrow\) \((1, 0, 0, 0)\)

\((0, -1, 0, 0)\) \(\rightarrow\) \((0, 1, 0, -1)\)

\((0, 0, -1, 0)\) \(\rightarrow\) \((1, 0, -1, 0)\)

\((0, 0, 0 - 1)\)

\((-\cos(\pi/3), \sin(\pi/3))\) \(\rightarrow\) \((\cos(\pi/3), \sin(\pi/3))\)

\((-\cos(\pi/6), \sin(\pi/6))\) \(\rightarrow\) \((\cos(\pi/6), \sin(\pi/6))\)

\((-1, 0)\) \(\rightarrow\) \((\cos(\pi/6), -\sin(\pi/6))\)

\((-\cos(\pi/6), -\sin(\pi/6))\) \(\rightarrow\) \((\cos(\pi/6), -\sin(\pi/6))\)

\((-\cos(\pi/3), -\sin(\pi/3))\) \(\rightarrow\) \((\cos(\pi/3), -\sin(\pi/3))\)

\((0, -1)\)
Projection Method: Motivation

12-fold symmetry in Fourier domain

\[(0, 0, 0, 1) \rightarrow (0, 0, 1, 0) \rightarrow (0, 0, 1, 0) \rightarrow (0, 0, 0, 1) \rightarrow \ldots \]

\[
\begin{align*}
(1, 0, 0, 0) \\
(-1, 0, 0, 0) \\
(0, -1, 0, 0) \\
(0, 0, -1, 0) \\
(0, 0, 0, -1)
\end{align*}
\]

\[
\left(\frac{-\pi}{3}, \frac{\pi}{3}\right) \rightarrow \left(\frac{\pi}{3}, \frac{\pi}{3}\right) \rightarrow \left(\frac{\pi}{3}, \frac{\pi}{3}\right) \rightarrow \left(\frac{-\pi}{3}, \frac{-\pi}{3}\right) \rightarrow \ldots
\]

\[
\begin{align*}
(1, 0) \\
(-1, 0) \\
(0, -1) \\
(-1, 0) \\
(0, 0)
\end{align*}
\]
Projection Method: Motivation

12-fold symmetry in Fourier domain

Projection matrix:

\[
\begin{pmatrix}
1 & \cos(\pi/6) & \cos(\pi/3) & 0 \\
0 & \sin(\pi/6) & \sin(\pi/3) & 1
\end{pmatrix}
\]
Projection Method: Motivation

12-fold symmetry in Fourier domain

Projection matrix: \[
\begin{pmatrix}
1 & \cos(\pi/6) & \cos(\pi/3) & 0 \\
0 & \sin(\pi/6) & \sin(\pi/3) & 1
\end{pmatrix}
\]

✓ A d-D QC can be embedded into an n-D periodic structure
✓ Implement in Fourier space
Projection Matrix

Frequency set: high-dimension representation

Projection matrix: connects high-D and low-D

\[
\Lambda_{12fold} = P \mathbb{Z}^4
\]

\[
P = \begin{pmatrix}
1 & \cos(\pi/6) & \cos(\pi/3) & 0 \\
0 & \sin(\pi/6) & \sin(\pi/3) & 1
\end{pmatrix}
\]
Projection Matrices

2D 8-fold

\[
\begin{pmatrix}
1 & \cos(\pi/4) & 0 & \cos(3\pi/4) \\
0 & \sin(\pi/4) & 1 & \sin(3\pi/4)
\end{pmatrix}
\]

2D 10-fold

\[
\begin{pmatrix}
1 & \cos(\pi/5) & \cos(2\pi/5) & \cos(3\pi/5) \\
0 & \sin(\pi/5) & \sin(2\pi/5) & \sin(3\pi/5)
\end{pmatrix}
\]

3D Icosahedron

\[
\begin{pmatrix}
1 & \tau/2 & \tau/2 & \tau/2 & 0 & 0 \\
0 & 1/2 & -1/2 & -1/2 & 1 & 0 \\
0 & (1-\tau)/2 & (\tau - 1)/2 & (1-\tau)/2 & 0 & 1
\end{pmatrix}
\]

\[\tau = 2\cos(\pi/5)\]
Projection Method

◆ Projection method

\[\varphi(x) = \sum_{k \in \Lambda_{QC}} \hat{\varphi}(k)e^{ik \cdot x}, \quad x \in \mathbb{R}^d \]

\[\Lambda_{QC} : \{ k = PBh, \ h \in \mathbb{Z}^n, \ P \in \mathbb{R}^{d \times n}, \ B \in \mathbb{R}^{n \times n}, \ n \geq d \} \]
Projection Method

- Projection method

\[\varphi(x) = \sum_{k \in \Lambda_{QC}} \hat{\varphi}(k) e^{ik \cdot x}, \quad x \in \mathbb{R}^d \]

\[\Lambda_{QC} : \{ k = PBh, \ h \in \mathbb{Z}^n, \ P \in \mathbb{R}^{d \times n}, \ B \in \mathbb{R}^{n \times n}, n \geq d \} \]

- Assume that \(\{ \hat{\varphi}(k) \}_{k \in \Lambda_{QC}} \subset \ell^2(\mathbb{Z}^n) \)
Projection Method

- Projection method

\[\varphi(\mathbf{x}) = \sum_{k \in \Lambda_{QC}} \hat{\varphi}(k) e^{i k \cdot \mathbf{x}}, \quad \mathbf{x} \in \mathbb{R}^d \]

\[\Lambda_{QC} : \{ \mathbf{k} = \mathbf{P} \mathbf{B} \mathbf{h}, \; \mathbf{h} \in \mathbb{Z}^n, \; \mathbf{P} \in \mathbb{R}^{d \times n}, \; \mathbf{B} \in \mathbb{R}^{n \times n}, n \geq d \} \]

- Assume that \(\{ \hat{\varphi}(\mathbf{k}) \}_{\mathbf{k} \in \Lambda_{QC}} \subset \ell^2(\mathbb{Z}^n) \)

- Implement in an n-D unit cell
Projection Method

- Projection method

\[\varphi(x) = \sum_{k \in \Lambda_{QC}} \hat{\varphi}(k) e^{i k \cdot x}, \quad x \in \mathbb{R}^d \]

\[\Lambda_{QC} : \{ k = PBh, \ h \in \mathbb{Z}^n, \ P \in \mathbb{R}^{d \times n}, \ B \in \mathbb{R}^{n \times n}, \ n \geq d \} \]

- Assume that \(\{ \hat{\varphi}(k) \}_{k \in \Lambda_{QC}} \subset \ell^2(\mathbb{Z}^n) \)

- Implement in an \(n \)-D unit cell

- Periodic crystals: \(P = I_d \)
In projection method, the **energy density** can be evaluated by

Theorem: For a d-dimensional quasicrystal $\varphi(\mathbf{x})$, using the projection method expansion, we have

$$
\lim_{R \to \infty} \frac{1}{B(0, R)} \int_{B(0, R)} \varphi(\mathbf{x}) \, d\mathbf{x} = \hat{\varphi}(0)
$$
Optimize Unit Cell

\[F[\varphi(x)] \quad \rightarrow \quad F[\varphi(x); B] \]

When studying QCs,

\[\min_{\varphi(x), B} F[\varphi(x); B] \]
One(Multi)-Modes Approximation

- Presuppose some properties of structures

 - 6-fold symmetry and $|k| = 1$

$$\varphi(x) = \sum_{j=1}^{6} \hat{\phi}_1 e^{ik_j \cdot x}$$

$$F[\varphi(x)] \rightarrow F(\hat{\phi}_1)$$
One(Multi)-Modes Approximation

◆ Presuppose some properties of structures

- 6-fold symmetry and $|k| = 1$

\[
\varphi(x) = \sum_{j=1}^{6} \hat{\varphi}_1 e^{ik_j \cdot x}
\]

\[
F[\varphi(x)] \rightarrow F(\hat{\varphi}_1)
\]

✓ Qualitative analysis
✓ Be available to limited cases
Phase Field Crystal Models

Expansion of the free energy with respect to $\varphi(x)$

\[
F[\varphi(x)] = \frac{1}{V} \int_V \left[-\frac{\varepsilon}{2} \varphi^2(x) - \frac{\alpha}{3} \varphi^3(x) + \frac{1}{4} \varphi^4(x) \right] dx + \frac{1}{V} \int_V \int_V \frac{\gamma}{2} \left[\varphi(x)G(x, x')\varphi(x') \right] dx dx'
\]

Periodic crystals: one length scale

\[
G(x, x') = (\nabla^2 + 1)^2 \delta(x, x')
\]

QCs: two length scales

\[
G(x, x') = (\nabla^2 + q_1^2)(\nabla^2 + q_2^2)^2 \delta(x, x')
\]

\[
\frac{q_1}{q_2} = 2 \cos\left(\frac{2\pi}{N}\right), \quad N = 8, 10, 12.
\]
Comparison

Projection method can obtain exact energy density.

Take Lifshitz-Petrich model \((PRL, 1997)\) as an example

\[
F[\varphi(\mathbf{x})] = \frac{1}{V} \left\{ \int_{V} \gamma \left[(1 + \nabla^{2})(q^2 + \nabla^{2})\varphi(\mathbf{x}) \right]^{2} - \frac{\varepsilon}{2} \varphi^{2}(\mathbf{x}) - \frac{\alpha}{3} \varphi^{3}(\mathbf{x}) + \frac{1}{4} \varphi^{4}(\mathbf{x}) \right\} d\mathbf{x}
\]

\[
E_{SDA} = 0.19098
\]
Comparison

Projection method can obtain exact energy density.

Take Lifshitz-Petrich model (PRL, 1997) as an example

\[
F[\varphi(\boldsymbol{x})] = \frac{1}{V} \left\{ \frac{\gamma}{2} \left[(1 + \nabla^2)(q^2 + \nabla^2)\varphi(\boldsymbol{x}) \right]^2 - \frac{\epsilon}{2}\varphi^2(\boldsymbol{x}) - \frac{\alpha}{3}\varphi^3(\boldsymbol{x}) + \frac{1}{4}\varphi^4(\boldsymbol{x}) \right\} d\boldsymbol{x}
\]

\[E_{SDA} = 0.17486\]
Comparison

Projection method can obtain exact energy density.

Take Lifshitz-Petrich model (PRL, 1997) as an example

\[F[\varphi(\mathbf{x})] = \frac{1}{V} \left\{ \int_V \frac{\gamma}{2} \left[(1 + \nabla^2)(q^2 + \nabla^2)\varphi(\mathbf{x}) \right]^2 - \frac{\varepsilon}{2}\varphi^2(\mathbf{x}) - \frac{\alpha}{3}\varphi^3(\mathbf{x}) + \frac{1}{4}\varphi^4(\mathbf{x}) \right\} d\mathbf{x} \]

\[E_{SDA} = 0.07042 \]
Comparison

Projection method can obtain exact energy density.

Take Lifshitz-Petrich model \((PRL, 1997)\) as an example

\[
F[\varphi(\mathbf{x})] = \frac{1}{V} \left\{ \int_V \gamma \left[(1 + \nabla^2)(q^2 + \nabla^2)\varphi(\mathbf{x}) \right]^2 - \frac{\varepsilon}{2} \varphi^2(\mathbf{x}) - \frac{\alpha}{3} \varphi^3(\mathbf{x}) + \frac{1}{4} \varphi^4(\mathbf{x}) \right\} d\mathbf{x}
\]
Comparison

Projection method can obtain exact energy density.

Take Lifshitz-Petrich model (PRL, 1997) as an example

\[
F[\varphi(\mathbf{x})] = \frac{1}{V} \left\{ \int_V \frac{\gamma}{2} \left[(1 + \nabla^2)(q^2 + \nabla^2)\varphi(\mathbf{x}) \right]^2 - \frac{\varepsilon}{2} \varphi^2(\mathbf{x}) - \frac{\alpha}{3} \varphi^3(\mathbf{x}) + \frac{1}{4} \varphi^4(\mathbf{x}) \right\} d\mathbf{x}
\]
Comparison

Projection method can obtain exact energy density.

Take Lifshitz-Petrich model (PRL, 1997) as an example

\[
F[\varphi(x)] = \frac{1}{V} \left\{ \int_V \frac{\gamma}{2} \left[(1 + \nabla^2)(q^2 + \nabla^2)\varphi(x)\right]^2 - \frac{\varepsilon}{2}\varphi^2(x) - \frac{a}{3}\varphi^3(x) + \frac{1}{4}\varphi^4(x) \right\} dx
\]
Comparison

Projection method (PM) costs less CPU time.
Projection method (PM) costs less CPU time.
Projection method (PM) costs less CPU time.

The precision is enough.
QCs in LP Model

Projection method can discover more QCs

Figure: Real space densities and their spectra of (a) 12-fold, (b) 10-fold, (c) 8-fold QCs computed by the Projection Method in the 4-D space (24^4).
Stability of 2D QCs

Phase diagram

Original phase diagram in Lifshitz-Petrich’s paper (1997, PRL).
3D Icosahedral QCs

$$F[\varphi(\mathbf{x})] = \frac{1}{V} \int_V \int_V \frac{\gamma}{2} \left[\varphi(\mathbf{x}) G(\mathbf{x}, \mathbf{x}') \varphi(\mathbf{x}') \right] d\mathbf{x} d\mathbf{x}'$$

$$+ \frac{1}{V} \int_V \left[-\frac{\varepsilon}{2} \varphi^2(\mathbf{x}) - \frac{\alpha}{3} \varphi^3(\mathbf{x}) + \frac{1}{4} \varphi^4(\mathbf{x}) \right] d\mathbf{x}$$

- Gaussian-polynomial potential

$$G'(\mathbf{x}) = e^{\sigma^2 \mathbf{x}^2/2} (c_0 + c_2 \mathbf{x}^2 + c_4 \mathbf{x}^4 + c_6 \mathbf{x}^6 + c_8 \mathbf{x}^8)$$

Table 1. Potential parameters used in the present study.

<table>
<thead>
<tr>
<th>σ</th>
<th>d_0</th>
<th>d_2</th>
<th>d_4</th>
<th>d_6</th>
<th>d_8</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.56881</td>
<td>1.96917</td>
<td>-14.94976</td>
<td>37.44544</td>
<td>-38.83919</td>
<td>13.99917</td>
</tr>
<tr>
<td>c_0</td>
<td>c_2</td>
<td>c_4</td>
<td>c_6</td>
<td>c_8</td>
<td></td>
</tr>
<tr>
<td>1.0</td>
<td>-0.826761</td>
<td>0.131652</td>
<td>-0.006271</td>
<td>0.000087</td>
<td></td>
</tr>
</tbody>
</table>

$$1/(2 \cos(\pi/5))$$
3D Icosahedral QCs

Diffraction pattern of 3d icosahedral QCs obtained by projection method in the 6-D space $^{16^6}$.
3D Icosahedral QCs

Diffraction pattern of 3d icosahedral QCs obtained by projection method in the 6-D space\(^{(16)}\).

Compare with experiment

Cu-Ga-Mg-Sc alloys, Phil. Mag. Lett. 2002, 82, 483
3D Icosahedral QCs

Diffraction pattern of 3d icosahedral QCs obtained by projection method in the 6-D space \(^{(16^6)}\).

Compare with experiment

Cu-Ga-Mg-Sc alloys, Phil. Mag. Lett. 2002, 82, 483
Phase Diagrams

Two-modes approximation method
Phase Diagrams

Two-modes approximation method

Projection method
Phase Diagrams

Two-modes approximation method

Projection method

Big Difference!
Phase Diagrams

Big Difference!

Two-modes approximation method

Projection method

Algorithm plays an important role in studying QCs!
Outline

◆ Discussion and Open Problems
QCs and Riemann Conjecture

- Riemann Conjecture
 - \(\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} \)
 - Critical line: \(\frac{1}{2} + ti \)
Problems

- Metallic QCs and Soft QCs
- Phase transition between crystals/QCs and QCs
- ...

ICMS, 15 South College Street, Edinburgh, EH8 9AA
4-8 June 2018
Problems

- What’s a QC in mathematical language?
- Projection method, Cut-and-Projection scheme
- Mathematical, Physical, Experimental QCs
- Which physical model can produce QCs?
- More structures between perfect crystals and disordered
- …
Thank you!

E-mail: pzhang@pku.edu.cn

http://www.math.pku.edu.cn/pzhang