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NONPARAMETRIC ADDITIVE REGRESSION

Bඒൾඈඇ U. Pൺඋ

Aൻඌඍඋൺർඍ

In this article we discuss statistical methods of estimating structured nonparametric
regression models. Our discussion is mainly on the additive models where the regres-
sion function (map) is expressed as a sum of unknown univariate functions (maps),
but it also covers some other non- and semi-parametric models. We present the state
of the art in the subject area with the prospect of an extension to non-Euclidean data
objects.

1 Introduction

Let Y be a scalar random variable and X � (X1; : : : ; Xd ) be a d -dimensional random
vector. Suppose that one has observations (Xi ; Yi ); 1 � i � n, that are independent
and identically distributed copies of (X; Y ). The regression problem in statistics is to
estimate the conditional mean f (x) � E(Y jX = x) using the observations (Xi ; Yi ).
The parametric approach to this problem is to assume that the true regression function f

belongs to a finite-dimensional model F . The simplest example of F is a linear model
F = ff (�; �) : � 2 Rd+1g, where f (x; �) = �0+�1x1+ � � �+�d xd . This is certainly re-
strictive excluding many important realities. The nonparametric approach, on the contrary,
is to allow the unknown f to lie in an infinite-dimensional function space. The problem
is clearly ‘ill-posed’ since one is given only a finite number of observations (Xi ; Yi ). One
way, called method of sieves, is to reduce F to a subspace Fn in such a way that the se-
quence of sieve spaces Fn grows as n increases and one searches for an estimator among
functions in Fn. Another way of solving the ill-posed inverse problem is through penal-
ization, putting more penalties for functions that are more complex to enforce smoothness
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for the resulting estimator. The approach termed as ‘kernel smoothing’ has quite a dif-
ferent nature and is based on localization. It basically converts the infinite-dimensional
problem to solving locally finite-dimensional problems with the localization being finer
for larger sample size n. In this paper we discuss nonparametric regression, focusing on
kernel smoothing.

There is another problem of dimensionality. When the dimension d of X gets high,
all nonparametric estimation techniques fail theoretically. For instance, if F is a class of
functions with two continuous (partial) derivatives, then one cannot get an estimator f̂

that has a rate faster than n�2/(d+4) for kf̂ � f k2. Nonparametric methods fail practi-
cally as well when d is high. In the case of local kernel smoothing one basically takes
Xh(x) � f(Xi ; Yi ) : Xi are within distance h from xg for each x, where h > 0 is termed
as ‘window width’ or ‘bandwidth’, and then estimate f (x) using those (Xi ; Yi ) 2 Xh(x).
The practical difficulty one encounters here is that one cannot choose h small enough for a
fine local approximation of f since the number of (Xi ; Yi ) in Xh(x), which is asymptotic
to nhd , gets smaller very fast as h decreases when d is high. Note that one needs nhd � `

for the corresponding locally `-dimensional problem to be well-posed. This phenomenon,
referred to as ‘the curse of dimensionality’, is present in other nonparametric methods
such as sieves and penalization techniques.

Structured nonparametric models have been studied to circumvent the curse of dimen-
sionality. A structured nonparametric model is defined as a known function of lower-
dimensional unknown underlying functions, see Mammen and J. P. Nielsen [2003] for
discussion on generalized structured models. They typically allow reliable estimation
when a full nonparametric model does not work. The simplest example is the additive
model

(1-1) E(Y jX = x) = f1(x1) + � � � + fd (xd );

where fj are unknown univariate smooth functions. This model was first introduced by
Friedman and Stuetzle [1981]. Various nonparametric regression problems reduce to the
estimation of this model. Examples include nonparametric regression with time series
errors or with repeated measurements, panels with individual effects and semiparametric
GARCH models, see Mammen, Park, and Schienle [2014].

Three main techniques of fitting the model (1-1) are ordinary backfitting (Buja, Hastie,
and Tibshirani [1989]), marginal integration (Linton and J. P. Nielsen [1995]) and smooth
backfitting (SBF, Mammen, Linton, and J. Nielsen [1999]). A difficulty with the ordinary
backfitting technique is that the estimator of (1-1) is defined only when the backfitting
iteration converges, as its limit. It is known that the backfitting iteration converges under
rather strong conditions on the joint distribution of the covariates, see Opsomer and Rup-
pert [1997] and Opsomer [2000]. For marginal integration, the main drawback is that it
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does not resolve the dimensionality issue since it requires consistent estimation of the full-
dimensional density of X, see Y. K. Lee [2004]. Smooth backfitting, on the other hand, is
not subject to these difficulties. The method gives a well-defined estimator of the model
and the iterative algorithm converges always under weak conditions. Furthermore, it has
been shown for many structured nonparametric models that smooth backfitting estimators
have univariate rates of convergence regardless of the dimension d .

In this paper, we revisit the theory of smooth backfitting for the additive regression
model (1-1). We discuss some important extensions that include varying coefficient mod-
els, the case of errors-in-variables, some structured models for functional response and/or
predictors and a general framework with Hilbertian response. Our discussion is primarily
on the i.i.d. case where (Xi ; Yi ) are independent across 1 � i � n and identically dis-
tributed, and for Nadaraya-Watson (locally constant) kernel smoothing since the theory is
best understood under this setting.

2 Additive regression models

Let the distributions of Xj have densities pj with respect to the Lebesgue measure on R,
and X have a joint density p with respect to the Lebesgue measure on Rd . We assume
that pj are commonly supported on the unit interval [0; 1], for simplicity. In the original
theory of Mammen, Linton, and J. Nielsen [1999], it is assumed that the joint density p is
bounded away from zero on [0; 1]d . Here, we relax this condition to requiring only that
each marginal density pj is bounded away from zero on [0; 1].

2.1 SBF estimation. Let pjk denote the two-dimensional joint densities of (Xj ; Xk)

for 1 � j ¤ k � d . From the model (1-1) we get a system of d integral equations,

(2-1) fj (xj ) = E(Y jXj = xj ) �

dX
k¤j

Z 1

0

fk(xk)
pjk(xj ; xk)

pj (xj )
dxk ; 1 � j � d:

The smooth backfitting method is nothing else than to replace the unknown marginal re-
gression functions mj � E(Y jXj = �) and the marginal and joint densities pj and
pjk by suitable estimators, and then to solve the resulting system of estimated integral
equations. It is worthwhile to note here that the system of equations (2-1) only identi-
fies f+(x) �

Pd
j=1 fj (xj ), not the individual component functions fj . We discuss the

estimation of fj later in Section 2.3.
For simplicity, we consider Nadaraya-Watson type estimators of mj ; pj and pjk . For

a projection interpretation of SBF estimation, we use a normalized kernel scheme as de-
scribed below. The projection interpretation is crucial for the success of SBF estimation.
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Let K be a baseline symmetric, bounded and nonnegative kernel function supported on
[�1; 1] such that

R
K = 1. The conventional kernel weight scheme for the variable Xj

based on K is to give the weight Khj
(x � u) � h�1

j K((x � u)/hj ) to an observed value
u of Xj locally at each point xj 2 [0; 1], where hj > 0 is called the bandwidth and de-
termines the degree of localization for Xj . The normalized kernel function based on K is
defined by

(2-2) Khj
(xj ; u) =

�Z 1

0

Khj
(v � u) dv

��1

Khj
(xj � u); 0 � xj ; u � 1:

Then, it holds that Khj
(xj ; u) = Khj

(xj � u) for all (xj ; u) 2 [2hj ; 1 � 2hj ] � [0; 1] or
(xj ; u) 2 [0; 1] � [hj ; 1 � hj ]. Furthermore,Z 1

0

Khj
(xj ; u) dxj = 1; for all u 2 [0; 1];

�j;`(xj ) =

Z 1

�1

t`K(t) dt; for all xj 2 [2hj ; 1 � 2hj ];

j�j;`(xj )j � 2

Z 1

�1

jt j`K(t) dt; for all xj 2 [0; 1];

(2-3)

where and below �j;`(xj ) =
R 1
0 h�`

j (xj �u)`Khj
(xj ; u) du. We set Ij = [2hj ; 1�2hj ]

and refer to them as interior regions.
We write Xij for the j th entry of Xi . With the normalized kernel function Khj

(�; �) we
estimate the marginal and joint densities by

p̂j (xj ) = n�1
nX

i=1

Khj
(xj ; Xij ); p̂jk(xj ; xk) = n�1

nX
i=1

Khj
(xj ; Xij )Khk

(xk ; Xik):

Also, by Nadaraya-Watson smoothing we estimate mj by

m̂j (xj ) = p̂j (xj )
�1n�1

nX
i=1

Khj
(xj ; Xij )Yi :

Plugging these estimators into (2-1) gives the following system of backfitting equations
to solve for f̂ : f̂ (x) �

Pd
j=1 f̂j (xj ).

(2-4) f̂j (xj ) = m̂j (xj ) �

dX
k¤j

Z 1

0

f̂k(xk)
p̂jk(xj ; xk)

p̂j (xj )
dxk ; 1 � j � d:

We call it smooth backfitting equation. The system of equations (2-4) can identify only
the sum function f̂ (x) =

Pd
j=1 f̂j (xj ) as we discuss in Section 2.2.



NONPARAMETRIC ADDITIVE REGRESSION 3017

Define p̂(x) = n�1
Pn

i=1

Qd
j=1 Khj

(xj ; Xij ), the estimator of the joint density p.
Let H(p̂) denote the space of additive functions g 2 L2(p̂) of the form g(x) = g1(x1) +

� � �+gd (xd )where gj are univariate functions. Endowed with the inner product hg; �in =R
g(x)�(x)p̂(x) dx, it is a Hilbert space. By considering the Fréchet differentials of func-

tionals defined on H(p̂) and from the first property of (2-3), we may show that

(2-5) f̂ = argmin
g2H(p̂)

Z
[0;1]d

n�1
nX

i=1

(Yi � g(x))2
dY

j=1

Khj
(xj ; Xij ) dx

whenever a solution f̂ of (2-4) exists and is unique. To solve the system of equations (2-4)
the following iterative scheme is employed. First, initialize f̂

[0]
j for 1 � j � d . In the

r th cycle of the iteration, update f̂
[r�1]

j successively for 1 � j � d by

f̂
[r]

j (xj ) = m̂j (xj ) �
X

1�k�j �1

Z 1

0

f̂
[r]

k
(xk)

p̂jk(xj ; xk)

p̂j (xj )
dxk

�
X

j+1�k�d

Z 1

0

f̂
[r�1]

k
(xk)

p̂jk(xj ; xk)

p̂j (xj )
dxk :

(2-6)

2.2 Convergence of SBF algorithm. Here, we discuss the existence and uniqueness of
the solution of the backfitting Equation (2-4), and also the convergence of the backfitting
Equation (2-6).

Consider the subspaces of L2(p̂) defined by

L2(p̂j ) = fg 2 L2(p̂) : g(x) = gj (xj ) for some univariate function gj g:

Let �̂j : L2(p̂) ! L2(p̂j ) denote projection operators such that

(2-7) �̂j (g) =

Z
[0;1]d�1

g(x)
p̂(x)

p̂j (xj )
dx�j ;

where x�j for x equals (x1; : : : ; xj �1; xj+1; : : : ; xd ). Then, the system of equations (2-4)
can be written as

(2-8) f̂ = (I � �̂j )f̂ + m̂j ; 1 � j � d;

where we have used the convention that m̂j (x) = m̂j (xj ). The equivalence between (2-4)
and (2-8) follows from

(�̂j fk)(x) =
Z 1

0

fk(xk)
p̂jk(xj ; xk)

p̂j (xj )
dxk ; 1 � j ¤ k � d;



3018 BYEONG U. PARK

which holds due to the first property of (2-3). Put

m̂˚ = m̂d + (I � �̂d )m̂d�1 + (I � �̂d )(I � �̂d�1)m̂d�2 + � � � + (I � �̂d ) � � � (I � �̂2)m̂1

and T̂ = (I � �̂d ) � � � (I � �̂1). Note that T̂ is a linear operator that maps H(p̂) to itself.
A successive application of (2-8) for j = d; d � 1; : : : ; 2; 1 gives

(2-9) f̂ = T̂ f̂ + m̂˚:

If (2-9) has a solution f̂ 2 H(p̂), then solving (2-9) is equivalent to solving (2-8) and
thus f̂ is also a solution of (2-8). To see this, consider a version of T̂ for which the index
j takes the role of the index d . Call it T̂j . Define a version of m̂˚ accordingly and call
it m̂˚;j . Then, it holds that �̂j T̂j = 0 and �̂j m̂˚;j = m̂j . Suppose that there exists
f̂ 2 H(p̂) that satisfies (2-9). If we exchange the roles of j and d , then the solution also
satisfies f̂ = T̂j f̂ + m̂˚;j . Since this holds for all 1 � j � d , we may conclude

�̂j f̂ = �̂j T̂j f̂ + �̂j m̂˚;j = 0 + m̂j ; 1 � j � d;

which is equivalent to (2-8).
The existence and uniqueness of the solution of (2-9) now follows if the linear operator

T̂ is a contraction. An application of Proposition A.4.2 of Bickel, Klaassen, Ritov, and
Wellner [1993] to the projection operators �̂j gives that H(p̂) is a closed subspace of
L2(p̂) and kT̂ kop < 1, under the condition that
(2-10)Z

[0;1]2

�
p̂jk(xj ; xk)

p̂j (xj )p̂k(xk)

�2
p̂j (xj )p̂k(xk) dxj dxk < 1 for all 1 � j ¤ k � d:

An analogue of (2-9) for the backfitting Equation (2-6) is

(2-11) f̂ [r] = T̂ f̂ [r�1] + m̂˚:

Assuming (2-10), we get from (2-9) that f̂ =
P1

j=1 T̂ j m̂˚. This and the fact that
T̂ f̂ [r�1] + m̂˚ = T̂ r f̂ [0] +

Pr�1
j=0 T̂ j m̂˚ give

(2-12) kf̂ [r]
� f̂ k2;n � kT̂ k

r
op

 
kf̂ [0]

k2;n +
1

1 � kT̂ kop
� km̂˚k2;n

!
;

where k � k2;n denote the induced norm of the inner product h�; �in defined earlier. The
following theorem is a non-asymptotic version of Theorem 1 of Mammen, Linton, and J.
Nielsen [1999].
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Tඁൾඈඋൾආ 2.1. Assume the condition (2-10). Then, it holds that the solution of the system
of equations (2-4) exists and is unique, and that the backfitting iteration (2-6) converges
to the solution.

The condition (2-10) holds with probability tending to one if pj are continuous and
bounded away from zero on [0; 1] and pjk are continuous and bounded above on [0; 1]2.
This follows since under these conditions there exists a constant 0 < C < 1 such that

sup
(xj ;xk)2[0;1]2

p̂jk(xj ; xk)
2

p̂j (xj )p̂k(xk)
� C

with probability tending to one. Thus, we can deduce that

(2-13) P
�
lim

r!1
kf̂ [r]

� f̂ k2;n = 0
�

! 1

as n ! 1. Below, we give a stronger result than (2-13) owing to Mammen, Linton,
and J. Nielsen [ibid.]. We make the following assumptions to be used in the subsequent
discussion.

(C1) The joint densities pjk are partially continuously differentiable and p is bounded
away from zero and infinity on [0; 1]d .

(C2) The bandwidths satisfy hj ! 0 and nhj hk/ logn ! 1 as n ! 1 for all 1 �

j ¤ k � d .

(C3) The baseline kernel function K is bounded, has compact support [�1; 1], is symmet-
ric about zero and Lipschitz continuous.

Define an analogue of H(p̂) as

H(p) � fg 2 L2(p) : g(x) = g1(x1) + � � � + gd (xd ); gj are univariate functions g

equipped with the inner product hg; �i =
R

g(x)�(x)p(x) dx and its induced norm k � k2.
We note that P

�
H(p̂) = H(p)

�
! 1 under the condition (C1)–(C3). This follows since

the conditions imply that there exist absolute constants 0 < c < C < 1 such that

ckgj k2 � kgj k2;n � C kgj k2

with probability tending to one. Now, define �j as �̂j with p̂ and p̂j being replaced by
p and pj , respectively. Let T = (I � �d ) � � � (I � �1). From (C1) we get that, for all
1 � j ¤ k � d ,Z

[0;1]2

�
pjk(xj ; xk)

pj (xj )pk(xk)

�2
pj (xj )pk(xk) dxj dxk < 1;
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so that T is also a contraction as a map from H(p) to itself. Furthermore, another applica-
tion of Proposition A.4.2 of Bickel, Klaassen, Ritov, andWellner [1993] gives that there is
an absolute constant 0 < c < 1 such that for any g 2 H(p) there exists a decomposition
g = g1 + � � � + gd with

(2-14) kgk2 � c

dX
j=1

kgj k2:

For such a decomposition and from successive applications of the Minkowski and Hölder
inequalities, we get

k(�̂j � �j )gk2 �

�

dX
k¤j

kgkk2

 Z �
p̂jk(xj ; xk)

p̂j (xj )pk(xk)
�

pjk(xj ; xk)

pj (xj )pk(xk)

�2
pj (xj )pk(xk) dxj dxk

!1/2

:

Using this and (2-14), we may prove k�̂j � �j kop = op(1) for all 1 � j � d and
thus kT̂ � T kop = op(1). This proves that there exists a constant 0 <  < 1 such that
P (kT̂ kop < ) ! 1 as n ! 1. The following theorem is an asymptotic version of
Theorem 2.1.

Tඁൾඈඋൾආ 2.2. (Mammen, Linton, and J. Nielsen [1999]). Assume the conditions (C1)–
(C3). Then, with probability tending to one, the solution of the system of equations (2-4)
exists and is unique. Furthermore, there exists a constant 0 <  < 1 such that

lim
n!1

P
�
kf̂ [r]

� f̂ k2 �  r(kf̂ [0]
k2 + (1 � )�1

km̂˚k2)
�
= 1:

2.3 Estimation of individual component functions. The component functions fj in
the model (1-1) are not identified, but only their sum f is. We need put constraints on fj

to identify them. There may be various constraints. We consider the constraints

(2-15)
Z 1

0

fj (xj )pj (xj ) dxj = 0; 1 � j � d:

With the constraints at (2-15) the model (1-1) is rewritten as

(2-16) f (x) = � + f1(x1) + � � � + fd (xd );

for � = E(Y ), and each fj is uniquely determined. The latter follows from (2-14) and
the fact that, for cj =

R 1
0 gj (xj )pj (xj ) dxj , we get

kgj k
2
2 = kgj � cj k

2
2 + jcj j

2
� kgj � cj k

2
2:
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For the estimators of fj we consider the following constraint.

(2-17)
Z 1

0

f̂j (xj )p̂j (xj ) dxj = 0; 1 � j � d:

For the estimation of fj that satisfy (2-15), the backfitting Equation (2-4) and the backfit-
ting Equation (2-6) are modified by simply putting m̂j � Ȳ in the place of m̂j , where Ȳ is
used as an estimator of �. Then, we may prove that, with probability tending to one, there
exists a solution (f̂j : 1 � j � d ) of the resulting backfitting equation that satisfies the
constraint (2-17). In this section, we discuss the asymptotic properties of the estimators
f̂j . The error of Ȳ as an estimator of � is of magnitude Op(n

�1/2), which is negligible
compared to nonparametric rates. In the subsequent discussion in this section, we assume
� = 0 and ignore Ȳ in the backfitting equation, for simplicity.

Put "i = Yi �
Pd

j=1 fj (Xij ) and

m̂A
j (xj ) = p̂j (xj )

�1n�1
nX

i=1

Khj
(xj ; Xij )"i ;

m̂B
j (xj ) = p̂j (xj )

�1n�1
nX

i=1

Khj
(xj ; Xij ) [fj (Xij ) � fj (xj )] ;

m̂C
jk(xj ) = n�1

nX
i=1

Z 1

0

[fk(Xik) � fk(xk)]Khj
(xj ; Xij )Khk

(xk ; Xik) dxk :

Then, from the backfitting Equation (2-4) we get

f̂j (xj ) � fj (xj ) = m̂A
j (xj ) + m̂B

j (xj ) + p̂j (xj )
�1
X
k¤j

m̂C
jk(xj )

�
X
k¤j

Z 1

0

h
f̂k(xk) � fk(xk)

i p̂jk(xj ; xk)

p̂j (xj )
dxk ; 1 � j � d:

(2-18)

The above equation is a key to deriving stochastic expansions of f̂j . To analyze the three
terms m̂A

j ; m̂B
j and m̂C

jk
in (2-18), we make the following assumptions.

(C4) The component functions fj are twice continuously differentiable.

(C5) EjY j˛ < 1 for ˛ > 5/2 and var(Y jXj = �) are continuous on [0; 1]

We also assume that hj are of order n�1/5, which is known to be optimal in univariate
smoothing.
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We write �` =
R 1

�1 t`K(t) dt and recall the definition of �j;` given immediately after
(2-3). Let rj denote a generic sequence of stochastic terms corresponding to m̂j such that

(2-19) sup
xj 2[2hj ;1�2hj ]

jrj (xj )j = op(n
�2/5); sup

xj 2[0;1]

jrj (xj )j = Op(n
�2/5):

Using the conditions (C1), (C3) and (C4) we may verify that, for 1 � j ¤ k � d ,

m̂B
j (xj ) = hj

�j;1(xj )

�j;0(xj )
f 0

j (xj ) + h2
j �2f 0

j (xj )
p0

j (xj )

pj (xj )
+

1

2
h2

j �2f 00
j (xj ) + rj (xj );

m̂C
jk
(xj )

p̂j (xj )
= h2

k�2

Z 1

0

f 0
k(xk)

@pjk(xj ; xk)/@xk

pj (xj )
dxk

+

Z 1

0

�
hk

�k;1(xk)

�k;0(xk)
f 0

k(xk) +
1

2
h2

k�2f 00
k (xk)

�
p̂jk(xj ; xk)

p̂j (xj )
dxk + rj (xj ):

(2-20)

Define

∆̃j (xj ) = h2
j �2f 0

j (xj )
p0

j (xj )

pj (xj )
+
X
k¤j

h2
k�2

Z 1

0

f 0
k(xk)

@pjk(xj ; xk)/@xk

pj (xj )
dxk ;

∆̂j (xj ) = f̂j (xj ) � fj (xj ) � m̂A
j (xj ) � hj

�j;1(xj )

�j;0(xj )
f 0

j (xj ) �
1

2
h2

j �2f 00
j (xj ):

(2-21)

Then, the equations at (2-18) and the expansions at (2-20) give

(2-22) ∆̂j (xj ) = ∆̃j (xj ) �
X
k¤j

Z
∆̂k(xk)

p̂jk(xj ; xk)

p̂j (xj )
dxk + rj (xj );

where we have used Z
m̂A

k (xk)
p̂jk(xj ; xk)

p̂j (xj )
dxk = op(n

�2/5)

uniformly for xj 2 [0; 1].
Now, we consider a system of equations for D̂ 2 H(p̂),

(2-23) D̂j (xj ) = ∆̃j (xj ) �
X
k¤j

Z
D̂k(xk)

p̂jk(xj ; xk)

p̂j (xj )
dxk ; 1 � j � d:

Arguing as in Section 2.2, solving this is equivalent to solving D̂ = T̂ D̂+∆̃˚, where ∆̃˚

is defined as m̂˚ with ∆̃j taking the roles of m̂j . Similarly, solving (2-22) is equivalent to
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solving for ∆̂ 2 H(p̂) such that ∆̂ = T̂ ∆̂ + ∆̃˚ + r˚ with r˚ being defined accordingly.
Then, under the condition (2-10) or with probability tending to one under the condition
(C1) it holds that ∆̂ = D̂ +

P1

r=0 T̂ rr˚. Since �̂j rk = op(n
�2/5) uniformly over [0; 1],

we get r˚ = r+ with the generic r+ such that r+(x) =
Pd

j=1 rj (xj ) for some rj that
satisfy (2-19). Also, from the observation that (I � �̂j ) � � � (I � �̂1)rj = op(n

�2/5)

uniformly over [0; 1] for all 1 � j � d , we have
1X

r=0

T̂ rr˚ = r˚ +

1X
r=1

T̂ rr˚ = r+:

This proves

(2-24) ∆̂ = D̂ + r+:

To identify the limit of D̂ we consider the system of integral equations for∆ 2 H(p),

(2-25) ∆j (xj ) = ∆̃j (xj ) �
X
k¤j

Z
∆k(xk)

pjk(xj ; xk)

pj (xj )
dxk ; 1 � j � d:

Again, arguing as in Section 2.2, solving (2-25) is equivalent to solving ∆ = T∆+∆˚,
where ∆˚ is defined as ∆̃˚ but with �̂j being replaced by �j . Since kT kop < 1 under
(C1), the latter equation has a unique solution ∆ =

P1

r=0 T r∆˚. A careful analysis of
the operators T and T̂ gives that (T̂ � T )

P1

r=1 T̂ r�1∆̃˚ = r+ and that

T

1X
r=2

r�2X
j=0

T j (T̂ � T )T̂ r�2�j ∆̃˚ = op(n
�2/5);

1X
r=1

T r(∆̃˚ � ∆˚) = op(n
�2/5)

uniformly over [0; 1]d . From these calculations it follows that D̂ = ∆ + r+. This with
(2-24) entails

(2-26) ∆̂ = ∆+ r+:

To get expansions for each component f̂j satisfying the constraint (2-17), we put the
following constraints on∆j .

(2-27)
Z

∆j (xj )pj (xj ) dxj = �2 h2
j

Z
f 0

j (xj )p
0
j (xj ) dxj ; 1 � j � d:

Then, using (2-17) and (2-26) with the definition of ∆̂j at (2-21), we may prove ∆̂j =

∆j + rj for 1 � j � d , establishing the following theorem.
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Tඁൾඈඋൾආ 2.3. Assume that the conditions (C1)–(C5) and that the bandwidths hj are
asymptotic to n�1/5. Then,

f̂j (xj ) = fj (xj )+ m̂A
j (xj )+hj

�j;1(xj )

�j;0(xj )
f 0

j (xj )+
1

2
h2

j �2f 00
j (xj )+∆j (xj )+ rj (xj );

where rj satisfy (2-19).

For fixed xj 2 (0; 1), all �j;1(xj ) = 0 for sufficiently large n, and (nhj )
1/2m̂A

j (xj )

are asymptotically normal with mean zero and variance

var(Y jXj = xj )pj (xj )
�1

Z
K2(u) du

. Thus, the asymptotic distributions of (nhj )
1/2(f̂j (xj ) � fj (xj )) of f̂j are readily

obtained from the stochastic expansion in the above theorem.
Although we have not discussed here, Mammen, Linton, and J. Nielsen [1999] also

developed a local linear version of the smooth backfitting technique. However, the original
proposal does not have easy interpretation as the Nadaraya-Watson estimator that we have
discussed, and its implementation is more complex than the latter. Mammen and Park
[2006] suggested a new smooth backfitting estimator that has the simple structure of the
Nadaraya-Watson estimator while maintaining the nice asymptotic properties of the local
linear smooth backfitting estimator.

2.4 Bandwidth selection and related models. In nonparametric function estimation,
selection of smoothing parameters is essential for the accuracy of the estimation. It is well
known that one should not choose these tuning parameters by minimizing a measure of fit,
such as the residual sum of squares n�1

Pn
i=1(Yi � f̂ (Xi ))

2, since it tends to choose hj

that give ‘overfitting’. Mammen and Park [2005] tackled this problem by deriving higher-
order stochastic expansions of the residual sum of squares and proposed a penalized least
squares method of choosing hj . They also proposed two plug-in bandwidth selectors that
rely on expansions of the average square errors n�1

Pn
i=1(f̂ (Xi )�f (Xi ))

2. J. P. Nielsen
and Sperlich [2005] considered a cross-validated bandwidth selector and discussed some
other practical aspects of the smooth backfitting algorithm.

A very important extension of the additive mean regression model at (1-1) or (2-16) is
to a generalized additive model,

(2-28) g(E(Y jX = x)) = f1(x1) + � � � + fd (xd );

where g is a known link function. This model accommodates discrete-type responses Y

such as Bernoulli and Poisson random variables. Yu, Park, and Mammen [2008] extended
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the idea of smooth backfitting to generalized additive models. The estimation of the ad-
ditive function f = f1 + � � � + fd based on observations of (X; Y ) involves a nonlinear
optimization problem due to the presence of the link g. To resolve the difficulty, Yu, Park,
and Mammen [ibid.] introduced the so called ‘smoothed likelihood’ and studied an inno-
vative idea of double iteration to maximize the smoothed likelihood. They proved that
the double iteration algorithm converges and developed a complete theory for the smooth
backfitting likelihood estimators of fj .

Varying coefficient models are another important class of structured nonparametric re-
gression models. The models arise in many real applications, see Hastie and Tibshirani
[1993], Yang, Park, Xue, and Härdle [2006] and Park, Mammen, Y. K. Lee, and E. R. Lee
[2015]. Their structure is similar to classical linear models, but they are more flexible
since the regression coefficients are allowed to be functions of other predictors. There are
two types of varying coefficient models that have been studied most. One type is to let
all regression coefficients depend on a single predictor, say Z: E(Y jX = x; Z = z) =

f1(z)x1 + � � � + fd (z)xd . The estimation of this type of models is straightforward. For
each given z, we may estimate f(z) � (f1(z); : : : ; fd (z)) by

f(z) = argmin
(�1;:::;�d )2Rd

nX
i=1

0@Yi �

dX
j=1

�j Xij

1A2

Kh(z; Zi ):

There have been a large body of literature on this model, see Fan and W. Zhang [1999]
and Fan and W. Zhang [2000], for example. The second type is to let different regression
coefficients be functions of different predictors, say Z � (Z1; : : : ; Zd ):

(2-29) E(Y jX = x;Z = z) = f1(z1)x1 + � � � + fd (zd )xd :

Fitting the model (2-29) is completely different from fitting the first type. The standard
kernel smoothing that minimizes

nX
i=1

0@Yi �

dX
j=1

�j Xij

1A2
dY

j=1

Khj
(zj ; Zij )

for each zwould give multivariate function estimators of fj (zj ) that also depend on other
values of predictors zk for k ¤ j . Yang, Park, Xue, and Härdle [2006] studied the esti-
mation of the latter model based on the marginal integration technique. Later, Y. K. Lee,
Mammen, and Park [2012b] extended the idea of smooth backfitting to estimating the
model.

Two limitations in the application of the model (2-29) are that the number of predictors
Xj should be the same as that of Zj and that in a modeling stage it is rather difficult
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to determine which predictors we choose to be the ‘smoothing variables’ Zj and which
to be ‘regressors’ Xj . Y. K. Lee, Mammen, and Park [2012a] removed the limitations
completely by studying a very general form of varying coefficient models. With a link
function g and a given set of d predictors, they introduced the model

(2-30) g(E(Y jX = x)) = x1

0@X
k2I1

f1k(xk)

1A+ � � � + xq

0@X
k2Iq

fqk(xk)

1A ;

where q � d and the index sets Ij are known subsets of f1; : : : ; dg and allowed to overlap
with each other, but not to include j . If each Ij consists of a single index different from
each other, then (2-30) reduces to the model (2-29), while taking X1 � 1, q = 1 and I1 =

f2; : : : ; dg gives the generalized additive model (2-28). Y. K. Lee, Mammen, and Park
[ibid.] proved that the component functions fjk are identifiable under weak conditions,
developed a powerful technique of fitting the model and presented its theory.

Other related works include Y. K. Lee, Mammen, and Park [2010], Y. K. Lee, Mam-
men, and Park [2014], Yu, Mammen, and Park [2011] and Y. K. Lee [2017], to list a few.
Among them, Y. K. Lee, Mammen, and Park [2010] considered the estimation of additive
quantile models, Y = f1(X1) + � � �+ fd (Xd ) + ", where " satisfies P (" � 0jX) = ˛ for
0 < ˛ < 1. They successfully explored the theory for both the ordinary and smooth back-
fitting by devising a theoretical mean regression model under which the least squares ordi-
nary and smooth backfitting estimators are asymptotically equivalent to the corresponding
quantile estimators under the original model. Y. K. Lee, Mammen, and Park [2014] further
extended the idea to the estimation of varying coefficient quantile models. Yu, Mammen,
and Park [2011] considered a partially linear additive model. They derived the semipara-
metric efficiency bound in the estimation of the parametric part of the model and proposed
a semiparametric efficient estimator based on smooth backfitting estimation of the additive
nonparametric part. Finally, Y. K. Lee [2017] studied the estimation of bivariate additive
regression models based on the idea of smooth backfitting.

3 Errors-in-variable additive models

In this section we consider the situation where the predictors Xj are not directly observed
in the additive model (1-1), but contaminated Zj = Xj +Uj with measurement errors Uj

are. Many people worked on errors-in-variables problems in nonparametric density and
regression estimation. A few notable examples include Carroll and Hall [1988], Stefanski
and Carroll [1990], Fan and Truong [1993], Delaigle, Hall, and Meister [2008], Delaigle,
Fan, and Carroll [2009], Delaigle and Hall [2016] and Han and Park [2018]. Among them,
Han and Park [ibid.] is considered as the first attempt dealing with errors-in-variables in
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structured nonparametric regression. In this section we outline the work of Han and Park
[ibid.] on the model (1-1) and discuss its extensions.

3.1 Normalized deconvolution kernel. Suppose that we observe Zij = Xij +Uij for
1 � i � n and 1 � j � d , where we assume that Ui � (Ui1; : : : ; Uid ) are independent
of Xi . We also assume that Uij are independent and have known densities. Write Zi =

(Zi1; : : : ; Zid ). The task is to estimate the mean regression function f = E(Y jX = �)

with the additive structure f (x) = f1(x1) + � � � + fd (xd ) using the contaminated data
(Zi ; Yi ); 1 � i � n. The very core of the difficulty is that the observed responses Yi forZi

near a point of interest, say x, may not contain relevant information about the true function
f (x) because of the measurement errors Ui � (Ui1; : : : ; Uid ). Thus, local smoothing of
Yi with a conventional kernel weighting scheme that acts on Zi fails.

In the estimation of a density p0 of a random variable X taking values in R, one uses
a special kernel scheme to effectively deconvolute irrelevant information contained in the
contaminated Z = X + U . For a baseline kernel function K � 0, define

(3-1) K̃h(u) =
1

2�

Z 1

�1

e�itu �K(ht)

�U (t)
dt;

where �W for a random variable W denotes the characteristic function of W . This kernel
has the so called ‘unbiased scoring’ property that

(3-2) E
�
K̃h(x � Z)jX

�
= Kh(x � X):

The property (3-2) basically tells that the bias of the deconvolution kernel density estima-
tor p̂0(x) = n�1

Pn
i=1 K̃h(x � Zi ) is the same as the ‘oracle’ estimator p̂0;ora(x) =

n�1
Pn

i=1 Kh(x � Xi ) that is based on unobservable Xi and the conventional kernel
scheme Kh.

In Section 2 we have seen that the first property of (2-3) is essential in the estimation
of the additive model (1-1). One may think of normalizing the deconvolution kernel as
defined at (3-1) as in (2-2) with K̃hj

(xj � u) taking the role of Khj
(xj � u). But, it turns

out that the resulting kernel violates the corresponding version of the unbiased scoring
property (3-2). Han and Park [ibid.] noted that

K̃hj
(xj � z) =

1

2�hj

Z 1

�1

e�it(xj �z)/hj
'K(t; xj ; hj )

�Uj
(t/hj )

dt;

where 'K(t; xj ; hj ) =
R 1
0 eit(xj �v)/hj Khj

(xj � v) dv. The basic idea was then to re-
placeKhj

(xj ��) in the definition of 'K(t; xj ; hj ) by the normalized kernelKhj
(xj ; �) as

defined at (2-2). The resulting kernel is not well-defined, however, for xj on the boundary
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region [0; hj ) [ (1 � hj ; 1]. To remedy this, Han and Park [2018] proposed a new kernel
scheme K̃?

hj
defined by

(3-3) K̃?
hj
(xj ; z) =

1

2�hj

Z 1

�1

e�it(xj �z)/hj
�K(t; xj ; hj )�K(t)

�Uj
(t/hj )

dt;

where �K(t; xj ; hj ) =
R 1
0 eit(xj �v)/hj Khj

(xj ; v) dv. Han and Park [ibid.] proved that
K̃?

hj
has both the properties of normalization and unbiased scoring under the following

condition (A1). Let bc denote the largest integer that is less than or equal to  , and K(`)

the `-th derivative of K.

(A1) There exist constants ˇ � 0 and 0 < c < C < 1 such that c(1 + jt j)�ˇ �

j�Uj
(t)j � C (1 + jt j)�ˇ for all t 2 R and for all 1 � j � d . For such constant ˇ

the baseline kernel K is bˇ+1c-times continuously differentiable and K(`)(�1) =

K(`)(1) = 0 for 0 � ` � bˇc.

Tඁൾඈඋൾආ 3.1. (Han and Park [ibid.]). Under the conditions (A1) and (C3), the integral
in (3-3) exists for all xj 2 [0; 1] and z 2 R. Furthermore,

R 1
0 K̃?

hj
(xj ; z) dxj = 1 for all

z 2 R and

E
�
K̃?

hj
(xj ; Zj )

ˇ̌
Xj = uj

�
= Khj

(xj ; �) � Khj
(uj ) for all xj ; uj 2 [0; 1]:

3.2 Theory of smooth backfitting. With the normalized and smoothed deconvolution
kernel K̃?

hj
introduced in Section 3.1, we simply replace p̂j ; p̂jk and m̂j in (2-4), respec-

tively, by

p̂?
j (xj ) = n�1

nX
i=1

K̃?
hj
(xj ; Zij );

p̂?
jk(xj ; xk) = n�1

nX
i=1

K̃?
hj
(xj ; Zij )K̃

?
hk
(xk ; Zik);

m̂?
j (xj ) = p̂?

j (xj )
�1n�1

nX
i=1

K̃?
hj
(xj ; Zij )Yi :

Define p̂?(x) = n�1
Pn

i=1

Qd
j=1 K̃?

hj
(xj ; Xij ) and �̂?

j as �̂j at (2-7) with p̂ and p̂j

being replaced by p̂? and p̂?
j , respectively. Let T̂ ? = (I � �̂?

d
) � � � (I � �̂?

1 ). We can
express the resulting backfitting equation as equations

(3-4) f̂ ? = (I � �̂?
j )f̂

? + m̂?
j ; 1 � j � d:
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As we argued in Section 2.2, solving this system of equations is equivalent to solving
f̂ ? = T̂ ?f̂ ? + m̂?

˚, where m̂?
˚ is defined as m̂˚ with �̂j and m̂j being replaced by �̂?

j

and m̂?
j , respectively. The corresponding version of the backfitting algorithm as at (2-11)

is given by f̂ ?[r] = T̂ ?f̂ ?[r�1] + m̂?
˚; r � 1. It holds that f̂ ?[r] converges to f̂ ? as

r ! 1 under the condition that
(3-5)Z

[0;1]2

"
p̂?

jk
(xj ; xk)

p̂?
j (xj )p̂

?
k
(xk)

#2

p̂?
j (xj )p̂

?
k(xk) dxj dxk < 1 for all 1 � j ¤ k � d:

An analogue of Theorem 2.2 also holds. Wemake the following additional assumptions
for this.

(A2) For the constant ˇ � 0 in the condition (A1), jtˇ+1�0
Uj

(t)j = O(1) as jt j ! 1

and
R

jtˇ �K(t)j dt < 1.

(A3) For the constant ˇ � 0 in the condition (A1), hj ! 0 and n(hj hk)
1+2ˇ/ logn !

1 as n ! 1 for all 1 � j ¤ k � d .

Tඁൾඈඋൾආ 3.2. (Han and Park [ibid.]). Assume the conditions (C1), (C3) and (A1)–(A3).
Then, with probability tending to one, the solution of the system of equations (3-4) exists
and is unique. Furthermore, there exists a constant 0 <  < 1 such that

lim
n!1

P
�
kf̂ ?[r]

� f̂ ?
k2 �  r(kf̂ ?[0]

k2 + (1 � )�1
km̂?

˚k2)
�
= 1:

Now we discuss the asymptotic properties of f̂ ? and its components. To identify the
individual components f̂ �

j , we use the constraints

(3-6)
Z 1

0

f̂ ?
j (xj )p̂

?
j (xj ) dxj = 0; 1 � j � d:

As in Section 2, we assume EY = 0 for simplicity so that f (x) = f1(x1) + � � �+ fd (xd )

with fj satisfying the constraints (2-15). We also set hj � h.
The asymptotic analysis of f̂ ?

j is much more complex than in the case of no measure-
ment error. To explain the main technical challenges, we note that

(3-7) f̂ ?
j � fj = ı̂j �

X
k¤j

�̂?
j (f̂

?
k � fk); 1 � j � d;

where ı̂j = m̂?
j � �̂?

j (f ). Since

�j (f ) =

Z
[0;1]d�1

E(Y jX = x)
p(x)

pj (xj )
dx�j = E(Y jXj = xj ) = mj ;
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ı̂j basically represent the errors of m̂?
j as an estimator ofmj . Each ı̂j corresponds to m̂A

j +

m̂B
j +p̂�1

j

P
k¤j m̂C

jk
in the nomeasurement error case. Consider the same decomposition

ı̂j = m̂?A
j + m̂?B

j + p̂?�1
j

P
k¤j m̂?C

jk
, where m̂?A

j ; m̂?B
j and

p̂?�1
j

P
k¤j m̂?C

jk
are defined in the same way as m̂A

j ; m̂B
j and p̂�1

j

P
k¤j m̂C

jk
, respec-

tively, withKhj
(xj ; Xij ) andKhk

(xk ; Xik) being replaced by K̃?
hj
(xj ; Zij ) and K̃?

hk
(xk ; Zik),

respectively. We have seen in Section 2 that the error components m̂B
j and m̂C

jk
of m̂j �

�̂j (f ) are spread, through the backfitting operation, into the errors of the other component
function estimators f̂k ; k ¤ j , to the first order. In the present case, the errors are of two
types. One type is for the replacement of Khj

with Xij by K̃?
hj

with contaminated Zij ,
and the other is for those one would have when one uses Khj

with Xij in the estimation
of f . The analysis of the first type is more involved. It has an additional complexity that
we need to analyze whether the first type of errors in m̂?B

j and m̂?C
jk

are spread into the
errors of f̂ ?

k
for k ¤ j , through the backfitting operation.

Han and Park [2018] solved this problem and proved the following theorem. To state
the theorem, let

�n(ˇ) =

8̂<̂
:
1 ˇ < 1/2p
log h�1 ˇ = 1/2

h1/2�ˇ ˇ > 1/2:

Also, let r?
j be generic stochastic terms such that

sup
xj 2[2hj ;1�2hj ]

jr?
j (xj )j = op(h

2); sup
xj 2[0;1]

jr?
j (xj )j = Op(h

2):

Tඁൾඈඋൾආ 3.3. (Han and Park [ibid.]). Assume the conditions (C1), (C3)–(C5), (A1) and
(A2). Assume also that nh3+4ˇ/ logn is bounded away from zero. Then, uniformly for
xj 2 [0; 1],

f̂ ?
j (xj ) = fj (xj ) + hj

�1;j (xj )

�0;j (xj )
f 0

j (xj ) +
1

2
h2

j �2f 00
j (xj ) + ∆j (xj )

+ r?
j (xj ) + Op

 r
logn

nh1+2ˇ
� �n(ˇ)

!
; 1 � j � d;

where ∆j are the same as those in Theorem 2.3.
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The rates of convergence of f̂ ?
j to their targets fj are readily obtained from Theo-

rem 3.3. For example, in case ˇ < 1/2 we may get

sup
xj 2[2hj ;1�2hj ]

jf̂ ?
j (xj ) � fj (xj )j = Op

�
n�2/(5+2ˇ)

p
logn

�
;

sup
xj 2[0;1]

jf̂ ?
j (xj ) � fj (xj )j = Op

�
n�1/(5+2ˇ)

�
by choosing h � n�1/(5+2ˇ). The uniform rate in the interior is known to be the optimal
rate that one can achieve in one-dimensional deconvolution problems, see Fan [1991]. For
other cases where ˇ � 1/2, see Corollary 3.5 of Han and Park [2018].

3.3 Extension to partially linear additive models. In this subsection we consider the
model

(3-8) Y = �>X+ f1(Z1) + � � � + fd (Zd ) + ";

where " is independent of the predictor vectors X � (X1; : : : ; Xp)
> and Z � (Z1; : : : ;

Zd )
>, � are unknown and fj are unknown univariate functions. We do not observeX and

Z, but the contaminatedX� = X+U andZ� = Z+V for measurement error vectorsU and
V. We assume that " is also independent of (U;V),U has mean zero and a known variance
ΣU and is independent of V, Vj are independent across j and have known densities, and
(U;V) is independent ofX and Z. Below, we outline the work of E. R. Lee, Han, and Park
[2018] that studies the estimation of � and fj in the model (3-8) based on independent
and identically distributed observations (X�

i ;Z�
i ; Yi ); 1 � i � n.

Let H be the space of square integrable functions g : Rd ! R such that g(z) =

g1(z1) + � � � + gd (zd ). Let Π(�jH) denote the projection operator onto H. Define � =

Π(E(Y jZ = �)jH) and �j = Π(E(Xj jZ = �)jH); 1 � j � p. We write � =

(�1; : : : ; �p)
>. Under the condition that D := E(X � �(Z))(X � �(Z))> is positive

definite, it holds that

(3-9) � = D�1E(X � �(Z))(Y � �(Z)) let
= D�1c:

If we observe Xi and Zi , then the estimation of � is straightforward from the Equa-
tion (3-9). If we observeZi andX�

i but notXi , thenwemay employ the standard technique
that corrects ‘attenuation effect’ due to the measurement errors Ui in the estimation of D,
see Liang, Härdle, and Carroll [1999].

In our setting where both Xi and Zi are not available, we may estimate � and � by
the technique we have discussed in Section 3.1 with the normalized deconvolution kernel
scheme. Call them �̂? and �̂?, respectively. A further complication here is that we may
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not use �̂?(Zi ) and �̂?(Zi ) in a formula for estimating � that basically replaces the ex-
pectations in (3-9) by the corresponding sample average, since Zi are not available. E. R.
Lee, Han, and Park [2018] successfully addressed this problem by observing the following
identities.

D =

Z
[0;1]d

E
�
(X�

� �(z))(X�
� �(z))>

ˇ̌̌
Z = z

�
pZ(z) dz � ΣU;

c =
Z
[0;1]d

E
�
(X�

� �(z))(Y � �(z))>
ˇ̌̌
Z = z

�
pZ(z) dz;

where pZ denote the joint density of Z. Using the normalized deconvolution kernel func-
tion K̃?

bj
introduced in Section 3.1 with bandwidth bj being possibly different from hj

that are used to estimate � and �, we may estimate D and c by

D̂ = n�1
nX

i=1

Z
[0;1]d

(X�
i � �̂?(z))(X�

i � �̂?(z))>

dY
j=1

K̃?
bj
(zj ; Z�

ij ) dz � ΣU;

ĉ = n�1
nX

i=1

Z
[0;1]d

(X�
i � �̂?(z))(Yi � �̂?(z))

dY
j=1

K̃?
bj
(zj ; Z�

ij ) dz:

These gives an estimator �̂ = D̂�1ĉ of � .
We may then estimate the additive function f = f1 + � � � + fd and its component fj

by applying the technique discussed in Section 3. In this application we takes Yi � �̂>X�
i

as responses and Z�
i as the contaminated predictor values. Since the rate of convergence

of the parametric estimator �̂ is faster than the nonparametric rate, as we will see in the
following theorem, the resulting estimators of f and its components fj have the same first-
order asymptotic properties as the corresponding oracle estimators that use Yi � �>X�

i as
responses. The asymptotic properties of the oracle estimators are the same as in Theo-
rem 3.3. Theorem 3.4 below demonstrates the best possible rates that �̂ can achieves in
the three ranges of ˇ, the index for the smoothness of measurement error distribution in the
condition (A1). To state the theorem for �̂ , we make the following additional assumptions.

(B1) E(X2
j j Z = �) are bounded on [0; 1]d .

(B2) For 1 � j � p, the component functions of the additive function �j are twice
continuously differentiable on [0; 1].

(B3) E(X � �(Z))(X � �(Z))> is positive definite.

(B4) There exist constants C > 0 such that EeuW � exp(C u2/2) for all u, for W =

Uj ; Xj and ".
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Tඁൾඈඋൾආ 3.4. (E. R. Lee, Han, and Park [ibid.]). Assume the condition (C1) holds for the
marginal and joint densities of Zj and Zjk for all 1 � j ¤ k � d . Also, assume the
conditions (C3), (A1), (A2) and (B1)–(B4) hold. Then, (i) �̂ � � = Op(n

�1/2) when ˇ <

1/2 if hj � n�˛1 and bj � n�˛2 with 1/4 � ˛2 < ˛1/(2ˇ) and maxf1/6; ˇ/2g < ˛1 <

1/(3 + 2ˇ); (ii) �̂ � � = Op(n
�1/2 logn) when ˇ = 1/2 if hj � bj � n�1/4

p
logn;

(iii) �̂ � � = Op(n
�1/(1+2ˇ)

p
logn) when ˇ > 1/2 if hj � bj � n�1/(2ˇ+4)(logn)1/4.

4 Hilbertian additive models

The analysis of non-Euclidean data objects is an emerging area in modern statistics. A
well-known and most studied example is functional data analysis. There have been a few
attempts for nonparametric models in this area. These include Dabo-Niang and Rhomari
[2009], Ferraty, Laksaci, Tadj, and Vieu [2011] and Ferraty, Van Keilegom, and Vieu
[2012]. They studiedNadaraya-Watson estimation of the full-dimensional regression func-
tion E(Y jX = �) without any structure when the response is in a separable Hilbert or
Banach space. The full-dimensional estimator suffers from the curse of dimensionality.
More recently, X. Zhang, Park, and Wang [2013], Han, Müller, and Park [2018] and Park,
Chen, Tao, and Müller [2018] considered the estimation of structured nonparametric mod-
els for functional data, but their studies were either for SBF methods applied to Y (t) for
each t or for models based on finite number of functional principal/singular components
of predictors and responses. Thus, the structured nonparametric models and the methods
of estimating them were actually for finite-dimensional Euclidean variables.

In this section we introduce an additive model with response taking values in a Hilbert
space and discuss briefly some statistical notions that lay the foundations for estimating
the model. This discussion is largely based on the recent work in progress by Jeon [2018].
Let Y be a random element taking values in a separable Hilbert space H. We confine our
discussion to the casewhere the predictorX = (X1; � � � ; Xd )

> takes values in [0; 1]d , how-
ever. This is mainly because SBF methods discussed in the previous sections require the
marginal and joint densities of Xj and (Xj ; Xk), which generally do not exist in infinite-
dimensional non-Euclidean cases. For the case where the predictors do not have densities,
one may employ ‘surrogate probability density functions’ as discussed in Delaigle and
Hall [2010]. Let us denote a vector addition and a real-scalar multiplication by ˚ and
ˇ, respectively. For Borel measurable maps fj : [0; 1] ! H as additive components, an
additive model for E(YjX) may be written as

(4-1) E(YjX) = f1(X1) ˚ � � � ˚ fd (Xd ):

Belowwe introduce the notion of Bochner integral, and then discuss briefly its applications
to some important statistical notions for the SBF theory.
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4.1 Bochner integration. Bochner integral is defined for Banach space-valued maps.
We start with the classical definition. Let (Z; A; �) be a measure space and B be a Banach
space with a norm denoted by k � k. We say a map m : Z ! B is �-simple if m =Ln

i=1 bi ˇ 1Ai
for bi 2 B and disjoint Ai 2 A with �(Ai ) < 1. In this case, the

Bochner integral ofm is defined byZ
m d� =

nM
i=1

bi ˇ �(Ai ):

Amapm : Z ! B is called �-measurable ifm is an almost everywhere limit of �-simple
maps. A �-measurable map m is called Bochner integrable if

R
kmkd� < 1. In this

case, the Bochner integral ofm is defined byZ
m d� = lim

n!1

Z
mn d�

for a sequence of �-simple mapsmn such thatmn ! m a:e: [�].
In statistical applications of Bochner integrals, themeasure� in ameasure space (Z; A; �)

is the distribution of a random variable. In the case of the additive maps fj in (4-1), � cor-
responds to PX�1

j where P is the probability measure of the probability space (Ω; F ; P )

where Xj is defined. The classical definition given above for �-measurable maps is not
appropriate since PX�1

j -measurability of fj is not equivalent to Borel-measurability of
fj . In the model (4-1), we implicitly assume that fj (Xj ) are random elements, i.e., Borel-
measurable with respect to F , as is usual in all statistical problems. For this reason we
assume in the model (4-1) that each fj is Borel-measurable with respect to the Borel � -
field of [0; 1].

The notion of Bochner integral may be extended to Borel-measurable maps. We intro-
duce it briefly here. We refer to Cohn [2013] for more details. For a Banach spaceB, a map
m : Z ! B is called simple if m takes only finitely many values. A map m : Z ! B
is called strongly measurable if m is Borel-measurable and m(Z) is separable. A map
m : Z ! B is called strongly integrable ifm is strongly measurable and

R
Z kmk d� < 1.

Ifm is strongly integrable, then there exists a Cauchy sequence of strongly integrable sim-
ple mapsmn such that limn;m!1

R
kmn �mmk d� ! 0 and limn!1 mn(z) = m(z) for

all z 2 Z. In this case,
R
m d� is defined as limn!1

R
mn d�.

4.2 Statistical properties of Bochner integrals. Since the notion of Bochner integral
is new in statistics, statistical properties of this integral have been rarely studied. There are
many statistical notions and properties one needs to define and derive to develop relevant
theory for estimating the model (4-1). It was only recent that Jeon [2018] studied such
basic ingredients. Below, we present two formulas regarding the notions of expectation
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and of conditional expectation that are essential in developing further theory for the SBF
estimation of (4-1).

Let B be a separable Banach space. Let Z andW be random elements taking values in
� -finite measure spaces (Z; A; �) and (W; B; �), respectively. We assume PZ�1 � �,
PW�1 � � and P (Z;W)�1 � � ˝ �, where PZ�1, PW�1 and P (Z;W)�1 are the
probability distributions of Z,W and (Z;W), respectively, so that there exist densities of
Z,W and (Z;W), denoted by pZ, pW and pZ;W, respectively. We first introduce a general
expectation formula, and then a conditional expectation formula, in terms of the densities
of Z,W and (Z;W).

Pඋඈඉඈඌංඍංඈඇ 4.1. (Jeon [ibid.]) Assume that f : Z ! B is a strongly measurable map
such that E(kf(Z)k) < 1. Then, E(f(Z)) =

R
Z f(z) ˇ pZ(z) d�.

Pඋඈඉඈඌංඍංඈඇ 4.2. (Jeon [ibid.]) Assume that pW 2 (0; 1) on W and that f : Z ! B is a
strongly measurable map such that E(kf(Z)k) < 1. Let g : W ! B be a map defined
by

g(w) =

(R
Z f(z) ˇ

pZ;W(z;w)
pW(w) d�; if w 2 DW

g0(w); otherwise

where DW = fw 2 W :
R

Z kf(z)k pZ;W(z;w) d� < 1g and g0 : W ! B is any strongly
measurable map. Then, g is strongly measurable and g(W) is a version of E(f(Z)jW).

4.3 Discussion. The additive regression model (4-1) for Hilbertian response have many
important applications. Non-Euclidean data objects often take values in Hilbert spaces.
Examples include functions, images, probability densities and simplices. Among them,
the latter two data objects have certain constraints. A density is non-negative and its inte-
gral over the corresponding domain where it is defined equals 1. A simplex data object,
(v1; � � � ; vD)> with vk > 0 for 1 � k � D and

PD
k=1 vk = 1, has similar constraints.

Analyzing such data objects with standard Euclidean regression techniques would give
estimates that are off the space where the data objects take values. The approach based
on the model (4-1) with the corresponding Hilbertian operations ˚ and ˇ would give a
proper estimate of the regression map that forces its values lie in the space of the data ob-
jects. It also avoids the curse of dimensionality when d is high. This way would lead us to
a powerful nonparametric technique that unifies various statistical methods for analyzing
non-Euclidean data objects.
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