Two-dimensional Stochastic Interface Growth

Fabio Toninelli

CNRS and Université Lyon 1

ICM 2018, Rio
Random discrete interfaces and growth

- 2d discrete interfaces \rightarrow random tilings, dimer model
- Stochastic growth (random deposition).
 - Large scales \rightarrow non-linear PDEs, stochastic PDEs, ...
- An interesting story: Wolf’s conjecture on universality classes of 2d interface growth
Random discrete interfaces and growth

Links with:

- macroscopic shapes
- facet singularities
- massless Gaussian field (GFF)
Discrete monotone interface
Lozenge tiling of the plane
Dimer model (perfect matching of planar bipartite graph)

Link with spin systems: ground state of 3d Ising model
Tilings & interlaced particles

Lozenge tiling ⇔ Interlaced particle system

The whole interface/dimer/lozenge picture is still there
A stochastic deposition model

Continuous-time Markov process. Updates:

Jumps respect interlacing conditions
A stochastic deposition model

Continuous-time Markov process. Updates:

- Jumps respect interlacing conditions
 - symmetric case $p = 1/2$: uniform measure is stationary & reversible
 - $p \neq 1/2$: growth model, irreversibility. Interesting in infinite volume (or with periodic boundary conditions)
 - equivalent to zero temperature Glauber dynamics of 3d Ising
 - $p \leftrightarrow$ magnetic field

F. Toninelli (CNRS & Lyon 1)
Stochastic Interface Dynamics
ICM 2018, Rio
Interface growth: phenomenological picture

Speed of growth $v = v(\rho)$: asymptotic growth rate for interface of slope $\rho \in \mathbb{R}^d$ (for us, $d = 2$)
Interface growth: phenomenological picture

Speed of growth $v = v(\rho)$: asymptotic growth rate for interface of slope $\rho \in \mathbb{R}^d$

$$v(\rho) = \lim_{t \to \infty} \frac{h(x,t) - h(x,0)}{t}$$
Interface growth: phenomenological picture

- As \(t \to \infty \), law of gradients
 \[
 \nabla h \equiv (h(x + \hat{e}_i) - h(x)), \quad x \in \mathbb{Z}^d, i = 1, \ldots, d
 \]
 should tend to limit stationary, non-reversible measure \(\pi_\rho \)

 E. g. \(v(\rho) = p \times \pi_\rho(\text{□}) - (1 - p) \times \pi_\rho(\text{●}) \)

- Roughness exponent \(\alpha \): at large distances
 \[
 \sqrt{\text{Var}_{\pi_\rho}(h(x) - h(y))} \sim c_1 + c_2 |x - y|^\alpha
 \]

- Growth exponent \(\beta \): at large times,
 \[
 \sqrt{\text{Var}(h(x,t) - h(x,0))} \sim c_3 + c_4 t^\beta
 \]
Fluctuation field and link with the KPZ equation

Heuristics: large-scales behavior of fluctuations \rightsquigarrow Kardar-Parisi-Zhang equation

relaxes large fluctuations \hspace{2cm} tunes strength of non-linearity. Useful in perturbation theory

$$\partial_t h(x, t) = \Delta h(x, t) + \lambda (\nabla h(x, t), H \nabla h(x, t)) + \xi_{\text{smooth}}(x, t)$$

$d \times d$ symmetric matrix \hspace{2cm} smoothed space-time white noise

Quadratic non-linearity from second-order Taylor expansion of hydrodynamic PDE.

$$H = D^2 v(\rho) \quad (\text{Hessian of speed of growth})$$
Fluctuation field and link with the KPZ equation

\[\partial_t h(x, t) = \Delta h(x, t) + \lambda (\nabla h(x, t), H \nabla h(x, t)) + \xi_{\text{smooth}}(x, t) \]

- Linear case ($\lambda = 0$): Edwards-Wilkinson (EW) equation.
 Stationary state: **massless Gaussian field.**
 \[\alpha_{EW} = \frac{2 - d}{2}, \quad \beta_{EW} = \frac{2 - d}{4}. \]

- $d = 1$: KPZ ’86 predicted **relevance of non-linearity.**
 \[\beta = \frac{1}{3} \neq \beta_{EW} \]

 Confirmed by exact solutions (1-d KPZ universality class: universal non-Gaussian limit laws, ...)

- $d \geq 3$: predicted **irrelevance of small non-linearity**, transition at λ_c.
 \[\Rightarrow \text{see Magnen-Unterberger ’17, Gu-Ryzhik-Zeitouni ’17 for } \lambda \ll 1 \]
The critical dimension $d = 2$ and Wolf’s conjecture

\[\partial_t h(x, t) = \Delta h(x, t) + \lambda (\nabla h(x, t), H \nabla h(x, t)) + \xi_{\text{smooth}}(x, t) \]

Perturbative (in λ) Renormalization-Group analysis (D. Wolf ’91):
- if $\det(H) > 0$, non-linearity relevant, $\alpha \neq \alpha_{\text{EW}}, \beta \neq \beta_{\text{EW}}$;
- if $\det(H) \leq 0$, small non-linearity irrelevant. EW Universality class.

Conjecture: Two universality classes:
- Anisotropic KPZ (AKPZ) class: $\det(D^2v(\rho)) \leq 0$.
 Large-scale fixed point: EW equation. $\alpha_{\text{AKPZ}} = 0, \beta_{\text{AKPZ}} = 0$.
- KPZ class: $\det(D^2v(\rho)) > 0$. $\alpha_{\text{KPZ}} \neq 0, \beta_{\text{KPZ}} \neq 0$.

Numerics (Halpin-Healy et al.): in KPZ class, universal exponents $\alpha_{\text{KPZ}} \approx 0.39..., \beta_{\text{KPZ}} \approx 0.24...$.

Rest of the talk: new results for AKPZ class
Back to the deposition process

Envelope property: \(h(t = 0) = h^{(1)} \lor h^{(2)} \implies h(t) = h^{(1)}(t) \lor h^{(2)}(t) \)

Then, superadditivity argument (T. Seppäläinen, F. Rezakhanlou) implies that \(v(\cdot) \) exists and is convex.

Natural candidate for KPZ class. No math results on stationary states or critical exponents \(\alpha_{KPZ}, \beta_{KPZ} \)
A long-jump variant

rate = \(p \)

rate = 1 - \(p \)

Jumps constrained only by interlacement conditions

A. Borodin & P. Ferrari '08

Should the universality class change? not obvious a priori.

In fact, it does change

F. Toninelli (CNRS & Lyon 1)

Stochastic Interface Dynamics

ICM 2018, Rio
A long-jump variant

$$\text{rate} = p$$

$$\text{rate} = 1 - p$$

Jumps constrained only by interlacement conditions

A. Borodin & P. Ferrari ’08

Should the universality class change? not obvious a priori.

In fact, it does change
Theorem (F.T., 15) Stationary states π_ρ are “locally uniform”

- Stationary states free-fermionic (determinantal correlations)
- Roughness exponent: $\alpha = 0$
 - logarithmic fluctuations,
 - scaling to massless Gaussian field
- Growth exponent $\beta = 0$
 - $\text{Var}_{\pi_\rho}(h(x, t) - h(x, 0)) \xrightarrow{t \to \infty} O(\log t)$
Theorem (M. Legras, F.T. ’17)

If

$$\lim_{\epsilon \to 0} \epsilon h(\epsilon^{-1}x, t = 0) = \phi_0(x), \quad \forall x \in \mathbb{R}^2$$

with $\phi_0(\cdot)$ convex, then

$$\lim_{\epsilon \to 0} \epsilon h(\epsilon^{-1}x, \epsilon^{-1}t) = \phi(x, t), \quad t > 0$$

(with high probability as $\epsilon \to 0$) where ϕ solves

\[
\left\{ \begin{array}{l}
\partial_t \phi(x, t) = v(\nabla \phi(x, t)) \\
\phi(x, 0) = \phi_0(x).
\end{array} \right.
\]

Speed of growth $v(\rho)$: explicit and $\det D^2v(\rho) < 0$
Comments on hydrodynamic equation

- Non-linear Hamilton-Jacobi equation \Rightarrow singularities in finite time
- Physically relevant solution: viscosity solution.

\[v(\nabla \phi) \mapsto v(\nabla \phi) + \epsilon \Delta \phi, \quad \epsilon \to 0^+ \]

- $v(\cdot)$ non convex \Rightarrow no variational formula (like “minimal action”) for viscosity solution.
 - For convex profile, variational formula.
- Technical difficulty: long jumps, possible pathologies
 (tools: from works of T. Seppäläinen)
Previous results on the model

Theorem (A. Borodin, P. Ferrari ’08)
For “triangular-array Gibbs-type initial conditions”, hydrodynamic limit and central limit theorem on scale $\sqrt{\log t}$.
Smooth phases and singularities of $v(\cdot)$

For equilibrium 2d discrete interface models, smooth (or “rigid”) (as opposed to: rough) phases at special slopes
Exponential decay of correlations, no fluctuation growth:

$$\sup_x \text{Var}(h(x) - h(0)) < \infty,$$

E.g. SOS model at low temperature; dimers (“gas phases”),...
Questions:

- AKPZ growth models with smooth stationary states?
- We implicitly assumed that speed $v(\cdot)$ is differentiable ($H = D^2v$ in KPZ Eq.)
 - What if it is not? Still Edwards-Wilkinson behavior?
Together with S. Chhita, we studied a growth model where:

- height function is $h : \mathbb{Z}^2 \ni x \mapsto h(x) \in \mathbb{Z}$
- Growth process in discrete time: $h_0(\cdot), h_1(\cdot), h_2(\cdot), \ldots$
- Local update rule: $h_n(x) \to h_{n+1}(x) \sim$ random function of neighboring values
 \[
 h_n(y), \quad |y - x| = 1
 \]

Dynamics is domino-shuffling algorithm with 2-periodic weights (J. Propp)

- Stationary states π_ρ of ∇h are
 - logarithmically rough for $\rho \neq 0$, i.e. $\text{Var}_{\pi_\rho}(h(x) - h(y)) \sim \log |x - y|$
 - smooth for $\rho = 0$, i.e. $\text{Var}_{\pi_0}(h(x) - h(y)) = O(1)$
An AKPZ model with a smooth phase

Theorem (S. Chhita, F.T. ’18)

For $\rho \neq 0$, AKPZ signature:

- Logarithmic growth of fluctuations:

 \[
 \text{Var}_{\pi_\rho}(h(x, t) - h(x, 0)) = O(\log t)
 \]

- Twice differentiable speed and

 \[
 \det(D^2 v(\rho)) < 0.
 \]

For $\rho = 0$, new picture:

- bounded fluctuations:

 \[
 \text{Var}_{\pi_0}(h(x, t) - h(x, 0)) = O(1)
 \]

- Non-differentiability of $v(\cdot)$ at 0
Smooth phases, facets and singularities of $v(\cdot)$

Non-differentiability related to facets of macroscopic shapes

\[v(\rho) \xrightarrow{\rho \to 0} |\rho| f_1(\theta) + |\rho|^3 f_2(\theta) \]

related to “facet singularities”

non-differentiability

\[h(x_0 + \varepsilon) \sim \varepsilon^{3/2} \]

Pokrovsky-Talapov law
Smooth phases, facets and singularities of $v(\cdot)$

Non-differentiability related to facets of macroscopic shapes

$$v(\rho) \overset{\rho \to 0}{\approx} |\rho| f_1(\theta) + |\rho|^3 f_2(\theta)$$

related to “facet singularities”

$h(x_0 + \epsilon) \sim \epsilon^{3/2}$

Pokrovsky-Talapov law
A more general AKPZ class

- Fluctuation & hydrodynamic results have been extended to other AKPZ models
- Puzzling points:
 - explicit computation of speed $\implies \det(D^2v) < 0$ without clear connection to Wolf’s heuristics.
 - speed is harmonic w.r.t. suitable complex structure

Any pattern behind?
AKPZ growth and Euler-Lagrange equation

A geometric argument behind $\det(D^2v(\rho)) \leq 0$ for AKPZ models (A. Borodin, F.T., '18)

- Common feature of most known AKPZ growth models: stationary, non-reversible Gibbs measures π_ρ:
 \[\nabla h(t = 0) \sim \pi_\rho \implies \nabla h(t) \sim \pi_\rho \]

- Gibbs states π: probability measures such that
 law of $h(x)$ given $h|_{\mathbb{Z}^2\setminus\{x\}}$ depends only on $\{h(y)\}_{|y-x|=1}$.

In many examples, π_ρ locally uniform, free-fermionic
\textbf{AKPZ growth and Euler-Lagrange equation}

- \exists \text{ continuum of non-translation-invariant Gibbs measures and } \nabla h(t = 0) \sim \pi^{(0)} \Rightarrow \nabla h(t) \sim \pi^{(t)}.

- Macroscopically, typical height profile sampled from Gibbs state is minimizer \(\phi \) of surface tension functional
 \[
 \int_{\mathbb{R}^2} \sigma(\nabla \phi) \, dx
 \]
 with \(\sigma(\cdot) \) convex, i.e. solution of Euler-Lagrange equation
 \[
 \sum_{i,j=1}^{2} \sigma_{ij}(\nabla \phi) \partial_{x_i x_j}^2 \phi = 0, \quad (\sigma_{ij}(\rho) := \partial_{\rho_i \rho_j}^2 \sigma(\rho)).
 \]
AKPZ growth and Euler-Lagrange equation

Preservation of Gibbs property \implies hydrodynamic PDE

$$\partial_t \phi = v(\nabla \phi)$$

preserves solutions of Euler-Lagrange:

$$\phi(t = 0) \text{ solves Euler-Lagrange} \implies \phi(t) \text{ does too}$$

Theorem (A. Borodin, F.T.) This gives a non-linear relation between $D^2 v$ and $D^2 \sigma$, that implies $\det(D^2 v) \leq 0$.

For dimer models, solutions of Euler-Lagrange parametrized by complex variable

$$z = z(\nabla \phi) \ (R. \ Kenyon \ & \ A. \ Okounkov \ '07)$$

Theorem (A. Borodin, F.T.) Hydrodynamic PDE preserves Euler-Lagrange equation \iff speed $v(\cdot)$ is harmonic function of z.
Things that were left out

- Bounds $O(L^{2+\epsilon})$ on mixing time in finite $L \times L$ domain (P. Caputo, B. Laslier, F. Martinelli, F.T.)
- Convergence to non-linear parabolic PDE for long-jump symmetric dynamics (B. Laslier, F.T. ’17)
Summary

We discussed Wolf’s conjecture on universality classes of 2d stochastic interface growth.

New results on AKPZ growth models:

- hydrodynamic limits
- logarithmic bounds on fluctuation growth, $\alpha_{AKPZ} = \beta_{AKPZ} = 0$
- singularities of $v(\cdot) \leftrightarrow$ smooth steady states, facets
- origin of $\det D^2 v \leq 0$: preservation in time of Gibbs property
Summary

We discussed Wolf’s conjecture on universality classes of 2d stochastic interface growth.

New results on AKPZ growth models:
- hydrodynamic limits
- logarithmic bounds on fluctuation growth, $\alpha_{AKPZ} = \beta_{AKPZ} = 0$
- singularities of $v(\cdot) \leftrightarrow$ smooth steady states, facets
- origin of $\text{det } D^2v \leq 0$: preservation in time of Gibbs property

Open problems:
- Full convergence to Edwards-Wilkinson fixed point? (proven in limiting regimes: A. Borodin, I. Corwin & F.T. ’17, A. Borodin, I. Corwin & P. Ferrari ’17)
- Results for the KPZ class?
Summary

We discussed Wolf’s conjecture on universality classes of 2d stochastic interface growth.

New results on AKPZ growth models:
- hydrodynamic limits
- logarithmic bounds on fluctuation growth, $\alpha_{\text{AKPZ}} = \beta_{\text{AKPZ}} = 0$
- singularities of $v(\cdot) \leftrightarrow$ smooth steady states, facets
- origin of $\det D^2v \leq 0$: preservation in time of Gibbs property

Open problems:
- Full convergence to Edwards-Wilkinson fixed point? (proven in limiting regimes: A. Borodin, I. Corwin & F.T. ’17, A. Borodin, I. Corwin & P. Ferrari ’17)
- Results for the KPZ class?

Thanks!