The quest for a polynomial that is hard to compute

Neeraj Kayal

Microsoft Research
Polynomials

\[f(x) \in F[x_1, x_2, \ldots, x_n] \text{ of degree } d. \]

Typically: \(F = \mathbb{C}, n = d^2 \)
Polynomials

\[f(x_1, x_2, \ldots, x_n) \in \mathbb{F}[x_1, x_2, \ldots, x_n] \text{ of degree } d. \]

Typically: \(\mathbb{F} = \mathbb{C}, n = d^2 \)

Question: How many steps required to compute \(f(x) \)?
Polynomials

$f(x_1, x_2, ..., x_n) \in \mathbb{F}[x_1, x_2, ..., x_n]$ of degree d.

Typically: $\mathbb{F} = \mathbb{C}$, $n = d^2$

Question: How many steps required to compute $f(x)$?
Arithmetic Circuits

\[x_1 \quad x_2 \quad \ldots \quad x_n \]
Arithmetic Circuits

\[x_1 + x_2, \quad x_1 - x_2, \quad \ldots \]

\[x_1, \quad x_2, \quad \ldots \quad x_n \]
Arithmetic Circuits

\[ax_1 + bx_2 \]

\[+ \quad + \quad \cdots \quad + \]

\[x_1 \quad x_2 \quad \cdots \quad x_n \]

\[x_1 - x_2 \quad -1 \]
Arithmetic Circuits
Arithmetic Circuits

- x_1
- x_2
- \ldots
- x_n

Diagram of arithmetic operations with multiplications and additions.
Arithmetic Circuits

\[x_1 \times (x_2 + \ldots + x_n) - 1 \]
\[f(x) = \sum_{i=1}^{n} x_i \cdot x_i \cdot \prod_{i=1}^{n-1} x_i \cdot x_i - 1 \]

\[\#Steps = \#Edges \]
\[f(x) = \sum_{i=1}^{n} \left(x_i \prod_{j=1}^{n} x_j \right) \]
Fact: Most polynomials are extremely hard to compute.

#Steps ≈ Number of possible monomials
• **Fact:** Most polynomials are *extremely* hard to compute.

\[
\#\text{Steps} \geq \binom{n+d}{d}^{\Omega(1)}
\]
• **Fact:** Most polynomials are *extremely* hard to compute.

\[
\text{#Steps} \geq \binom{n+d}{d}^\Omega(1)
\]

• **Want:** An *explicit* polynomial that is *moderately* hard to compute.

\[
\text{#Steps} \geq (n \cdot \log d)^\omega(1)
\]
Explicit Polynomials : examples
MAJORITY Polynomial

\[x = (x_1, x_2, ..., x_n) \]

\[\text{MAJORITY}_n(x) = \sum_{S \in \binom{\{n\}}{n/2}} \prod_{i \in S} x_i \]
\[x = (x_1, x_2, \ldots, x_n) \]

\[
\text{MAJORITY}_n(x) = \sum_{S \in \binom{[n]}{n/2}} \prod_{i \in S} x_i
\]

\[\text{Fact:} \text{ For } x \in \{0,1\}^n \]

\[\text{MAJORITY}_n = \begin{cases}
0 & \text{if } \text{wt}(x) < n/2 \\
> 0 & \text{otherwise}
\end{cases} \]
CLIQUE Polynomial

\[x = (x_{12}, x_{13}, \ldots, x_{(m-1)m}) \]

\[n = \binom{m}{2} \]
CLIQUE Polynomial

\[x = (x_{12}, x_{13}, \ldots, x_{(m-1)m}) \]

\[n = \binom{m}{2}, \quad d = \binom{m/2}{2} \]

\[
\text{CLIQUE}_n(x) = \sum_{S \in \binom{[m]}{m/2}} \prod_{\{i,j\} \in \binom{S}{2}} x_{ij}
\]
\[x = (x_{12}, x_{13}, \ldots, x_{(m-1)m}) \]

\[
\text{CLIQUE}_n(x) = \sum_{S \in \binom{[m]}{m/2}} \prod_{\{i,j\} \in \binom{S}{2}} x_{ij}
\]

- **Fact:** For \(x \in \{0,1\}^{\binom{m}{2}} \)

\[
\text{CLIQUE}_n = \begin{cases}
0 & \text{if } G_x \text{ has no } \binom{m}{2} - \text{clique} \\
> 0 & \text{otherwise}
\end{cases}
\]
DETERMINANT Polynomial

\[n = d^2, \quad x = \begin{pmatrix} x_{11} & x_{12} & \cdots & x_{1d} \\ x_{21} & x_{22} & \cdots & x_{2d} \\ \vdots & \vdots & \ddots & \vdots \\ x_{d1} & x_{d2} & \cdots & x_{dd} \end{pmatrix} \]

\[\text{DET}_n(x) = \sum_{\sigma \in \text{Sym}(d)} \text{sgn}(\sigma) \cdot \prod_{i \in [n]} x_i \, \sigma(i) \]
PERMANENT Polynomial

\[n = d^2, \quad x = \begin{pmatrix}
 x_{11} & x_{12} & \cdots & x_{1d} \\
 x_{21} & x_{22} & \cdots & x_{2d} \\
 \vdots & \vdots & \ddots & \vdots \\
 x_{d1} & x_{d2} & \cdots & x_{dd}
\end{pmatrix} \]

\[\text{PERM}_n(x) = \sum_{\sigma \in \text{Sym}(d)} \prod_{i \in [n]} x_{i \sigma(i)} \]
• **Fact 1:** MAJORITY$_n$ is easy.

• **Fact 2:** DET$_n$ is easy.
• **Fact 1:** MAJORITY_n is easy.

• **Fact 2:** DET_n is easy.

• **Want to prove:** $\text{PERM}_n / \text{CLIQUE}_n /$ some explicit polynomial is extremely moderately hard
• **Fact 1:** MAJORITY_n is easy.

• **Fact 2:** DET_n is easy.

• **Want to prove:** $\text{PERM}_n / \text{CLIQUE}_n /$ some explicit polynomial is extremely moderately hard

VP vs VNP
Parallelizing Computation
Can computation be efficiently parallelized?

Question: How efficiently can we simulate circuits of size s by circuits of depth Δ?
Can computation be efficiently parallelized?

Example: Iterated Matrix Multiplication

- X_1, X_2, \ldots, X_d are $n \times n$ matrices. Define
 \[
 \text{IMM}_{n,d} = \text{Tr}(X_1 \cdot X_2 \cdot \ldots \cdot X_d)
 \]

- There is a circuit of size $s = d \cdot n^\omega$

Question: What’s the smallest circuit of depth Δ computing $\text{IMM}_{n,d}$?
Example: Iterated Matrix Multiplication

\[\sum \text{IMM}_{n,d} (X_1 \cdot X_2 \cdots X_d) \]
Example: Iterated Matrix Multiplication

\[\text{IMM}_{n,d} \]

\[\sum \]

\[(X_1 \cdot X_2 \cdot \ldots \cdot X_d) \]

\[\ast \]

\[\Delta\text{-depth circuit} \]
Example: Iterated Matrix Multiplication

\[\text{IMM}_{n,d} \]

\[\sum \]

\[(X_1 \cdot X_2 \cdots \cdot X_d)\]

\[\ast \]

\[X_1 \cdot X_2 \cdots \cdot X_t \]

\[\ast \]

\[X_1 \quad X_2 \quad \ldots \quad X_t \]

\[\ast \]

\[X_{d-t+1} \cdot \cdots \cdot X_d \]

\[\ast \]

\[X_{d-t+1} \quad \ldots \quad X_d \]

\[\Delta\text{-depth circuit} \]

\[t = d^{2/\Delta} \]

\[\text{size} = n^{O(d^{2/\Delta})} \]
Can computation be efficiently parallelized?

Question: How efficiently can we simulate circuits of size s by circuits of depth Δ?

Theorem (Hya79, VSBR83, AV08, Koi12, Tav13): Any circuit of size s and degree d can be simulated by a homogeneous and regular Δ-depth circuit of size $s^{O(d^2/\Delta)}$.
A potential approach
Proof Strategy?

- $f_n(x)$ is an explicit polynomial and we want to show that f has no poly(n) sized circuit.
Proof Strategy?

- Suppose $\#\text{Steps}(f_n) = n^{o(1)}$.
Proof Strategy?

- Suppose \(#\text{Steps}(f_n) = n^O(1)\). Then:
 \[f_n = T_1 + T_2 + \ldots + T_s, \]
 where each \(T_i\) is a product of low-degree polynomials and \(s\) is not too large.
Proof Strategy?

- Suppose \(\text{Steps}(f_n) = n^{O(1)} \). Then:
 \[
 f_n = T_1 + T_2 + ... + T_s,
 \]
 where each \(T_i \) is a product of \(O(\sqrt{d}) \)-degree polynomials and \(s \) is \(n^{O(\sqrt{d})} \).

- Show that this is impossible.
Proof Strategy?

- Suppose \(\#\text{Steps}(f_n) = n^{O(1)} \). Then:
 \[
 f_n = T_1 + T_2 + \ldots + T_s,
 \]
 where each \(T_i \) is a product of \(O(\sqrt{d}) \)-degree polynomials and \(s \) is \(n^{O(\sqrt{d})} \).

Theorem (K-Saha-Saptharishi 14): There exists an explicit \(\{f_n : n \geq 1\} \) with \(n = d^2 \) such that
\[
s \geq n^{\Omega(\sqrt{d})}.
\]
Proof Strategy

- Suppose $f_n = T_1 + T_2 + \ldots + T_s$, where each T_i is a product of low-degree polynomials.

- Find a geometric property GP of $V(T_i)$.

- Associate a matrix $M(g)$ to every polynomial g such that:
 1. rank($M(T_i)$) is small, and
 2. Linearity: $M(\alpha \cdot g + \beta \cdot h) = \alpha \cdot M(g) + \beta \cdot M(h)$,
 3. rank($M(f_n)$) is large.
Proof Strategy

- Suppose $f_n = T_1 + T_2 + \ldots + T_s$, where each T_i is a product of low-degree polynomials.

- Find a geometric property GP of $V(T_i)$.

- Express the property GP in terms of rank of a big matrix M:
 1. if T has the property than rank($M(T)$) is small, and
 2. Linearity: $M(\alpha \cdot g + \beta \cdot h) = \alpha M(g) + \beta M(h)$,

- Show that rank($M(f_n)$) is large.
Define: \(V(f) = \{ a \in \mathbb{C}^n : f(a) = 0 \} \)
Proof Strategy

- Suppose \(f_n = T_1 + T_2 + \ldots + T_s \), where each \(T_i \) is a product of low-degree polynomials.

- Find a geometric property GP of \(V(T_i) \).

- Express the property GP in terms of rank of a big matrix \(M \):
 (1) if \(T \) has the property than rank(\(M(T) \)) is small, and
 (2) **Linearity**: \(M(\alpha \cdot g + \beta \cdot h) = \alpha M(g) + \beta M(h) \),

- Show that rank(\(M(f_n) \)) is large.
Lower Bounding rank of large matrices

- If a matrix $M(f_n)$ has a large upper triangular submatrix, then it has large rank.

- (Alon): If the columns of $M(f_n)$ are almost orthogonal then $M(f_n)$ has large rank.
Proof Strategy

- Suppose $f_n = T_1 + T_2 + \ldots + T_s$, where each T_i is a product of low-degree polynomials.

- Find a geometric property GP of $V(T_i)$.

- Express the property GP in terms of rank of a big matrix M:
 1. if T has the property than rank($M(T)$) is small, and
 2. Linearity: $M(\alpha \cdot g + \beta \cdot h) = \alpha M(g) + \beta M(h)$,

- Show that rank($M(f_n)$) is large.
Proof Strategy

- Suppose $f_n = T_1 + T_2 + \ldots + T_s$, where each T_i is a product of low-degree polynomials.

- Find a geometric property GP of $V(T_i)$.

- Express the property GP in terms of rank of a big matrix M:
 1. If T has the property than rank($M(T)$) is small, and
 2. Linearity: $M(\alpha \cdot g + \beta \cdot h) = \alpha M(g) + \beta M(h)$,

- Show that rank($M(f_n)$) is large.
Finding a geometric property GP of T

T is a product of low degree polynomials

$V(T)$ is a union of low-degree hypersurfaces
Finding a geometric property GP of T

T is a product of low degree polynomials

$V(T)$ is a union of low-degree hypersurfaces

$V(T)$ has lots of high-order singularities

$V(\partial = \kappa T)$ has lots of points
Proof Strategy

- Suppose $f_n = T_1 + T_2 + \ldots + T_s$, where each T_i is a product of low-degree polynomials.

- Find a geometric property GP of $V(T_i)$.

- Express the property GP in terms of rank of a big matrix M:
 1. if T has the property than rank($M(T)$) is small, and
 2. Linearity: $M(\alpha \cdot g + \beta \cdot h) = \alpha M(g) + \beta M(h)$,

- Show that rank($M(f_n)$) is large.
Proof Strategy

- Suppose $f_n = T_1 + T_2 + \ldots + T_s$, where each T_i is a product of *low-degree* polynomials.

- Find a geometric property GP of $V(T_i)$.

- Express the property GP in terms of rank of a *big* matrix M:
 - (1) if T has the property than rank($M(T)$) is *small*, and
 - (2) *Linearity*: $M(\alpha \cdot g + \beta \cdot h) = \alpha M(g) + \beta M(h)$,

- Show that rank($M(f_n)$) is *large*.
Expressing largeness of a variety in terms of rank

\[V = V(f_1, f_2, \ldots, f_m) \text{ is a variety.} \]

Let \(\mathcal{G}_\ell \) = set of degree-\(\ell \) polynomials.
Expressing largeness of a variety in terms of rank

\[V = V(f_1, f_2, ..., f_m) \] is a variety.

Let \(G_\ell = \) set of degree-\(\ell \) polynomials. Let \(G_\ell(V) = \) set of degree-\(\ell \) polynomials which vanish at every point of \(V \).

Hilbert’s Theorem (Informal): If \(V \) is “large” then \(G_\ell(V) \) has small dimension.
Expressing largeness of a variety in terms of rank

\[V = V(f_1, f_2, \ldots, f_m) \] is a variety.

Let \(\mathcal{G}_\ell = \) set of degree-\(\ell \) polynomials. Let \(\mathcal{G}_\ell(V) = \) set of degree-\(\ell \) polynomials which vanish at every point of \(V \).

Hilbert’s Theorem (Informal): If \(V \) is “large” then \(\mathcal{G}_\ell(V) \) has small dimension.

Let \(\mathcal{I}_\ell(V) = \{ (a_1 \cdot f_1 + a_2 \cdot f_2 + \ldots + a_m \cdot f_m) \) of \(\deg \leq \ell \} \subseteq \mathcal{G}_\ell(V) \).

Hilbert’s Theorem (Formal): If \(V \) has dimension \(r \) then \(\mathcal{I}_\ell(V) \) has asymptotic dimension \(\binom{n + \ell}{n} - \Theta(\ell^r) \).
Proof Strategy

- Suppose \(f_n = T_1 + T_2 + \ldots + T_s \), where each \(T_i \) is a product of \textit{low-degree} polynomials.

- Find a geometric property \(GP \) of \(V(T_i) \).

- Express the property \(GP \) in terms of rank of a \textit{big} matrix \(M \):
 1. if \(T \) has the property than \(\text{rank}(M(T)) \) is \textit{small}, and
 2. Linearity: \(M(\alpha \cdot g + \beta \cdot h) = \alpha M(g) + \beta M(h) \),

- Show that \(\text{rank}(M(f_n)) \) is \textit{large}.
Summary

\[f_n = T_1 + T_2 + \ldots + T_s, \] where each \(T_i \) is a product of \(O(\sqrt{d}) \)-degree homogeneous polynomials

Theorem (K-Saha-Saptharishi 14): There exists an explicit \(\{f_n : n \geq 1\} \) with \(n = d^2 \) such that
\[s \geq n^{\Omega(\sqrt{d})}. \]

Theorem (FLMS14, KS15): For \(\text{IMM}_{n,d} \) with \(n = d^{10}, \)
\[s \geq n^{\Omega(\sqrt{d})}. \]
Conclusion/Open Questions

- Most lower bounds we have are instantiations of this strategy. Can we solve VP vs VNP using it?

- Any circuit of size s and degree d can be simulated by a homogeneous and regular Δ-depth circuit of size $s^{O(d^{2/\Delta})}$. **Is this optimal?**
Conclusion/Open Questions

- Most lower bounds we have are instantiations of this strategy. Can we solve VP vs VNP using it?

- Any circuit of size s and degree d can be simulated by a homogeneous and regular Δ-depth circuit of size $s^{O(d^{2/\Delta})}$. **Is this optimal?**

- Any circuit of size s and degree d can be simulated by a Δ-depth circuit of size $s^{O(d^{1/\Delta})}$.

Conclusion/Open Questions

- Most lower bounds we have are instantiations of this strategy. Can we solve VP vs VNP using it?

- Any circuit of size s and degree d can be simulated by a homogeneous and regular Δ-depth circuit of size $s^{O(d^{2/\Delta})}$. Is this optimal?

- Any circuit of size s and degree d can be simulated by a Δ-depth circuit of size $s^{O(d^{1/\Delta})}$. Is this optimal?
Conclusion/Open Questions

- Most lower bounds we have are instantiations of this strategy. Can we solve VP vs VNP using it?

- Any circuit of size s and degree d can be simulated by a Δ-depth circuit of size $s^{O(d^{1/\Delta})}$. Is this optimal?

- Exploit other Geometric Properties? number of irreducible components, presence of high-dimensional affine subspaces, ...