Sixty years of percolation

How do we prove the existence of a phase transition?

Hugo Duminil-Copin, IHES and Unige

Rio 2018
PERCOLATION PROCESSES
I. CRYSTALS AND MAZES

BY S. R. BROADBENT AND J. M. HAMMERSLEY

Received 15 August 1956

ABSTRACT. The paper studies, in a general way, how the random properties of a ‘medium’ influence the percolation of a ‘fluid’ through it. The treatment differs from conventional diffusion theory, in which it is the random properties of the fluid that matter. Fluid and medium bear general interpretations: for example, solute diffusing through solvent, electrons migrating over an atomic lattice, molecules penetrating a porous solid, disease infecting a community, etc.
PERCOLATION PROCESSES
I. CRYSTALS AND MAZES

BY S. R. BRODBENT AND J. M. HAMMERSLEY

Received 15 August 1956

ABSTRACT. The paper studies, in a general way, how the random properties of a ‘medium’ influence the percolation of a ‘fluid’ through it. The treatment differs from conventional diffusion theory, in which it is the random properties of the fluid that matter. Fluid and medium bear general interpretations: for example, solute diffusing through solvent, electrons migrating over an atomic lattice, molecules penetrating a porous solid, disease infecting a community, etc.

3. Random mazes. 3.1. Suppose that in an infinite set of atoms joined by bonds some (or all) of the bonds are dammed in a random manner. Fluid is supplied to a (finite, countable or uncountable) subset of atoms called source atoms, and then percolates the set in the following way. An atom of the set is said to be wet by the fluid either if it is a source atom or if there exists a walk to the atom from a source atom, the walk traversing undammed bonds only and in the permitted directions. All atoms not wet are said to be dry. We are interested in the properties of the wet atoms, and these naturally depend on the structure and connexions of the given set, on the manner in which bonds are dammed, and on the source atoms.
Mathematical definition

- Percolation is a model of random subgraph $\omega = (V_\omega, E_\omega)$ of a given (unoriented) graph $G = (V_G, E_G)$ with $V_\omega = V_G$ and $E_\omega \subset E_G$.
Mathematical definition

- Percolation is a model of random subgraph $\omega = (V_\omega, E_\omega)$ of a given (unoriented) graph $G = (V_G, E_G)$ with $V_\omega = V_G$ and $E_\omega \subset E_G$.
- Edges of E_G that are in E_ω are called open (in ω), those that are not are called closed.
Mathematical definition

- Percolation is a model of random subgraph $\omega = (V_\omega, E_\omega)$ of a given (unoriented) graph $G = (V_G, E_G)$ with $V_\omega = V_G$ and $E_\omega \subset E_G$.
- Edges of E_G that are in E_ω are called open (in ω), those that are not are called closed.

Definition (Bernoulli percolation)

Edges of G are independently

\[
\begin{cases}
\text{open with probability } p, \\
\text{closed with probability } 1 - p.
\end{cases}
\]
Mathematical definition

- Percolation is a model of random subgraph $\omega = (V_\omega, E_\omega)$ of a given (unoriented) graph $G = (V_G, E_G)$ with $V_\omega = V_G$ and $E_\omega \subset E_G$.

- Edges of E_G that are in E_ω are called open (in ω), those that are not are called closed.

Definition (Bernoulli percolation)

Edges of G are independently

\[
\begin{cases}
\text{open with probability } p, \\
\text{closed with probability } 1 - p.
\end{cases}
\]
Beyond Bernoulli percolation

There are many other percolation processes, usually exhibiting large distance dependencies.
Beyond Bernoulli percolation

There are many other percolation processes, usually exhibiting large distance dependencies.

- Fortuin-Kasteleyn percolation

\[P_p(\omega) \overset{\text{def}}{=} p \# \text{open edges} (1 - p) \# \text{closed edges} \]
Beyond Bernoulli percolation

There are many other percolation processes, usually exhibiting large distance dependencies.

- Fortuin-Kasteleyn percolation

\[\mathbb{P}_{G,p,q}(\omega) \overset{\text{def}}{=} p^\#\text{open edges} \left(1 - p\right)^\#\text{closed edges} q^\#\text{connected components}. \]
Beyond Bernoulli percolation

There are many other percolation processes, usually exhibiting large distance dependencies.

- Fortuin-Kasteleyn percolation

\[\mathbb{P}_{G,p,q}(\omega) \overset{\text{def}}{=} \frac{1}{Z_{G,p,q}} \cdot p^{\#\text{open edges}} (1 - p)^{\#\text{closed edges}} q^{\#\text{connected components}}. \]
Beyond Bernoulli percolation

There are many other percolation processes, usually exhibiting large distance dependencies.

- **Fortuin-Kasteleyn percolation**

 \[P_{G,p,q}(\omega) \overset{\text{def}}{=} \frac{1}{Z_{G,p,q}} \cdot p^{\# \text{open edges}} (1 - p)^{\# \text{closed edges}} q^{\# \text{connected components}}. \]

- **Continuum percolation models (Voronoi, Boolean)**

Beyond Bernoulli percolation

There are many other percolation processes, usually exhibiting large distance dependencies.

- **Fortuin-Kasteleyn percolation**
 \[P_{G,p,q}(\omega) \overset{\text{def}}{=} \frac{1}{Z_{G,p,q}} \cdot p^{\# \text{open edges}} (1 - p)^{\# \text{closed edges}} q^{\# \text{connected components}}. \]

- **Continuum percolation models (Voronoi, Boolean)**

- \(\{ x : \varphi_x \geq h \} \) for some (random) continuous function such as random homogeneous polynomials, random sums of eigenfunctions of the Laplacian, or the Gaussian Free Field:
 \[dP_{GFF}[\varphi] \propto \exp\left[-\frac{1}{2} \sum_{xy \in E_G} (\varphi_x - \varphi_y)^2 \right] d\varphi \]
(non)-existence of infinite connected components for $p \ll 1$ & $p \approx 1$
(non)-existence of infinite connected components for $p \ll 1 \& p \approx 1$

Define

$$\theta(p) \overset{\text{def}}{=} \mathbb{P}_p[0 \text{ belongs to an infinite connected component}]$$
(non)-existence of infinite connected components for $p \ll 1 \& p \approx 1$

Define

$$\theta(p) \overset{\text{def}}{=} \mathbb{P}_p[0 \text{ belongs to an infinite connected component}]$$

Proposition (Hammersley)

On \mathbb{Z}^d, if $p\mu(\mathbb{Z}^d) < 1$, then $\theta(p) = 0$, where $\mu(\mathbb{Z}^d)$ is the connective constant defined by $\mu(\mathbb{Z}^d) = \lim_{n \to \infty} (\# \text{ SAW of length } n)^{1/n}$.
(non)-existence of infinite connected components for $p \ll 1$ & $p \approx 1$

Define

$$\theta(p) \overset{\text{def}}{=} \mathbb{P}_p[0 \text{ belongs to an infinite connected component}]$$

Proposition (Hammersley)

On \mathbb{Z}^d, if $p \mu(\mathbb{Z}^d) < 1$, then $\theta(p) = 0$, where $\mu(\mathbb{Z}^d)$ is the connective constant defined by $\mu(\mathbb{Z}^d) = \lim_{n \to \infty} (\# \text{ SAW of length } n)^{1/n}$.

The fluid will be able to flow from one point to another if and only if there is a connexion without dams between them, and this will be so if and only if there is an undammed self-avoiding walk connecting them (i.e. a walk which visits no intermediate point more than once). It is, therefore, appropriate to study the self-avoiding walks.

💡 A path of length n is open with probability p^n. Then, use union bound.
(non)-existence of infinite connected components for $p \ll 1 \& p \approx 1$

Define

$$\theta(p) \overset{\text{def}}{=} \mathbb{P}_p[0 \text{ belongs to an infinite connected component}]$$

Proposition (Hammersley)

On \mathbb{Z}^d, if $p\mu(\mathbb{Z}^d) < 1$, then $\theta(p) = 0$, where $\mu(\mathbb{Z}^d)$ is the connective constant defined by

$$\mu(\mathbb{Z}^d) = \lim_{n \to \infty} \left(\# \text{ SAW of length } n \right)^{1/n}.$$

The fluid will be able to flow from one point to another if and only if there is a connexion without dams between them, and this will be so if and only if there is an undammed self-avoiding walk connecting them (i.e. a walk which visits no intermediate point more than once). It is, therefore, appropriate to study the self-avoiding walks

💡 A path of length n is open with probability p^n. Then, use union bound.

Proposition (Peierls)

On \mathbb{Z}^d with $d \geq 2$, if $(1 - p)\mu(\mathbb{Z}^2) < 1$, then $\theta(p) > 0$.

Hugo Duminil-Copin, IHES and Unige
Sixty years of percolation
How do we
(non)-existence of infinite connected components for $p \ll 1$ & $p \approx 1$

Define
\[
\theta(p) \overset{\text{def}}{=} \mathbb{P}_p[0 \text{ belongs to an infinite connected component}]
\]

Proposition (Hammersley)

On \mathbb{Z}^d, if $p\mu(\mathbb{Z}^d) < 1$, then $\theta(p) = 0$, where $\mu(\mathbb{Z}^d)$ is the connective constant defined by $\mu(\mathbb{Z}^d) = \lim_{n \to \infty} (\# \text{ SAW of length } n)^{1/n}$.

The fluid will be able to flow from one point to another if and only if there is a connexion without dams between them, and this will be so if and only if there is an undammed *self-avoiding* walk connecting them (i.e. a walk which visits no intermediate point more than once). It is, therefore, appropriate to study the self-avoiding walks

A path of length n is open with probability p^n. Then, use union bound.

Proposition (Peierls)

On \mathbb{Z}^d with $d \geq 2$, if $(1 - p)\mu(\mathbb{Z}^2) < 1$, then $\theta(p) > 0$.

It is sufficient to treat the $d = 2$ case. A minimal set of n blocking edges is closed with probability $(1 - p)^n$. Then, use union bound.
Proposition

For every $d \geq 2$, there exists $p_c(Z^d) \in (0, 1)$ such that

- $\theta(p) = 0$ if $p < p_c(Z^d)$,
- $\theta(p) > 0$ if $p > p_c(Z^d)$.

Fix $p \leq p'$. Need to construct a coupling, i.e. a probability space (Ω, F, P) on which

- ω is a Bernoulli percolation of parameter p,
- ω' is a Bernoulli percolation of parameter p',
- the probability of $\omega \subset \omega'$ is 1.

Consider a family of independent uniform $[0, 1]$ random variables (U_e) associated with the edges of Z^d. Set e open in ω if $U_e \leq p$ and e open in ω' if $U_e \leq p'$. Then $\theta(p) = P[0 \leftrightarrow \infty \text{ in } \omega] \leq P[0 \leftrightarrow \infty \text{ in } \omega'] = \theta(p')$.

Hugo Duminil-Copin, IHES and Unige

Sixty years of percolation

How do we...
Proposition

For every $d \geq 2$, there exists $p_c(\mathbb{Z}^d) \in (0, 1)$ such that

- $\theta(p) = 0$ if $p < p_c(\mathbb{Z}^d)$,
- $\theta(p) > 0$ if $p > p_c(\mathbb{Z}^d)$.
Phase transition and critical point

Proposition

For every $d \geq 2$, there exists $p_c(\mathbb{Z}^d) \in (0, 1)$ such that

- $\theta(p) = 0$ if $p < p_c(\mathbb{Z}^d)$,
- $\theta(p) > 0$ if $p > p_c(\mathbb{Z}^d)$.

Fix $p \leq p'$. Need to construct a coupling, i.e. a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ on which ω and ω' are defined in such a way that

- ω is a Bernoulli percolation of parameter p,
- ω' is a Bernoulli percolation of parameter p',
- the probability of $\omega \subset \omega'$ is 1.
Phase transition and critical point

Proposition

For every $d \geq 2$, there exists $p_c(\mathbb{Z}^d) \in (0, 1)$ such that

- $\theta(p) = 0$ if $p < p_c(\mathbb{Z}^d)$,
- $\theta(p) > 0$ if $p > p_c(\mathbb{Z}^d)$.

Fix $p \leq p'$. Need to construct a coupling, i.e. a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ on which ω and ω' are defined in such a way that

- ω is a Bernoulli percolation of parameter p,
- ω' is a Bernoulli percolation of parameter p',
- the probability of $\omega \subset \omega'$ is 1.

Consider a family of independent uniform $[0, 1]$ random variables (U_e) associated with the edges of \mathbb{Z}^d. Set

$[e \text{ open in } \omega \text{ if } U_e \leq p]$ \hspace{1cm} and \hspace{1cm} $[e \text{ open in } \omega' \text{ if } U_e \leq p']$
Phase transition and critical point

Proposition

For every $d \geq 2$, there exists $p_c(\mathbb{Z}^d) \in (0, 1)$ such that

- $\theta(p) = 0$ if $p < p_c(\mathbb{Z}^d)$,
- $\theta(p) > 0$ if $p > p_c(\mathbb{Z}^d)$.

Fix $p \leq p'$. Need to construct a coupling, i.e. a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ on which ω and ω' are defined in such a way that

- ω is a Bernoulli percolation of parameter p,
- ω' is a Bernoulli percolation of parameter p',
- the probability of $\omega \subset \omega'$ is 1.

Consider a family of independent uniform $[0, 1]$ random variables (U_e) associated with the edges of \mathbb{Z}^d. Set

$$[e \text{ open in } \omega \text{ if } U_e \leq p] \quad \text{and} \quad [e \text{ open in } \omega' \text{ if } U_e \leq p']$$

Then

$$\theta(p) = \mathbb{P}[0 \leftrightarrow \infty \text{ in } \omega] \leq \mathbb{P}[0 \leftrightarrow \infty \text{ in } \omega'] = \theta(p').$$
RSW theory (1978)

Consider Bernoulli percolation of parameter $p = \frac{1}{2}$. What is the probability of crossing from left to right a $n + 1$ by n box?
RSW theory (1978)

Consider Bernoulli percolation of parameter $p = \frac{1}{2}$. What is the probability of crossing from left to right a $n + 1$ by n box?

Theorem (Russo, Seymour-Welsh, 78)

Fix $p = \frac{1}{2}$. For every topological rectangle (R, a, b, c, d), there exists $\delta > 0$ such that for every $n \geq 1,
\delta \leq P_{p^n} \leq 1 - \delta
$.

Many applications! For instance, $\theta(\frac{1}{2}) = 0$ and therefore $p_c(Z_2) \geq \frac{1}{2}$.

The limit should exist and be equal to Cardy-Smirnov's formula (conformally invariant answer).

Hugo Duminil-Copin, IHES and Unige

Sixty years of percolation

How do we
Consider Bernoulli percolation of parameter $p = \frac{1}{2}$. What is the probability of crossing from left to right a $n+1$ by n box?

Theorem (Russo, Seymour-Welsh, 78)

Fix $p = \frac{1}{2}$. For every topological rectangle (R, a, b, c, d), there exists $\delta > 0$ such that for every $n \geq 1$,

$$\delta \leq \mathbb{P}_p[\overset{\scriptscriptstyle 1}{\overset{\scriptscriptstyle n}{\overbrace{\text{\scriptsize \begin{array}{c} \text{a} \\ \text{b} \end{array}}}} \overset{\scriptscriptstyle d}{\overset{\scriptscriptstyle c}{\overbrace{\text{\scriptsize \begin{array}{c} \text{a} \\ \text{b} \end{array}}}]} }] \leq 1 - \delta$$
Consider Bernoulli percolation of parameter $p = \frac{1}{2}$. What is the probability of crossing from left to right a $n + 1$ by n box?

Theorem (Russo, Seymour-Welsh, 78)

Fix $p = \frac{1}{2}$. For every topological rectangle (R, a, b, c, d), there exists $\delta > 0$ such that for every $n \geq 1$,

$$\delta \leq P_p[\overset{d}{\underset{c}{\overset{b}{\underset{a}{\bigotimes}}}}] \leq 1 - \delta$$

Many applications! For instance, $\theta(\frac{1}{2}) = 0$ and therefore $p_c(\mathbb{Z}^2) \geq \frac{1}{2}$.
RSW theory (1978)

Consider Bernoulli percolation of parameter $p = \frac{1}{2}$. What is the probability of crossing from left to right a $n + 1$ by n box?

Theorem (Russo, Seymour-Welsh, 78)

Fix $p = \frac{1}{2}$. For every topological rectangle (R, a, b, c, d), there exists $\delta > 0$ such that for every $n \geq 1$,

$$\delta \leq P_p[\text{path}] \leq 1 - \delta$$

Many applications! For instance, $\theta(\frac{1}{2}) = 0$ and therefore $p_c(\mathbb{Z}^2) \geq \frac{1}{2}$.

The limit should exist and be equal to Cardy-Smirnov’s formula (conformally invariant answer).
Kesten’s $p_c(\mathbb{Z}^2) = \frac{1}{2}$ theorem (1980)

Theorem (Kesten, 80)

The critical point of the square lattice is equal to $\frac{1}{2}$.
Kesten’s $p_c(\mathbb{Z}^2) = \frac{1}{2}$ theorem (1980)

Theorem (Kesten, 80)

The critical point of the square lattice is equal to $\frac{1}{2}$.

Use differential inequalities on thermodynamical quantities

$$\Pi'_n \geq C \log n \; \Pi_n (1 - \Pi_n),$$

where $\Pi_n(p) \overset{\text{def}}{=} \mathbb{P}_p[\text{rectangle crossed}]$
Theorem (Kesten, 80)

The critical point of the square lattice is equal to \(\frac{1}{2} \).

Use differential inequalities

\[
\theta_n' \geq \frac{cn}{\sum_{k<n} \theta_k} \theta_n (1 - \theta_n),
\]

where \(\theta_n(p) \overset{\text{def}}{=} \mathbb{P}_p[0 \text{ connected to distance } n] \)

Theorem (Menshikov 86, Aizenman-Barsky 87, DC-Tassion 17)

For any \(d \geq 2 \) and \(p < p_c(\mathbb{Z}^d) \), there exists \(c > 0 \) such that for every \(n \geq 1 \),

\[
\theta_n(p) \leq \exp(-cn).
\]
Proposition

For every $d \geq 2$, $\frac{1}{\mu(\mathbb{Z}^d)} \leq p_c(\mathbb{Z}^d) \leq \frac{1}{2}$.
Percolation on \mathbb{Z}^d with $d \geq 3$

Proposition

For every $d \geq 2$, $\frac{1}{\mu(\mathbb{Z}^d)} \leq p_c(\mathbb{Z}^d) \leq \frac{1}{2}$.

- Hara-Slade (\approx 1990) used the *lace-expansion* technique to derive the following expansion of the critical value:

$$p_c(\mathbb{Z}^d) = \frac{1}{2d} + \frac{1}{(2d)^2} + \frac{7}{2} \frac{1}{(2d)^3} + O\left(\frac{1}{(2d)^4}\right).$$
Proposition

For every $d \geq 2$, $\frac{1}{\mu(Z^d)} \leq p_c(Z^d) \leq \frac{1}{2}$.

- Hara-Slade (≈ 1990) used the lace-expansion technique to derive the following expansion of the critical value:

 $$p_c(Z^d) = \frac{1}{2d} + \frac{1}{(2d)^2} + \frac{7}{2} \frac{1}{(2d)^3} + O\left(\frac{1}{(2d)^4}\right).$$

- For every $d \geq 11$, known that $\theta(p_c) = 0$ (Fitzner-van der Hofstad, 2015).
Percolation on \mathbb{Z}^d with $d \geq 3$

Proposition

For every $d \geq 2$, $\frac{1}{\mu(\mathbb{Z}^d)} \leq p_c(\mathbb{Z}^d) \leq \frac{1}{2}$.

- Hara-Slade (≈ 1990) used the *lace-expansion* technique to derive the following expansion of the critical value:

 $$p_c(\mathbb{Z}^d) = \frac{1}{2d} + \frac{1}{(2d)^2} + \frac{7}{2} \frac{1}{(2d)^3} + O \left(\frac{1}{(2d)^4} \right).$$

- For every $d \geq 11$, known that $\theta(p_c) = 0$ (Fitzner-van der Hofstad, 2015).

Conjecture

For every $d \geq 2$, $\theta(p_c) = 0$.
Percolation on \mathbb{Z}^d with $d \geq 3$

Proposition

For every $d \geq 2$, \[\frac{1}{\mu(\mathbb{Z}^d)} \leq p_c(\mathbb{Z}^d) \leq \frac{1}{2}. \]

- Hara-Slade (≈ 1990) used the *lace-expansion* technique to derive the following expansion of the critical value:
 \[p_c(\mathbb{Z}^d) = \frac{1}{2d} + \frac{1}{(2d)^2} + \frac{7}{2} \frac{1}{(2d)^3} + O\left(\frac{1}{(2d)^4}\right). \]

- For every $d \geq 11$, known that $\theta(p_c) = 0$ (Fitzner-van der Hofstad, 2015).

Conjecture

For every $d \geq 2$, $\theta(p_c) = 0$.

Quite apart from the fact that percolation theory had its origin in an honest applied problem (see Hammersley and Welsh (1980)), it is a source of fascinating problems of the best kind a mathematician can wish for: problems which are easy to state with a minimum of preparation, but whose solutions are (apparently) difficult and require new methods.
Consider the Cayley graph G of a group G with a symmetric and finite set of generators S:

$$V_G = G$$

$$E_G = \{\{x, y\} \mid xy^{-1} \in S\}.$$

It is easy to justify the existence of a critical point $p_c(G) \geq 1/\mu(G) \geq 1/|S|$, but it is unclear whether $p_c(G) \neq 1$.

If G has linear growth, $p_c(G) = 1$.
Consider the Cayley graph G of a group G with a symmetric and finite set of generators S:

$$V_G = G \text{ and } E_G := \{x, y\} \text{ such that } xy^{-1} \in S.$$
Percolation beyond \(\mathbb{Z}^d \)

Consider the Cayley graph \(G \) of a group \(G \) with a symmetric and finite set of generators \(S \):

\[
V_G = G \quad \text{and} \quad E_G := \{\{x, y\} \mid xy^{-1} \in S\}.
\]

It is easy to justify the existence of a critical point \(p_c(G) \geq 1/\mu(G) \geq 1/|S| \), but it is unclear whether \(p_c(G) \neq 1 \).
Consider the Cayley graph G of a group G with a symmetric and finite set of generators S:

$$V_G = G \text{ and } E_G := \{\{x, y\} \text{ such that } xy^{-1} \in S\}.$$

It is easy to justify the existence of a critical point $p_c(G) \geq 1/\mu(G) \geq 1/|S|$, but it is unclear whether $p_c(G) \neq 1$.

Conjecture 1 If G is the Cayley graph of an infinite (finitely generated) group, which is not a finite extension of \mathbb{Z}, then $p_c(G) < 1$.
Consider the Cayley graph \(G \) of a group \(G \) with a symmetric and finite set of generators \(S \):

\[
V_G = G \quad \text{and} \quad E_G := \{\{x, y\} \mid xy^{-1} \in S\}.
\]

It is easy to justify the existence of a critical point \(p_c(G) \geq 1/\mu(G) \geq 1/|S| \), but it is unclear whether \(p_c(G) \neq 1 \).

Conjecture 1 If \(G \) is the Cayley graph of an infinite (finitely generated) group, which is not a finite extension of \(\mathbb{Z} \), then \(p_c(G) < 1 \).

If \(G \) has linear growth, \(p_c(G) = 1 \).
$p_c < 1$ and isoperimetry (1)

Theorem (DC, Goswami, Raoufi, Severo, Yadin 18)

Consider a graph G with bounded degree. Assume that there exist $d > 4$ and $c > 0$ such that

$$|\partial K| \geq c|K|^{1-\frac{1}{d}}$$

for all finite $K \subset V_G$. (Isop$_d$)

Then, there exists $p < 1$ such that for every finite set $S \subset V_G$,

$$\mathbb{P}_p[S \text{ is connected to } \infty] \geq 1 - \exp[-\frac{1}{2}\text{cap}(S)].$$

In particular, $p_c(G) < 1$.
$p_c < 1$ and isoperimetry (1)

Theorem (DC, Goswami, Raoufi, Severo, Yadin 18)

Consider a graph G with bounded degree. Assume that there exist $d > 4$ and $c > 0$ such that

$$|\partial K| \geq c|K|^{1-\frac{1}{d}}$$

for all finite $K \subset V_G$. (Isop$_d$)

Then, there exists $p < 1$ such that for every finite set $S \subset V_G$,

$$\mathbb{P}_p[S \text{ is connected to } \infty] \geq 1 - \exp[-\frac{1}{2}\text{cap}(S)].$$

In particular, $p_c(G) < 1$.

- Groups with polynomial growths are **virtually nilpotent** by Gromov's theorem. As a consequence, any Cayley graph G of such a group with super-linear growth contains a graph which is quasi-isometric to \mathbb{Z}^2, and $p_c(G) < 1$.
\[p_c < 1 \text{ and isoperimetry (1)} \]

Theorem (DC, Goswami, Raoufi, Severo, Yadin 18)

Consider a graph \(G \) with bounded degree. Assume that there exist \(d > 4 \) and \(c > 0 \) such that

\[
|\partial K| \geq c|K|^{1 - \frac{1}{d}} \quad \text{for all finite } K \subset V_G. \tag{Isop}_d
\]

Then, there exists \(p < 1 \) such that for every finite set \(S \subset V_G \),

\[
\mathbb{P}_p[S \text{ is connected to } \infty] \geq 1 - \exp\left[-\frac{1}{2} \text{cap}(S)\right].
\]

In particular, \(p_c(G) < 1 \).

- Groups with polynomial growths are virtually nilpotent by Gromov’s theorem. As a consequence, any Cayley graph \(G \) of such a group with super-linear growth contains a graph which is quasi-isometric to \(\mathbb{Z}^2 \), and \(p_c(G) < 1 \).
- Cayley graphs having \(\liminf n^{-d} |B_x(n)| > 0 \) for some \(d \) satisfy \((\text{Isop})_d\) (Coulhon-Saloff-Coste 1993).
Consider a graph G with bounded degree. Assume that there exist $d > 4$ and $c > 0$ such that
\[|\partial K| \geq c|K|^{1 - \frac{1}{d}} \] for all finite $K \subset V_G$. \textbf{(Isop$_d$)}

Then, there exists $p < 1$ such that for every finite set $S \subset V_G$,
\[\mathbb{P}_p[S \text{ is connected to } \infty] \geq 1 - \exp[-\frac{1}{2}\text{cap}(S)]. \]

In particular, $p_c(G) < 1$.

- Groups with polynomial growths are virtually nilpotent by Gromov's theorem. As a consequence, any Cayley graph G of such a group with super-linear growth contains a graph which is quasi-isometric to \mathbb{Z}^2, and $p_c(G) < 1$.
- Cayley graphs having $\lim \inf n^{-d}|B_x(n)| > 0$ for some d satisfy (Isop)$_d$ (Coulhon-Saloff-Coste 1993).

Corollary

$p_c(G) < 1$ for every Cayley graph with super-linear growth.
$p_c < 1$ and isoperimetry (2)

- Use the Gaussian Free Field $(\varphi_x)_{x \in V_G}$ to write:

$$G(x, y) \asymp \mathbb{E}_{\text{GFF}}[\mathbb{P}_p(x \leftrightarrow y)],$$

where $p_{xy} = p_{xy}(\varphi) \overset{\text{def}}{=} 1 - \exp[-(\varphi_x)_+ (\varphi_y)_+]$.

Integrate out the randomness coming from the GFF to prove that for some $p_c < 1$ large enough,

$$\mathbb{E}_{\text{GFF}}[\mathbb{P}_p(x \leftrightarrow y)] \leq \mathbb{P}_p[\mathbb{P}_p(x \leftrightarrow y)].$$

Since $G(x, y)$ does not decay too fast, this implies that $p \geq p_c(G)$.

Percolation can help understanding geometry of groups, e.g.

A measurable group theoretic solution to von Neumann's problem

Gaboriau-Lyons Conjecture (Benjamini Schramm, 96)

A Cayley graph is non-amenable, i.e. satisfies (Isop∞), iff $p_c < p_u$, where $p_u \overset{\text{def}}{=} \inf \{p \in [0, 1] : \mathbb{P}_p[\exists \text{unique infinite connected component}] = 1\}$.

Hugo Duminil-Copin, IHES and Unige
Sixty years of percolation
How do we
Rio 2018 12 / 13
$p_c < 1$ and isoperimetry (2)

- Use the Gaussian Free Field $(\varphi_x)_{x \in V_G}$ to write:
 \[G(x, y) \asymp E_{\text{GFF}}[P_p(x \leftrightarrow y)], \]
 where $p_{xy} = p_{xy}(\varphi) \overset{\text{def}}{=} 1 - \exp[-(\varphi_x)_+ (\varphi_y)_+]$.

- Integrate out the randomness coming from the GFF to prove that for some $p < 1$ large enough,
 \[E_{\text{GFF}}[P_p(x \leftrightarrow y)] \leq P_p(x \leftrightarrow y). \]
$p_c < 1$ and isoperimetry (2)

- Use the Gaussian Free Field $(\varphi_x)_{x \in V_G}$ to write:
 \[G(x, y) \asymp E_{GFF}[\mathbb{P}_p(x \leftrightarrow y)], \]
 where $p_{xy} = p_{xy}(\varphi) \overset{\text{def}}{=} 1 - \exp[-(\varphi_x)_+(\varphi_y)_+]$.

- **Integrate out** the randomness coming from the GFF to prove that for some $p < 1$ large enough,
 \[E_{GFF}[\mathbb{P}_p(x \leftrightarrow y)] \leq \mathbb{P}_p[x \leftrightarrow y]. \]

- Since $G(x, y)$ does not decay too fast, this implies that $p \geq p_c(G)$.

Percolation can help understanding geometry of groups, e.g.

- A measurable group theoretic solution to von Neumann's problem is Gaboriau-Lyons Conjecture (Benjamini Schramm, 96).

- A Cayley graph is non-amenable, i.e. satisfies (Isop ∞), iff $p_c < p_u$, where $p_u \overset{\text{def}}{=} \inf \{ p \in [0, 1] : \mathbb{P}_p[\exists \text{unique infinite connected component}] = 1 \}$.

Hugo Duminil-Copin, IHES and Unige
Sixty years of percolation How do we Rio 2018 12 / 13
$p_c < 1$ and isoperimetry (2)

- Use the Gaussian Free Field $(\varphi_x)_{x \in V_G}$ to write:
 $$G(x, y) \asymp E_{\text{GFF}}[\mathbb{P}_p(x \leftrightarrow y)],$$
 where $p_{xy} = p_{xy}(\varphi) \overset{\text{def}}{=} 1 - \exp[-(\varphi_x)_+ (\varphi_y)_+].$

- Integrate out the randomness coming from the GFF to prove that for some $p < 1$ large enough,
 $$E_{\text{GFF}}[\mathbb{P}_p(x \leftrightarrow y)] \leq \mathbb{P}_p[x \leftrightarrow y].$$

- Since $G(x, y)$ does not decay too fast, this implies that $p \geq p_c(G)$.

- Percolation can help understanding geometry of groups, e.g. [A measurable group theoretic solution to von Neumann’s problem Gaboriau-Lyons]
$p_c < 1$ and isoperimetry (2)

- Use the Gaussian Free Field $(\varphi_x)_{x \in V_G}$ to write:

 $$G(x, y) \asymp \mathbb{E}_{\text{GFF}}[\mathbb{P}_p(x \leftrightarrow y)],$$

 where $p_{xy} = p_{xy}(\varphi) \overset{\text{def}}{=} 1 - \exp[-(\varphi_x)_+ (\varphi_y)_+]$.

- Integrate out the randomness coming from the GFF to prove that for some $p < 1$ large enough,

 $$\mathbb{E}_{\text{GFF}}[\mathbb{P}_p(x \leftrightarrow y)] \leq \mathbb{P}_p[x \leftrightarrow y].$$

- Since $G(x, y)$ does not decay too fast, this implies that $p \geq p_c(G)$.

Percolation can help understanding geometry of groups, e.g. [A measurable group theoretic solution to von Neumann’s problem Gaboriau-Lyons]

Conjecture (Benjamini Schramm, 96)

A Cayley graph is non-amenable, i.e. satisfies (Isop_∞), iff $p_c < p_u$, where

$$p_u \overset{\text{def}}{=} \inf\{p \in [0, 1] : \mathbb{P}_p[\exists \text{ unique infinite connected component}] = 1\}.$$
Thank you