Liouville quantum gravity
as a *metric space and a scaling limit*

Jason Miller
Cambridge

joint with
Scott Sheffield (MIT)

August 2, 2018
Overview

How does one make sense of the uniform measure on surfaces homeomorphic to the sphere?

- **Approach 1:** Random planar maps
 - Rooted in the combinatorics literature from the 1960s
- **Approach 2:** Liouville quantum gravity (LQG)
 - Rooted in the physics literature from the 1980s
- Relationship

Schramm-Loewner evolution, percolation, Eden growth model, diffusion limited aggregation
Random planar maps

- A **planar map** is a finite graph together with an embedding in the plane so that no edges cross.
Random planar maps

- A **planar map** is a finite graph together with an embedding in the plane so that no edges cross.
- Its **faces** are the connected components of the complement of its edges.
Random planar maps

- A planar map is a finite graph together with an embedding in the plane so that no edges cross.
- Its faces are the connected components of the complement of its edges.
- A map is a quadrangulation if each face has 4 adjacent edges.
Random planar maps

- A **planar map** is a finite graph together with an embedding in the plane so that no edges cross.
- Its **faces** are the connected components of the complement of its edges.
- A map is a **quadrangulation** if each face has 4 adjacent edges.
- A quadrangulation corresponds to a **metric space** when equipped with the graph distance.
Random planar maps

- A **planar map** is a finite graph together with an embedding in the plane so that no edges cross.
- Its **faces** are the connected components of the complement of its edges.
- A map is a **quadrangulation** if each face has 4 adjacent edges.
- A quadrangulation corresponds to a **metric space** when equipped with the graph distance.
- Interested in **uniformly random quadrangulations** with n faces — **random planar map** (RPM).

First studied by Tutte in 1960s while working on the four color theorem.

Combinatorics: enumeration formulas

Physics: statistical physics models: percolation, Ising, UST...

Probability: “uniformly random surface,” Brownian surface
Random planar maps

- A **planar map** is a finite graph together with an embedding in the plane so that no edges cross.
- Its **faces** are the connected components of the complement of its edges
- A map is a **quadrangulation** if each face has 4 adjacent edges
- A quadrangulation corresponds to a **metric space** when equipped with the graph distance
- Interested in **uniformly random quadrangulations** with \(n \) faces — **random planar map** (RPM).
- First studied by Tutte in 1960s while working on the four color theorem
- **Combinatorics**: enumeration formulas
- **Physics**: statistical physics models: percolation, Ising, UST ...
- **Probability**: “uniformly random surface,” Brownian surface
What is the structure of a typical quadrangulation when the number of faces is large? How many are there? Tutte:

$$2 \times 3^n (n+1)(n+2)$$
What is the structure of a typical quadrangulation when the number of faces is large?
What is the structure of a typical quadrangulation when the number of faces is large? How many are there? **Tutte:**

\[
\frac{2 \times 3^n}{(n+1)(n+2)} \binom{2n}{n}.
\]
Random quadrangulation with 25,000 faces

(Simulation due to J.F. Marckert)
Structure of large random planar maps

- Diameter is $\sim n^{1/4}$ (Chaissang-Schaefer)

(Simulation due to J.F. Marckert)
Structure of large random planar maps

- Diameter is $\approx n^{1/4}$ (Chaissang-Schaefer)
- Non-trivial subsequentially limiting metric spaces upon scaling distances by $n^{-1/4}$ (Le Gall)

(Simulation due to J.F. Marckert)
Structure of large random planar maps

- Diameter is $\asymp n^{1/4}$ (Chaissang-Schaefer)
- Non-trivial subsequentially limiting metric spaces upon scaling distances by $n^{-1/4}$ (Le Gall)
- Subsequentially limiting space is a.s.:
 - 4-dimensional (Le Gall)
 - homeomorphic to the 2-sphere (Le Gall and Paulin, Miermont)

(Simulation due to J.F. Marckert)
Structure of large random planar maps

- Diameter is $\approx n^{1/4}$ (Chaissang-Schaefer)
- Non-trivial subsequentially limiting metric spaces upon scaling distances by $n^{-1/4}$ (Le Gall)
- Subsequentially limiting space is a.s.:
 - 4-dimensional (Le Gall)
 - homeomorphic to the 2-sphere (Le Gall and Paulin, Miermont)
- There exists a unique limit in distribution: **the Brownian map** (Le Gall, Miermont)
Diameter is $\sim n^{1/4}$ (Chaissang-Schaefer)

Non-trivial subsequentially limiting metric spaces upon scaling distances by $n^{-1/4}$ (Le Gall)

Subsequentially limiting space is a.s.:
- 4-dimensional (Le Gall)
- homeomorphic to the 2-sphere (Le Gall and Paulin, Miermont)

There exists a unique limit in distribution: **the Brownian map** (Le Gall, Miermont)

The Brownian map (TBM) comes equipped with an area measure which is the limit of the rescaled measure on RPM which assigns unit mass for each face.
Picking a surface at random in the continuum

Uniformization theorem: every Riemannian surface homeomorphic to the unit disk D can be conformally mapped to the disk.

Isothermal coordinates: the metric for the surface takes the form $e^\rho(z)(dx^2 + dy^2)$ for some smooth function ρ where $dx^2 + dy^2$ is the Euclidean metric.

\Rightarrow Can parameterize the surfaces homeomorphic to D with smooth functions on D.

$\overset{\psi}{\rightarrow}$ If $\rho = 0$, get D.

$\overset{\Delta \rho = 0}{\Rightarrow}$ If $\Delta \rho = 0$, i.e. if ρ is harmonic, the surface described is flat.

Question: Which measure on ρ? If we want our surface to be a perturbation of a flat metric, natural to choose ρ as the canonical perturbation of a harmonic function.
Picking a surface at random in the continuum

Uniformization theorem: every Riemannian surface homeomorphic to the unit disk D can be conformally mapped to the disk.

![Diagram of a conformal mapping from a surface to a disk]

Isothermal coordinates: Metric for the surface takes the form $e^{\rho(z)}(dx^2 + dy^2)$ for some smooth function ρ where $dx^2 + dy^2$ is the Euclidean metric.
Picking a surface at random in the continuum

Uniformization theorem: every Riemannian surface homeomorphic to the unit disk D can be conformally mapped to the disk.

\[\psi(A) \]

Isothermal coordinates: Metric for the surface takes the form $e^{\rho(z)}(dx^2 + dy^2)$ for some smooth function ρ where $dx^2 + dy^2$ is the Euclidean metric.

⇒ Can parameterize the surfaces homeomorphic to D with smooth functions on D.

- If $\rho = 0$, get D
- If $\Delta \rho = 0$, i.e. if ρ is harmonic, the surface described is flat
Picking a surface at random in the continuum

Uniformization theorem: every Riemannian surface homeomorphic to the unit disk D can be conformally mapped to the disk.

\[\psi(A) \]

\[\psi \]

Isothermal coordinates: Metric for the surface takes the form $e^{\rho(z)}(dx^2 + dy^2)$ for some smooth function ρ where $dx^2 + dy^2$ is the Euclidean metric.

⇒ Can parameterize the surfaces homeomorphic to D with smooth functions on D.

- If $\rho = 0$, get D
- If $\Delta \rho = 0$, i.e. if ρ is harmonic, the surface described is flat

Question: Which measure on ρ? If we want our surface to be a perturbation of a flat metric, natural to choose ρ as the canonical perturbation of a harmonic function.
Liouville quantum gravity

- The Gaussian free field (GFF) h on a planar domain D is the Gaussian field with $\text{cov}(h(x), h(y)) = G(x, y)$ where G is the Green’s function for Δ on D.

$\gamma = 0.5$

(Number of subdivisions)
Liouville quantum gravity

- The Gaussian free field (GFF) h on a planar domain D is the Gaussian field with $\text{cov}(h(x), h(y)) = G(x, y)$ where G is the Green’s function for Δ on D
- Conformally invariant and Markovian

\[\gamma = 0.5 \]

(Number of subdivisions)
The Gaussian free field (GFF) h on a planar domain D is the Gaussian field with $\text{cov}(h(x), h(y)) = G(x, y)$ where G is the Green’s function for Δ on D.

- Conformally invariant and Markovian
- Liouville quantum gravity (LQG): $e^{\gamma h(z)} (dx^2 + dy^2)$ where h is a GFF

$\gamma = 0.5$
Liouville quantum gravity

- The Gaussian free field (GFF) h on a planar domain D is the Gaussian field with $\text{cov}(h(x), h(y)) = G(x, y)$ where G is the Green’s function for Δ on D.
- Conformally invariant and Markovian.
- Liouville quantum gravity (LQG): $e^{\gamma h(z)}(dx^2 + dy^2)$ where h is a GFF.
- Introduced by Polyakov in the 1980s.

$\gamma = 0.5$
Liouville quantum gravity

- The Gaussian free field (GFF) h on a planar domain D is the Gaussian field with \(\text{cov}(h(x), h(y)) = G(x, y) \) where G is the Green’s function for Δ on D
- Conformally invariant and Markovian
- Liouville quantum gravity (LQG): $e^{\gamma h(z)} (dx^2 + dy^2)$ where h is a GFF
- Introduced by Polyakov in the 1980s
- Ill-defined as h takes values in the space of distributions

\(\gamma = 0.5 \)

(Number of subdivisions)
Liouville quantum gravity

- The Gaussian free field (GFF) h on a planar domain D is the Gaussian field with $\text{cov}(h(x), h(y)) = G(x, y)$ where G is the Green’s function for Δ on D
- Conformally invariant and Markovian
- Liouville quantum gravity (LQG): $e^{\gamma h(z)}(dx^2 + dy^2)$ where h is a GFF
- Introduced by Polyakov in the 1980s
- Ill-defined as h takes values in the space of distributions
- Previously, area measure constructed using a regularization procedure
 - Can compute areas of regions and lengths of curves
 - *Does not* come with an obvious notion of “distance”

Duplantier-Sheffield, Kahane, Rhodes-Vargas.

$\gamma = 0.5$
Liouville quantum gravity

- The Gaussian free field (GFF) h on a planar domain D is the Gaussian field with $\text{cov}(h(x), h(y)) = G(x, y)$ where G is the Green’s function for Δ on D
- Conformally invariant and Markovian
- Liouville quantum gravity (LQG): $e^{\gamma h(z)}(dx^2 + dy^2)$ where h is a GFF
- Introduced by Polyakov in the 1980s
- Ill-defined as h takes values in the space of distributions
- Previously, area measure constructed using a regularization procedure
 - Can compute areas of regions and lengths of curves
 - *Does not* come with an obvious notion of “distance”

Duplantier-Sheffield, Kahane, Rhodes-Vargas.
Liouville quantum gravity

- The Gaussian free field (GFF) h on a planar domain D is the Gaussian field with $\text{cov}(h(x), h(y)) = G(x, y)$ where G is the Green’s function for Δ on D.
- Conformally invariant and Markovian.
- Liouville quantum gravity (LQG): $e^{\gamma h(z)}(dx^2 + dy^2)$ where h is a GFF.
- Introduced by Polyakov in the 1980s.
- Ill-defined as h takes values in the space of distributions.
- Previously, area measure constructed using a regularization procedure.
 - Can compute areas of regions and lengths of curves.
 - *Does not* come with an obvious notion of “distance.”

Duplantier-Sheffield, Kahane, Rhodes-Vargas.
Liouville quantum gravity

- The Gaussian free field (GFF) h on a planar domain D is the Gaussian field with $\text{cov}(h(x), h(y)) = G(x, y)$ where G is the Green’s function for Δ on D
- Conformally invariant and Markovian
- Liouville quantum gravity (LQG): $e^{\gamma h(z)} (dx^2 + dy^2)$ where h is a GFF
- Introduced by Polyakov in the 1980s
- Ill-defined as h takes values in the space of distributions
- Previously, area measure constructed using a regularization procedure
 - Can compute areas of regions and lengths of curves
 - Does not come with an obvious notion of “distance”

Duplantier-Sheffield, Kahane, Rhodes-Vargas.
LQG and TBM

Two “canonical” (but very different) constructions of random surfaces: Liouville quantum gravity (LQG) and the Brownian map (TBM)
LQG and TBM

- Two “canonical” (but very different) constructions of random surfaces: Liouville quantum gravity (LQG) and the Brownian map (TBM)
- For $\gamma \in [0, 2)$, Liouville quantum gravity (LQG) is the “random surface” with “Riemannian metric” $e^{\gamma h(z)}(dx^2 + dy^2)$ where h is a GFF
LQG and TBM

- Two “canonical” (but very different) constructions of random surfaces: Liouville quantum gravity (LQG) and the Brownian map (TBM)
- For $\gamma \in [0, 2)$, Liouville quantum gravity (LQG) is the “random surface” with “Riemannian metric” $e^{\gamma h(z)}(dx^2 + dy^2)$ where h is a GFF
- Previously, only made sense of as an area measure using a regularization procedure:

$$\mu_h^\gamma = \lim_{\epsilon \to 0} \epsilon^{\gamma^2/2} e^{\gamma h_\epsilon(z)} dxdy.$$
LQG and TBM

- Two “canonical” (but very different) constructions of random surfaces: Liouville quantum gravity (LQG) and the Brownian map (TBM)
- For $\gamma \in [0, 2)$, Liouville quantum gravity (LQG) is the “random surface” with “Riemannian metric” $e^{\gamma h(z)} \left(dx^2 + dy^2\right)$ where h is a GFF
- Previously, only made sense of as an area measure using a regularization procedure: $\mu_h^\gamma = \lim_{\epsilon \to 0} \epsilon^{\gamma^2/2} e^{\gamma h_\epsilon(z)} dx dy$.
- LQG has a conformal structure (compute angles, etc…) and an area measure
LQG and TBM

- Two “canonical” (but very different) constructions of random surfaces: Liouville quantum gravity (LQG) and the Brownian map (TBM)
- For $\gamma \in [0, 2)$, Liouville quantum gravity (LQG) is the “random surface” with “Riemannian metric” $e^{\gamma h(z)}(dx^2 + dy^2)$ where h is a GFF
- Previously, only made sense of as an area measure using a regularization procedure:

$$\mu_{h}^{\gamma} = \lim_{\epsilon \to 0} \epsilon^{\gamma^2 / 2} e^{\gamma h_{\epsilon}(z)} dxdy.$$

- LQG has a conformal structure (compute angles, etc...) and an area measure
- In contrast, TBM has a metric structure and an area measure
Two “canonical” (but very different) constructions of random surfaces: Liouville quantum gravity (LQG) and the Brownian map (TBM)

For $\gamma \in [0, 2)$, Liouville quantum gravity (LQG) is the “random surface” with “Riemannian metric” $e^{\gamma h(z)}(dx^2 + dy^2)$ where h is a GFF

Previously, only made sense of as an area measure using a regularization procedure:

$$\mu_{\gamma} = \lim_{\epsilon \to 0} \epsilon^{\gamma^2/2} e^{\gamma h_{\epsilon}(z)} dx dy.$$

LQG has a conformal structure (compute angles, etc...) and an area measure

In contrast, TBM has a metric structure and an area measure

This talk is about endowing each of these objects with the other’s structure and showing they are equivalent.
Canonical embedding of TBM into S^2

- TBM is an abstract metric measure space homeomorphic to S^2, but it does not obviously come with a canonical embedding into S^2.
Canonical embedding of TBM into S^2

- TBM is an abstract metric measure space homeomorphic to S^2, but it does not obviously come with a canonical embedding into S^2
- It is believed that there should be a “natural embedding” of TBM into S^2 and that the embedded surface is described by a form of Liouville quantum gravity (LQG) with $\gamma = \sqrt{8/3}$
Canonical embedding of TBM into S^2

- TBM is an abstract metric measure space homeomorphic to S^2, but it does not obviously come with a canonical embedding into S^2.
- It is believed that there should be a “natural embedding” of TBM into S^2 and that the embedded surface is described by a form of Liouville quantum gravity (LQG) with $\gamma = \sqrt{8/3}$.

Discrete approach: take a uniformly random planar map and embed it conformally into S^2 (circle packing, uniformization, etc...), then in the $n \to \infty$ limit it converges to a form of $\sqrt{8/3}$-LQG.
Canonical embedding of TBM into S^2

- TBM is an abstract metric measure space homeomorphic to S^2, but it does not obviously come with a canonical embedding into S^2.

- It is believed that there should be a “natural embedding” of TBM into S^2 and that the embedded surface is described by a form of Liouville quantum gravity (LQG) with $\gamma = \sqrt{8/3}$.

Discrete approach: take a uniformly random planar map and embed it conformally into S^2 (circle packing, uniformization, etc...), then in the $n \to \infty$ limit it converges to a form of $\sqrt{8/3}$-LQG. *Not the approach we will describe today ...*
Main result

- Liouville quantum gravity (LQG): $e^{\gamma h(z)}(dx^2 + dy^2)$, h a GFF
- The Brownian map (TBM): Gromov-Hausdorff scaling limit of uniformly random quadrangulations

Theorem (M., Sheffield)

TBM and $\sqrt{8/3}$-LQG are equivalent. More precisely, there is a way to endow $\sqrt{8/3}$-LQG with a metric so that it is isometric to TBM.
Main result

- Liouville quantum gravity (LQG): $e^{\gamma h(z)}(dx^2 + dy^2)$, h a GFF
- The Brownian map (TBM): Gromov-Hausdorff scaling limit of uniformly random quadrangulations

Theorem (M., Sheffield)

TBM and $\sqrt{8/3}$-LQG are equivalent. More precisely, there is a way to endow $\sqrt{8/3}$-LQG with a metric so that it is isometric to TBM.

Comments
Main result

- Liouville quantum gravity (LQG): $e^{\gamma h(z)}(dx^2 + dy^2)$, h a GFF
- The Brownian map (TBM): Gromov-Hausdorff scaling limit of uniformly random quadrangulations

Theorem (M., Sheffield)

TBM and $\sqrt{8/3}$-LQG are equivalent. More precisely, there is a way to endow $\sqrt{8/3}$-LQG with a metric so that it is isometric to TBM.

Comments

1. Construction is purely in the continuum
Main result

- Liouville quantum gravity (LQG): $e^{-h(z)}(dx^2 + dy^2)$, h a GFF
- The Brownian map (TBM): Gromov-Hausdorff scaling limit of uniformly random quadrangulations

Theorem (M., Sheffield)

TBM and $\sqrt{8/3}$-LQG are equivalent. More precisely, there is a way to endow $\sqrt{8/3}$-LQG with a metric so that it is isometric to TBM.

Comments

1. Construction is purely in the continuum
2. Ideas are connected to aggregation models, such as the Eden model and diffusion limited aggregation
Schramm-Loewner evolution (SLE)

- Random fractal curve in a planar domain

![Critical percolation, hexagonal lattice]

Each hexagon is colored red or black with prob. $\frac{1}{2}$
Schramm-Loewner evolution (SLE)

- Random fractal curve in a planar domain
- Introduced by Schramm in ’99 to describe limits of interfaces in discrete models

- Characterized by conformal invariance and domain Markov property
- Indexed by a parameter $\kappa > 0$
- Simple for $\kappa \in (0, 4]$, self-intersecting for $\kappa \in (4, 8)$, space-filling for $\kappa \geq 8$

- Dimension: $1 + \frac{\kappa}{8}$ for $\kappa \leq 8$

Some special κ values:
- $\kappa = 2$: LERW
- $\kappa = 8/3$: Self-avoiding walk
- $\kappa = 3$: Ising
- $\kappa = 16/3$: FK-Ising
- $\kappa = 4$: GFF level lines
- $\kappa = 8$: Percolation
- $\kappa = 12$: Bipolar orientations

Critical percolation, hexagonal lattice
Each hexagon is colored red or black with prob. $\frac{1}{2}$
Schramm-Loewner evolution (SLE)

- Random fractal curve in a planar domain
- Introduced by Schramm in ’99 to describe limits of interfaces in discrete models

Critical percolation, hexagonal lattice
Each hexagon is colored red or black with prob. $\frac{1}{2}$
Schramm-Loewner evolution (SLE)

- Random fractal curve in a planar domain
- Introduced by Schramm in ’99 to describe limits of interfaces in discrete models

Characterized by conformal invariance and domain Markov property

Indexed by a parameter $\kappa > 0$

Simple for $\kappa \in (0, 4]$, self-intersecting for $\kappa \in (4, 8)$, space-filling for $\kappa \geq 8$

Dimension: $1 + \kappa/8$ for $\kappa \leq 8$

Some special κ values:

- $\kappa = 2$: LERW
- $\kappa = 8$: UST
- $\kappa = 8/3$: Self-avoiding walk
- $\kappa = 3$: Ising
- $\kappa = 16/3$: FK-Ising
- $\kappa = 4$: GFF level lines
- $\kappa = 6$: Percolation
- $\kappa = 12$: Bipolar orientations

Critical percolation, hexagonal lattice
Each hexagon is colored red or black with prob. $\frac{1}{2}$
Schramm-Loewner evolution (SLE)

- Random fractal curve in a planar domain
- Introduced by Schramm in ’99 to describe limits of interfaces in discrete models
- Characterized by conformal invariance and domain Markov property

Critical percolation, hexagonal lattice
Each hexagon is colored red or black with prob. $\frac{1}{2}$
Schramm-Loewner evolution (SLE)

- Random fractal curve in a planar domain
- Introduced by Schramm in ’99 to describe limits of interfaces in discrete models
- Characterized by conformal invariance and domain Markov property
- Indexed by a parameter $\kappa > 0$

Critical percolation, hexagonal lattice
Each hexagon is colored red or black with prob. $\frac{1}{2}$
Schramm-Loewner evolution (SLE)

- Random fractal curve in a planar domain
- Introduced by Schramm in ’99 to describe limits of interfaces in discrete models
- Characterized by conformal invariance and domain Markov property
- Indexed by a parameter $\kappa > 0$
- Simple for $\kappa \in (0, 4]$, self-intersecting for $\kappa \in (4, 8)$, space-filling for $\kappa \geq 8$

Critical percolation, hexagonal lattice
Each hexagon is colored red or black with prob. $\frac{1}{2}$
Schramm-Loewner evolution (SLE)

- Random fractal curve in a planar domain
- Introduced by Schramm in ’99 to describe limits of interfaces in discrete models
- Characterized by conformal invariance and domain Markov property
- Indexed by a parameter $\kappa > 0$
- Simple for $\kappa \in (0, 4]$, self-intersecting for $\kappa \in (4, 8)$, space-filling for $\kappa \geq 8$
- Dimension: $1 + \kappa/8$ for $\kappa \leq 8$

Critical percolation, hexagonal lattice
Each hexagon is colored red or black with prob. $\frac{1}{2}$
Schramm-Loewner evolution (SLE)

- Random fractal curve in a planar domain
- Introduced by Schramm in ’99 to describe limits of interfaces in discrete models
- Characterized by conformal invariance and domain Markov property
- Indexed by a parameter $\kappa > 0$
- Simple for $\kappa \in (0, 4]$, self-intersecting for $\kappa \in (4, 8)$, space-filling for $\kappa \geq 8$
- Dimension: $1 + \kappa/8$ for $\kappa \leq 8$
- Some special κ values:
 - $\kappa = 2$ LERW, $\kappa = 8$ UST
 - $\kappa = 8/3$ Self-avoiding walk
 - $\kappa = 3$ Ising, $\kappa = 16/3$ FK-Ising
 - $\kappa = 4$ GFF level lines
 - $\kappa = 6$ Percolation
 - $\kappa = 12$ Bipolar orientations
 - ...
 (Lawler-Schramm-Werner, Smirnov, Schramm-Sheffield, ...)

Critical percolation, hexagonal lattice
Each hexagon is colored red or black with prob. $\frac{1}{2}$
Loewner's equation: if η is a non self-crossing path in \mathbb{H} with $\eta(0) \in \mathbb{R}$ and g_t is the Riemann map from the unbounded component of $\mathbb{H} \setminus \eta([0, t])$ to \mathbb{H} normalized by $g_t(z) = z + o(1)$ as $z \to \infty$, then

$$\partial_t g_t(z) = \frac{2}{g_t(z) - W_t} \text{ where } g_0(z) = z \text{ and } W_t = g_t(\eta(t)).$$

(\star)
Loewner's equation: if \(\eta \) is a non self-crossing path in \(\mathbb{H} \) with \(\eta(0) \in \mathbb{R} \) and \(g_t \) is the Riemann map from the unbounded component of \(\mathbb{H} \setminus \eta([0, t]) \) to \(\mathbb{H} \) normalized by \(g_t(z) = z + o(1) \) as \(z \to \infty \), then

\[
\partial_t g_t(z) = \frac{2}{g_t(z) - W_t}
\]

where \(g_0(z) = z \) and \(W_t = g_t(\eta(t)) \).

\(SLE_{\kappa} \) in \(\mathbb{H} \): The random curve associated with (\(\star \)) with \(W_t = \sqrt{\kappa} B_t \), \(B \) a standard Brownian motion.
SLE}_κ

Loewner's equation: if η is a non self-crossing path in \mathbb{H} with $\eta(0) \in \mathbb{R}$ and g_t is the Riemann map from the unbounded component of $\mathbb{H} \setminus \eta([0, t])$ to \mathbb{H} normalized by $g_t(z) = z + o(1)$ as $z \to \infty$, then

$$\partial_t g_t(z) = \frac{2}{g_t(z) - W_t}$$

where $g_0(z) = z$ and $W_t = g_t(\eta(t))$. (\star)

SLE}_κ in \mathbb{H}: The random curve associated with (\star) with $W_t = \sqrt{\kappa}B_t$, B a standard Brownian motion. Other domains: apply conformal mapping.
Detour: Eden growth model (1961)

- Growth on a graph where at each time step, add a vertex uniformly at random from those adjacent to the cluster at the previous step.

- Question: Large scale behavior of the growth?

- Cox and Durrett (1981) showed that the macroscopic shape is convex.

- Computer simulations show that it is not a Euclidean disk.

- \mathbb{Z}_2 has preferential directions.

- But a random planar map does not...
Detour: Eden growth model (1961)

- Growth on a graph where at each time step, add a vertex uniformly at random from those adjacent to the cluster at the previous step.

Question: Large scale behavior of the growth?

Cox and Durrett (1981) showed that the macroscopic shape is convex.

Computer simulations show that it is not a Euclidean disk.

\mathbb{Z}^2 has preferential directions.

But a random planar map does not...
Detour: Eden growth model (1961)

- Growth on a graph where at each time step, add a vertex uniformly at random from those adjacent to the cluster at the previous step.

Cox and Durrett (1981) showed that the macroscopic shape is convex.

Computer simulations show that it is not a Euclidean disk.

\mathbb{Z}^2 has preferential directions.

But a random planar map does not...
Detour: Eden growth model (1961)

- Growth on a graph where at each time step, add a vertex uniformly at random from those adjacent to the cluster at the previous step.

- Cox and Durrett (1981) showed that the macroscopic shape is convex.
- Computer simulations show that it is not a Euclidean disk.
- \mathbb{Z}^2 has preferential directions.
- But a random planar map does not...
Detour: Eden growth model (1961)

- Growth on a graph where at each time step, add a vertex uniformly at random from those adjacent to the cluster at the previous step.

Question: Large scale behavior of the growth?

- Cox and Durrett (1981) showed that the macroscopic shape is convex
- Computer simulations show that it is not a Euclidean disk
- \(\mathbb{Z}^2 \) has preferential directions
- But a random planar map does not...
Detour: Eden growth model (1961)

- Growth on a graph where at each time step, add a vertex uniformly at random from those adjacent to the cluster at the previous step.
Detour: Eden growth model (1961)

- Growth on a graph where at each time step, add a vertex uniformly at random from those adjacent to the cluster at the previous step.

Question: Large scale behavior of the growth?

Cox and Durrett (1981) showed that the macroscopic shape is convex.

Computer simulations show that it is not a Euclidean disk.

\mathbb{Z}^2 has preferential directions.

But a random planar map does not...
Detour: Eden growth model (1961)

- Growth on a graph where at each time step, add a vertex uniformly at random from those adjacent to the cluster at the previous step.

Cox and Durrett (1981) showed that the macroscopic shape is convex.

Computer simulations show that it is not a Euclidean disk.

\mathbb{Z}^2 has preferential directions.

But a random planar map does not...
Detour: Eden growth model (1961)

Growth on a graph where at each time step, add a vertex uniformly at random from those adjacent to the cluster at the previous step.

Question: Large scale behavior of the growth?

Cox and Durrett (1981) showed that the macroscopic shape is convex.

Computer simulations show that it is not a Euclidean disk.

\mathbb{Z}^2 has preferential directions.

But a random planar map does not...
Detour: Eden growth model (1961)

- Growth on a graph where at each time step, add a vertex uniformly at random from those adjacent to the cluster at the previous step.

Cox and Durrett (1981) showed that the macroscopic shape is convex.

Computer simulations show that it is not a Euclidean disk.

\mathbb{Z}^2 has preferential directions.

But a random planar map does not...
Detour: Eden growth model (1961)

- Growth on a graph where at each time step, add a vertex uniformly at random from those adjacent to the cluster at the previous step.

- Question: Large scale behavior of the growth?
 - Cox and Durrett (1981) showed that the macroscopic shape is convex.
 - Computer simulations show that it is not a Euclidean disk.
 - \mathbb{Z}^2 has preferential directions.
 - But a random planar map does not ...

Jason Miller (Cambridge)
LQG as a metric space and a scaling limit
August 2, 2018
Detour: Eden growth model (1961)

- Growth on a graph where at each time step, add a vertex uniformly at random from those adjacent to the cluster at the previous step.

Question: Large scale behavior of the growth?

Cox and Durrett (1981) showed that the macroscopic shape is convex

Computer simulations show that it is not a Euclidean disk

\mathbb{Z}^2 has preferential directions

But a random planar map does not...
Detour: Eden growth model (1961)

- Growth on a graph where at each time step, add a vertex uniformly at random from those adjacent to the cluster at the previous step.

- Question: Large scale behavior of the growth?

- Cox and Durrett (1981) showed that the macroscopic shape is convex.

- Computer simulations show that it is not a Euclidean disk.

- \mathbb{Z}^2 has preferential directions.

- But a random planar map does not...
Detour: Eden growth model (1961)

- Growth on a graph where at each time step, add a vertex uniformly at random from those adjacent to the cluster at the previous step.

- **Question**: Large scale behavior of the growth?
Detour: Eden growth model (1961)

- Growth on a graph where at each time step, add a vertex uniformly at random from those adjacent to the cluster at the previous step.
- **Question:** Large scale behavior of the growth?
Detour: Eden growth model (1961)

- Growth on a graph where at each time step, add a vertex uniformly at random from those adjacent to the cluster at the previous step.
- **Question**: Large scale behavior of the growth?
- Cox and Durrett (1981) showed that the macroscopic shape is convex
Detour: Eden growth model (1961)

- Growth on a graph where at each time step, add a vertex uniformly at random from those adjacent to the cluster at the previous step.
- **Question:** Large scale behavior of the growth?
- Cox and Durrett (1981) showed that the macroscopic shape is convex
- Computer simulations show that it is not a Euclidean disk
Detour: Eden growth model (1961)

- Growth on a graph where at each time step, add a vertex uniformly at random from those adjacent to the cluster at the previous step.

- **Question:** Large scale behavior of the growth?

- Cox and Durrett (1981) showed that the macroscopic shape is convex

- Computer simulations show that it is not a Euclidean disk

- \mathbb{Z}^2 has preferential directions
Detour: Eden growth model (1961)

- Growth on a graph where at each time step, add a vertex uniformly at random from those adjacent to the cluster at the previous step.
- **Question:** Large scale behavior of the growth?
- Cox and Durrett (1981) showed that the macroscopic shape is convex
- Computer simulations show that it is not a Euclidean disk
- \mathbb{Z}^2 has preferential directions
- But a random planar map does not ...
Eden model on random planar maps I

- RPM. Grow Eden cluster. (Angel’s peeling process).

Important observations:
- Conditional law of map given growth at time n only depends on the boundary lengths of the outside components.

Belief:
- At large scales this is close to a ball in the graph metric (now proved by Curien).
Eden model on random planar maps I

- RPM. Grow Eden cluster. (Angel’s peeling process).

Important observations:
- Conditional law of map given growth at time \(n \) only depends on the boundary lengths of the outside components.

Exploration respects the Markovian structure of the map.

Belief: At large scales this is close to a ball in the graph metric (now proved by Curien).
Eden model on random planar maps I

- RPM. Grow Eden cluster. (Angel’s peeling process).

Important observations:
- Conditional law of map given growth at time n only depends on the boundary lengths of the outside components.
- Exploration respects the Markovian structure of the map.

Belief:
At large scales this is close to a ball in the graph metric (now proved by Curien).
Eden model on random planar maps I

- RPM. Grow Eden cluster. (Angel’s peeling process).

Important observations:

- Conditional law of map given growth at time n only depends on the boundary lengths of the outside components.

Belief:

- At large scales this is close to a ball in the graph metric (now proved by Curien).

Jason Miller (Cambridge)
LQG as a metric space and a scaling limit
August 2, 2018
15 / 28
Eden model on random planar maps I

- RPM. Grow Eden cluster. (Angel’s peeling process).

Important observations:
- Conditional law of map given growth at time n only depends on the boundary lengths of the outside components.
- Exploration respects the Markovian structure of the map.

Belief:
- At large scales this is close to a ball in the graph metric (now proved by Curien and Le Gall).
Eden model on random planar maps I

- RPM. Grow Eden cluster. (Angel’s peeling process).

Important observations:
- Conditional law of map given growth at time n only depends on the boundary lengths of the outside components.
- Exploration respects the Markovian structure of the map.

Belief: At large scales this is close to a ball in the graph metric (now proved by Curien).
Eden model on random planar maps I

- RPM. Grow Eden cluster. (Angel’s peeling process).

Important observations:

- Conditional law of map given growth at time n only depends on the boundary lengths of the outside components.
- Exploration respects the Markovian structure of the map.

Belief: At large scales this is close to a ball in the graph metric (now proved by Curien and Le Gall).
Eden model on random planar maps I

- RPM. Grow Eden cluster. (Angel’s peeling process).

Important observations:

- Conditional law of map given growth at time n only depends on the boundary lengths of the outside components.
Eden model on random planar maps I

- RPM. Grow Eden cluster. (Angel’s peeling process).

Important observations:

- Conditional law of map given growth at time n only depends on the boundary lengths of the outside components. *Exploration respects the Markovian structure of the map.*
Eden model on random planar maps I

- RPM. Grow Eden cluster. (Angel’s peeling process).

Important observations:

- Conditional law of map given growth at time n only depends on the boundary lengths of the outside components. *Exploration respects the Markovian structure of the map.*

Belief: At large scales this is close to a ball in the graph metric (now *proved* by Curien and Le Gall)
Goal: Make sense of the Eden model in the continuum on top of a LQG surface

- Explain a discrete variant of the Eden model that involves two operations that we do know how to perform in the continuum:
 - Sample random points according to boundary length
 - Draw (scaling limits of) critical percolation interfaces (SLE_6)
Eden model on random planar maps II

Variant:

- Pick two *edges* on outer boundary of cluster
Eden model on random planar maps II

Variant:

- Pick two edges on outer boundary of cluster
- Color vertices between edges blue and yellow
Eden model on random planar maps II

Variant:

- Pick two edges on outer boundary of cluster
- Color vertices between edges blue and yellow
- Color vertices on rest of map blue or yellow with prob. \(\frac{1}{2} \)
Eden model on random planar maps II

Variant:

- Pick two *edges* on outer boundary of cluster
- Color vertices between edges blue and yellow
- Color vertices on rest of map blue or yellow with prob. $\frac{1}{2}$
- Explore percolation (blue/yellow) interface
Variant:

- Pick two edges on outer boundary of cluster
- Color vertices between edges blue and yellow
- Color vertices on rest of map blue or yellow with prob. $\frac{1}{2}$
- Explore percolation (blue/yellow) interface
- Forget colors
Eden model on random planar maps II

Variant:

- Pick two edges on outer boundary of cluster
- Color vertices between edges blue and yellow
- Color vertices on rest of map blue or yellow with prob. $\frac{1}{2}$
- Explore percolation (blue/yellow) interface
- Forget colors
- Repeat

This exploration also respects the Markovian structure of the map. Expect that at large scales this growth process looks the same as the Eden model, hence the same as the graph metric ball.
Variant:

- Pick two edges on outer boundary of cluster
- Color vertices between edges blue and yellow
- Color vertices on rest of map blue or yellow with prob. $\frac{1}{2}$
- Explore percolation (blue/yellow) interface
- Forget colors
- Repeat

This exploration also respects the Markovian structure of the map. Expect that at large scales this growth process looks the same as the Eden model, hence the same as the graph metric ball.
Eden model on random planar maps II

Variant:

- Pick two **edges** on outer boundary of cluster
- Color vertices between edges blue and yellow
- Color vertices on rest of map blue or yellow with prob. $\frac{1}{2}
- Explore percolation (blue/yellow) interface
- Forget colors
- Repeat

This exploration also respects the Markovian structure of the map. Expect that at large scales this growth process looks the same as the Eden model, hence the same as the graph metric ball.
Variant:

- Pick two edges on outer boundary of cluster
- Color vertices between edges blue and yellow
- Color vertices on rest of map blue or yellow with prob. $\frac{1}{2}$
- Explore percolation (blue/yellow) interface
- Forget colors
- Repeat

This exploration also respects the Markovian structure of the map. Expect that at large scales this growth process looks the same as the Eden model, hence the same as the graph metric ball
Variant:

- Pick two edges on outer boundary of cluster
- Color vertices between edges blue and yellow
- Color vertices on rest of map blue or yellow with prob. $\frac{1}{2}$
- Explore percolation (blue/yellow) interface
- Forget colors
- Repeat

This exploration also respects the Markovian structure of the map. Expect that at large scales this growth process looks the same as the Eden model, hence the same as the graph metric ball.
Eden model on random planar maps II

Variant:

- Pick two edges on outer boundary of cluster
- Color vertices between edges blue and yellow
- Color vertices on rest of map blue or yellow with prob. $\frac{1}{2}$
- Explore percolation (blue/yellow) interface
- Forget colors
- Repeat

This exploration also respects the Markovian structure of the map.

Expect that at large scales this growth process looks the same as the Eden model, hence the same as the graph metric ball.
Variant:

- Pick two edges on outer boundary of cluster
- Color vertices between edges blue and yellow
- Color vertices on rest of map blue or yellow with prob. $\frac{1}{2}$
- Explore percolation (blue/yellow) interface
- Forget colors
- Repeat
Eden model on random planar maps II

Variant:

- Pick two edges on outer boundary of cluster
- Color vertices between edges blue and yellow
- Color vertices on rest of map blue or yellow with prob. $\frac{1}{2}$
- Explore percolation (blue/yellow) interface
- Forget colors
- Repeat

This exploration also respects the Markovian structure of the map. Expect that at large scales this growth process looks the same as the Eden model, hence the same as the graph metric ball.
Variant:

- Pick two edges on outer boundary of cluster
- Color vertices between edges blue and yellow
- Color vertices on rest of map blue or yellow with prob. $\frac{1}{2}$
- Explore percolation (blue/yellow) interface
- Forget colors
- Repeat

This exploration also respects the Markovian structure of the map. Expect that at large scales this growth process looks the same as the Eden model, hence the same as the graph metric ball.
 Variant:

- Pick two edges on outer boundary of cluster
- Color vertices between edges blue and yellow
- Color vertices on rest of map blue or yellow with prob. $\frac{1}{2}$
- Explore percolation (blue/yellow) interface
- Forget colors
- Repeat
Eden model on random planar maps II

Variant:

- Pick two edges on outer boundary of cluster
- Color vertices between edges blue and yellow
- Color vertices on rest of map blue or yellow with prob. $\frac{1}{2}$
- Explore percolation (blue/yellow) interface
- Forget colors
- Repeat

> This exploration also respects the Markovian structure of the map.
Eden model on random planar maps II

Variant:

- Pick two *edges* on outer boundary of cluster
- Color vertices between edges blue and yellow
- Color vertices on rest of map blue or yellow with prob. $\frac{1}{2}$
- Explore percolation (blue/yellow) interface
- Forget colors
- Repeat

- *This exploration also respects the Markovian structure of the map.*
- Expect that at large scales this growth process looks the same as the Eden model, hence the same as the graph metric ball
Continuum limit ansatz

- Sample a random planar map
Continuum limit ansatz

- Sample a random planar map and two edges uniformly at random

▶ Image of random map converges to a $\sqrt{8/3}$-LQG surface and the image of the interface converges to an independent SLE$_6$.

Jason Miller (Cambridge)
LQG as a metric space and a scaling limit
August 2, 2018
Continuum limit ansatz

- Sample a random planar map and two edges uniformly at random
- Color vertices blue/yellow with probability $1/2$
Continuum limit ansatz

- Sample a random planar map and two edges uniformly at random
- Color vertices blue/yellow with probability $1/2$ and draw percolation interface

\[\sqrt{\frac{8}{3}} \text{-LQG surface and the image of the interface converges to an independent SLE}_6. \]
Continuum limit ansatz

- Sample a random planar map and two edges uniformly at random
- Color vertices blue/yellow with probability 1/2 and draw percolation interface
- Conformally map to the sphere
Continuum limit ansatz

- Sample a random planar map and two edges uniformly at random
- Color vertices blue/yellow with probability 1/2 and draw percolation interface
- Conformally map to the sphere

Ansatz Image of random map converges to a $\sqrt{8/3}$-LQG surface and the image of the interface converges to an independent SLE_6.
Goal: make sense of percolation on a RPM in the continuum

(Number of subdivisions)
SLE exploration of LQG

- **Goal:** make sense of percolation on a RPM in the continuum
- Start off with $\sqrt{8/3}$-LQG surface

(Number of subdivisions)
SLE exploration of LQG

- **Goal**: make sense of percolation on a RPM in the continuum
- Start off with $\sqrt{8/3}$-LQG surface
- Draw an independent SLE$_6$

(Number of subdivisions)
SLE exploration of LQG

- **Goal**: make sense of percolation on a RPM in the continuum
- Start off with $\sqrt{8/3}$-LQG surface
- Draw an *independent* SLE$_6$
- Surfaces which are cut out have a Poissonian structure
 - Quantum zipper (Sheffield)
 - Mating of trees (Duplantier-M.-Sheffield)

(Number of subdivisions)
SLE exploration of LQG

- **Goal:** make sense of percolation on a RPM in the continuum
- Start off with $\sqrt{8/3}$-LQG surface
- Draw an independent SLE$_6$
- Surfaces which are cut out have a Poissonian structure
 - Quantum zipper (Sheffield)
 - Mating of trees (Duplantier-M.-Sheffield)
- Not obvious from definition of SLE/GFF

(Number of subdivisions)
SLE exploration of LQG

- **Goal:** make sense of percolation on a RPM in the continuum
- Start off with $\sqrt{8/3}$-LQG surface
- Draw an independent SLE$_6$
- Surfaces which are cut out have a Poissonian structure
 - Quantum zipper (Sheffield)
 - Mating of trees (Duplantier-M.-Sheffield)
- Not obvious from definition of SLE/GFF
- $\gamma = \min(\sqrt{\kappa}, 4/\sqrt{\kappa})$

(Number of subdivisions)
SLE exploration of LQG

- **Goal:** make sense of percolation on a RPM in the continuum
- Start off with $\sqrt{8/3}$-LQG surface
- Draw an independent SLE_6
- Surfaces which are cut out have a Poissonian structure
 - Quantum zipper (Sheffield)
 - Mating of trees (Duplantier-M.-Sheffield)
- Not obvious from definition of SLE/GFF
 - $\gamma = \min(\sqrt{\kappa}, 4/\sqrt{\kappa})$
 - $\kappa = 6 \rightarrow \gamma = \sqrt{8/3}$

(Number of subdivisions)
Continuum analog of first passage percolation on LQG

- Start off with $\sqrt{8/3}$-LQG surface
- Fix $\delta > 0$ small and a starting point x
Continuum analog of first passage percolation on LQG

- Start off with $\sqrt{8/3}$-LQG surface
- Fix $\delta > 0$ small and a starting point x
- Draw δ units of SLE$_6$
Continuum analog of first passage percolation on LQG

- Start off with $\sqrt{8/3}$-LQG surface
- Fix $\delta > 0$ small and a starting point x
- Draw δ units of SLE$_6$
- Resample the tip according to boundary length
Continuum analog of first passage percolation on LQG

- Start off with $\sqrt{8/3}$-LQG surface
- Fix $\delta > 0$ small and a starting point x
- Draw δ units of SLE$_6$
- Resample the tip according to boundary length
- Repeat

Know the conditional law of the LQG surface at each stage $\mathbb{QLE}_{(8/3, 0)}$ is the limit as $\delta \to 0$ of this growth process.

In the limit, this describes the growth of a metric ball in a metric space which is isometric to TBM.
Continuum analog of first passage percolation on LQG

- Start off with $\sqrt{8/3}$-LQG surface
- Fix $\delta > 0$ small and a starting point x
- Draw δ units of SLE$_6$
- Resample the tip according to boundary length
- Repeat

Know the conditional law of the LQG surface at each stage

QLE$(8/3, 0)$ is the limit as $\delta \to 0$ of this growth process.

In the limit, this describes the growth of a metric ball in a metric space which is isometric to TBM.

LQG-TBM I-III, An Axiomatic Characterization of TBM (M.-Sheffield)
Continuum analog of first passage percolation on LQG

- Start off with $\sqrt{8/3}$-LQG surface
- Fix $\delta > 0$ small and a starting point x
- Draw δ units of SLE$_6$
- Resample the tip according to boundary length
- Repeat
Continuum analog of first passage percolation on LQG

- Start off with $\sqrt{8/3}$-LQG surface
- Fix $\delta > 0$ small and a starting point x
- Draw δ units of SLE_6
- Resample the tip according to boundary length
- Repeat

In the limit, this describes the growth of a metric ball in a metric space which is isometric to TBM.

LQG-TBM I-III, An Axiomatic Characterization of TBM (M.-Sheffield)

LQG as a metric space and a scaling limit
August 2, 2018 20 / 28
Continuum analog of first passage percolation on LQG

- Start off with \(\sqrt{8/3}\)-LQG surface
- Fix \(\delta > 0\) small and a starting point \(x\)
- Draw \(\delta\) units of SLE\(_6\)
- Resample the tip according to boundary length
- Repeat

Know the conditional law of the LQG surface at each stage. QLE(8/3, 0) is the limit as \(\delta \to 0\) of this growth process. In the limit, this describes the growth of a metric ball in a metric space which is isometric to TBM.
Continuum analog of first passage percolation on LQG

- Start off with $\sqrt{8/3}$-LQG surface
- Fix $\delta > 0$ small and a starting point x
- Draw δ units of SLE$_6$
- Resample the tip according to boundary length
- Repeat

Know the conditional law of the LQG surface at each stage. $\text{QLE}(8/3, 0)$ is the limit as $\delta \to 0$ of this growth process. In the limit, this describes the growth of a metric ball in a metric space which is isometric to TBM.
Continuum analog of first passage percolation on LQG

- Start off with $\sqrt{8/3}$-LQG surface
- Fix $\delta > 0$ small and a starting point x
- Draw δ units of SLE$_6$
- Resample the tip according to boundary length
- Repeat
- Know the conditional law of the LQG surface at each stage
Continuum analog of first passage percolation on LQG

- Start off with $\sqrt{8/3}$-LQG surface
- Fix $\delta > 0$ small and a starting point x
- Draw δ units of SLE$_6$
- Resample the tip according to boundary length
- Repeat
- Know the conditional law of the LQG surface at each stage

$\text{QLE}(8/3, 0)$ is the limit as $\delta \to 0$ of this growth process.
Continuum analog of first passage percolation on LQG

- Start off with $\sqrt{8/3}$-LQG surface
- Fix $\delta > 0$ small and a starting point x
- Draw δ units of SLE$_6$
- Resample the tip according to boundary length
- Repeat
- Know the conditional law of the LQG surface at each stage

$\text{QLE}(8/3, 0)$ is the limit as $\delta \to 0$ of this growth process.

In the limit, this describes the growth of a metric ball in a metric space which is isometric to TBM.

LQG-TBM I-III, An Axiomatic Characterization of TBM (M.-Sheffield)
Discrete approximation of $\text{QLE}(8/3, 0)$. Metric ball on a $\sqrt{8/3}$-LQG
What is $\text{QLE}(\gamma^2, \eta)$?

$\text{QLE}(8/3, 0)$ is a member of a two-parameter family of processes called $\text{QLE}(\gamma^2, \eta)$

- γ is the type of LQG surface on which the process grows
- η determines the manner in which it grows

Eden model: $\eta = 0$

Diffusion limited aggregation: $\eta = 1$

η-dielectric breakdown model: general values of η
What is $\text{QLE}(\gamma^2, \eta)$?

$\text{QLE}(8/3, 0)$ is a member of a two-parameter family of processes called $\text{QLE}(\gamma^2, \eta)$

- γ is the type of LQG surface on which the process grows
- η determines the manner in which it grows

Let μ_{HARM} (resp. μ_{LEN}) be harmonic (resp. length) measure on a γ-LQG surface. The rate of growth (i.e., rate at which microscopic particles are added) is proportional to

$$
\left(\frac{d\mu_{\text{HARM}}}{d\mu_{\text{LEN}}} \right)^\eta d\mu_{\text{LEN}}.
$$
What is $\text{QLE}(\gamma^2, \eta)$?

$\text{QLE}(8/3, 0)$ is a member of a two-parameter family of processes called $\text{QLE}(\gamma^2, \eta)$

- γ is the type of LQG surface on which the process grows
- η determines the manner in which it grows

Let μ_{HARM} (resp. μ_{LEN}) be harmonic (resp. length) measure on a γ-LQG surface. The rate of growth (i.e., rate at which microscopic particles are added) is proportional to

$$
\left(\frac{d\mu_{\text{HARM}}}{d\mu_{\text{LEN}}} \right)^\eta d\mu_{\text{LEN}}.
$$

- **Eden model**: $\eta = 0$
What is $\text{QLE}(\gamma^2, \eta)$?

$\text{QLE}(8/3, 0)$ is a member of a two-parameter family of processes called $\text{QLE}(\gamma^2, \eta)$

- γ is the type of LQG surface on which the process grows
- η determines the manner in which it grows

Let μ_{HARM} (resp. μ_{LEN}) be harmonic (resp. length) measure on a γ-LQG surface. The rate of growth (i.e., rate at which microscopic particles are added) is proportional to

$$\left(\frac{d\mu_{\text{HARM}}}{d\mu_{\text{LEN}}} \right)^\eta d\mu_{\text{LEN}}.$$

- **Eden model:** $\eta = 0$
- **Diffusion limited aggregation:** $\eta = 1
What is QLE(γ^2, η)?

QLE(8/3, 0) is a member of a two-parameter family of processes called QLE(γ^2, η)

- γ is the type of LQG surface on which the process grows
- η determines the manner in which it grows

Let μ_{HARM} (resp. μ_{LEN}) be harmonic (resp. length) measure on a γ-LQG surface. The rate of growth (i.e., rate at which microscopic particles are added) is proportional to

$$
\left(\frac{d\mu_{\text{HARM}}}{d\mu_{\text{LEN}}} \right)^\eta d\mu_{\text{LEN}}.
$$

- Eden model: $\eta = 0$
- Diffusion limited aggregation: $\eta = 1$
- η-dielectric breakdown model: general values of η
Simulation of Euclidean DLA (Witten and Sander, 1981)
Discrete approximation of QLE(2, 1). DLA on a $\sqrt{2}$-LQG.
QLE(γ^2, η) processes we can construct

Each of the QLE(γ^2, η) processes with (γ^2, η) on the orange curves is built from an SLE$_\kappa$ process using tip re-randomization.
Where are we now?

Convergence results for planar maps (RPM) decorated with a statistical physics model to SLE on a random surface.
Where are we now?

Convergence results for planar maps (RPM) decorated with a statistical physics model to SLE on a random surface.

Gromov-Hausdorff topology

- Self-avoiding walk on RPM to SLE$_{8/3}$ on $\sqrt{8/3}$-LQG (Gwynne, M.)
- Percolation on RPM to SLE$_6$ on $\sqrt{8/3}$-LQG (Gwynne, M.)
Where are we now?

Convergence results for planar maps (RPM) decorated with a statistical physics model to \(\text{SLE} \) on a random surface.

Gromov-Hausdorff topology
- Self-avoiding walk on RPM to \(\text{SLE}_{8/3} \) on \(\sqrt{8/3} \)-LQG (Gwynne, M.)
- Percolation on RPM to \(\text{SLE}_6 \) on \(\sqrt{8/3} \)-LQG (Gwynne, M.)

Peanosphere topology (Duplantier, M., Sheffield)
- FK-weighted RPM with \(q \in (0, 4) \)
 - Infinite volume (Sheffield)
 - finite volume (Gwynne, Mao, Sun and Gwynne, Sun)
- Bipolar orientation decorated RPM (Kenyon, M., Sheffield, Wilson)
- Active spanning tree decorated RPM (Gwynne, Kassel, M., Wilson)
- Schnyder woods (Li, Sun, Watson)
Where are we now?
Convergence results for planar maps (RPM) decorated with a statistical physics model to SLE on a random surface.

Gromov-Hausdorff topology
- Self-avoiding walk on RPM to $\text{SLE}_{8/3}$ on $\sqrt{8/3}$-LQG (Gwynne, M.)
- Percolation on RPM to SLE_6 on $\sqrt{8/3}$-LQG (Gwynne, M.)

Peanosphere topology (Duplantier, M., Sheffield)
- FK-weighted RPM with $q \in (0, 4)$
 - Infinite volume (Sheffield)
 - finite volume (Gwynne, Mao, Sun and Gwynne, Sun)
- Bipolar orientation decorated RPM (Kenyon, M., Sheffield, Wilson)
- Active spanning tree decorated RPM (Gwynne, Kassel, M., Wilson)
- Schnyder woods (Li, Sun, Watson)

Embedded planar maps
- Mated-CRT maps (Gwynne, M., Sheffield)
Other γ?

- Other γ values correspond to random planar maps which are decorated by a statistical physics model (e.g., the Ising model)
Other γ?

- Other γ values correspond to random planar maps which are decorated by a statistical physics model (e.g., the Ising model).

- Very little is understood about how the metric should behave or how to construct it for $\gamma \neq \sqrt{8/3}$.

Watabiki prediction:

$$d_\gamma = 1 + \frac{\gamma^2}{4} + \frac{1}{4\sqrt{2 + \gamma^2}} + \frac{16}{\gamma^2}.$$

Ding, Goswami, Gwynne, Zeitouni, Zhang.
Other γ?

- Other γ values correspond to random planar maps which are decorated by a statistical physics model (e.g., the Ising model).
- Very little is understood about how the metric should behave or how to construct it for $\gamma \neq \sqrt{8/3}$.
- Hausdorff dimension of γ-LQG for $\gamma \neq \sqrt{8/3}$ is not known.
Other γ?

- Other γ values correspond to random planar maps which are decorated by a statistical physics model (e.g., the Ising model).
- Very little is understood about how the metric should behave or how to construct it for $\gamma \neq \sqrt{8/3}$.
- Hausdorff dimension of γ-LQG for $\gamma \neq \sqrt{8/3}$ is not known.
 - Watabiki prediction:
 \[
d_\gamma = 1 + \frac{\gamma^2}{4} + \frac{1}{4} \sqrt{(4 + \gamma^2)^2 + 16\gamma^2}.
 \]
 - Ding, Goswami, Gwynne, Zeitouni, Zhang.
Thanks!