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DECIDABILITY IN LOCAL AND GLOBAL FIELDS
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Abstract

This lecture highlights some recent advances on classical decidability issues in
local and global fields.
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1 Introduction

In 1900, at the International Congress of Mathematicians in Paris, Hilbert presented his
celebrated and influential list of 23 mathematical problems (Hilbert [1900]). One of them
is

Hilbert’s 10th Problem (H10) Find an algorithm which gives on INPUT any
f (X1; : : : ; Xn) 2 Z[X1; : : : ; Xn]

OUTPUT
�
YES if 9x 2 Zn such that f (x) = 0

NO else

Hilbert did not ask to prove that there is such an algorithm. He was convinced that there
should be one, and that it was all a question of producing it — one of those instances of
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Hilbert’s optimism reflected in his famous slogan ‘wir müssen wissen, wir werden wissen’
(‘we must know, we will know’). As it happens, Hilbert was too optimistic: after previous
work since the 50’s by Martin Davis, Hilary Putnam and Julia Robinson (cf., e.g., Davis,
Putnam, and J. Robinson [1961]), Yuri Matiyasevich showed in 1970 that there is no such
algorithm (Y. V. Matiyasevich [1970b]). The key result here is the most remarkable so-
called DPRM-Theorem that every (algorithmically) listable set of integers is diophantine,
i.e., first-order definable in the language of rings Lring := f+; �; 0; 1g by an existential
formula.

The original formulation of Hilbert’s 10th Problem was weaker than the standard ver-
sion above in that he rather asked ‘Given a polynomial f , find an algorithm ...’. So maybe
you could have different algorithms depending on the number of variables and the degree.
Yet it is even possible to find a single polynomial for which no such algorithm exists —
this is essentially because there are universal Turing Machines.

One should, however, mention that, in the special case of n = 1, that is, for polynomials
in one variable, there is an easy algorithm: if, for some x 2 Z, f (x) = 0 then x j f (0);
hence one only has to check the finitely many divisors of f (0). Similarly, by the effective
version of the Hasse-Minkowski-Local-Global-Principle for quadratic forms and some
extra integrality considerations, one also has an algorithm for polynomials in an arbitrary
number of variables, but of total degree � 2. And, even if there is no general algorithm, it
is one of the major projects of computational arithmetic geometry to exhibit other families
of polynomials for which such algorithms exist.

Let us point in a different direction of generalizing Hilbert’s 10th Problem, namely,
generalizing it to rings other than Z: If R is an integral domain, there are two natural
ways of generalizing H10:

H10/R = H10 with the 2nd occurrence of Z replaced by R

H10+/R = H10 with both occurrences of Z replaced by R

Observation 1.1. Let R be an integral domain whose field of fractions does not contain
the algebraic closure of the prime field (Fp resp. Q). Then

H10/R is solvable , Th9+(R) is decidable
H10+/R is solvable , Th9+(hR; r j r 2 Ri) is decidable,

where Th9+ denotes the positive existential theory consisting of existential sentences where
the quantifier-free part is a conjunction of disjunctions of polynomial equations (no in-
equalities).

Note that the language on the right hand side of the 2nd line contains a constant symbol
for each r 2 R.
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Proof: ‘(’ is obvious in both cases. For ‘)’ one has to see that a disjunction of two
polynomial equations is equivalent to (another) single equation, and, likewise, for con-
junctions: By our assumption we can find some monic g 2 Z[X ] of degree > 1 which is
irreducible over R. Then, for any polynomials f1; f2 over Z resp. R and for any tuple x

over R,
f1(x) = 0 _ f2(x) = 0 () f1(x) � f2(x) = 0

f1(x) = 0 ^ f2(x) = 0 () g(f1(x)
f2(x)

) � f2(x)
degg = 0

Since in fields, inequalities can be expressed by a positive existential formula (f (x) ¤

0 $ 9y f (x) � y = 1), we immediately obtain the following:

Corollary 1.2. Let K be a field not containing the algebraic closure of the prime field.
Then

H10/K is solvable , Th9(K) is decidable.

In fact, the same is true for OK , the ring of integers of a number field K:

Observation 1.3. If K is a number field,

OK ˆ 8x[x ¤ 0 $ 9y x j (2y � 1)(3y � 1)]:

Hence Th9(OK) = Th9+(OK).

One of the biggest open questions in the area is

Question 1.4. Is H10/Q solvable?

Let us recall that, by the ground breaking work of Kurt Gödel, the full first order theory
of Z is undecidable, so there is no algorithm which decides, on INPUT any first-order
Lring -sentence �, whether or not � holds in Z (cf. Gödel [1931]). J. Robinson [1949]
managed to find an Lring -first-order definition of Z in Q, thus showing, via Gödel’s
Theorem, that the full first-order theory of Q is also undecidable. If one had an existential
first-order Lring -formula defining Z in Q then one could, via Matiyasevich’s Theorem,
conclude that Hilbert’s 10th Problem over Q is also unsolvable. However, the best we
have at the moment (in terms of logical complexity) is a universal formula for Z in Q (cf.
Theorem 3.1 below).

Hilbert’s 10th Problem for the ring of integers of a number field (that is, a finite exten-
sion ofQ— they are the global fields of characteristic 0) has been shown to be unsolvable
in several cases, the general case could sofar only be proven modulo a (widely believed)
conjecture regarding elliptic curves (see section 3.2).



66 JOCHEN KOENIGSMANN

For global fields of positive characterisitc, that is, for finite extensions of the rational
function field Fp(t) over the finite field Fp in one variable t , Hilbert’s 10th Problem,
again, has no solution (cf. section 3.3).

Many of the results obtained for global fields rely heavily on results and techniques de-
veloped for local fields. Local fields are defined to be fields F which are locally compact
with respect to the topology induced by some non-trivial absolute value on F . It turns out
that local fields are precisely the completions of global fields (w.r.t such absolute values)
and they are classified as follows: the archimedean local fields are just the field R of real
numbers and the field C of complex numbers; the non-archimedean local fields of charac-
teristic 0 are precisely all finite extensions of Qp , the field of p-adic numbers, where p is
any rational prime; and the non-archimedean local fields of positive characteristic p are
precisely the finite extensions of Fp((t)), the field of formal Laurent series over the field
Fp with p elements. For the non-archimedean local fields, the absolute value is induced
by a canonical valuation, which is the p-adic valuation on Qp and the t -adic valuation
on Fp((t)), and these valuations extend uniquely to all finite extensions, a property of
valuations called henselian.

All decidability issues for the two archimedean local fields have been settled by Tarski
in the 1930s: The full first order theory ofR and ofC is decidable (and hence, in particular,
Hilbert’s 10th Problem is solvable for those two fields).

The decidability of Qp was proved independently by Ax and Kochen [1965] and by
Eršov [1965]. They effectively axiomatized Qp as a henselian valued field of characteris-
tic 0whose residue field is Fp , whose value group is aZ-group (so elementarily equivalent
to the ordered abelian group of integers) such that the value of p is minimal positive. And
there are similar axiomatizations for all finite extensions of Qp (see Prestel and Roquette
[1984] for a general treatment of p-adic fields).

Since those results of Ax-Kochen and Ershov in 1965 it has been a big open problem
whether the theory of Fp((t)) is decidable as well. Recently major progress has beenmade
on this problem which we will discuss in section 2 below.

There are several important infinite extension of local and global fields for which de-
cidability issues are of great interest, too. For example, the field Qab , the maximal Galois
extension of Q with an abelian Galois group which, by the famous Kronecker-Weber The-
orem, is just the field obtained from Q by adjoining all roots of unity, is not known to be
decidable or undecidable. Similarly, one does not know this about Qsolv , the maximal
Galois extension of Q with prosolvable Galois group which is obtained from Q by iter-
atedly adjoining radicals (n-th roots of elements for arbitrary n). It is an open problem
in Field Arithmetic whether or not Qsolv is pseudo-algebraically closed in the sense that
every absolutely irreducible curve defined over Qsolv has a Qsolv-rational point (Prob-
lem 11.5.9(a) in Fried and Jarden [2008]). If this Problem has a positive answer and if the
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famous Shafarevich Conjecture that the absolute Galois group of Qab is a free profinite
group is true then one can show that Qsolv is decidable.

In section 4 we will briefly consider two infinite extensions of Qp for which there has
been recent progress, namely Qur

p , the maximal unramified extension of Qp which turns
out to be decidable and model theoretically well behaved, and Qab

p , the maximal abelian
extension of Qp , for which a promising new suggestion for a first-order axiomatization
will be presented.

Some notation from valuation theory: The reader is expected to be acquainted with
the basics of valuation theory (cf., e.g., Engler and Prestel [2005]). For a valued field
(K; v), the valuation ring will be denoted by Ov , the residue field by Kv and the value
group by vK.

2 Local fields of positive characteristic

Regarding the question of decidability of the field Fq((t)) of formal Laurent series over a
finite field Fq there have been two recent breakthroughs: one is the result of Anscombe-
Fehm that the existential Lring -theory of Fq((t)) is decidable (Theorem 2.1). The other
is a new promising suggestion for an effective first order axiomatization for Fq((t)) using
the notion of extremal valued fields.

Throughout this section we will fix q, a power of the rational prime p > 0.

2.1 The existential theory of Fq((t)). In Denef and Schoutens [2003], Jan Denef and
Hans Shoutens managed to prove that the existential theory of Fq((t)) in Lring [ ftg,
the language of rings augmented by a constant symbol for t , is decidable if one assumes
resolution of singularities in positive characteristic. Sylvy Anscombe and Arno Fehm then
found a surprisingly elementary unconditional proof for the decidability of the existential
Lring -theory of Fq((t)) (see S. Anscombe and Fehm [2016]). More generally they prove
the following
Theorem 2.1. Let (K; v) be an equicharacteristic henselian valued field (so char K =

char Kv). Then the existential Lval -theory of K is decidable if and only if the existential
Lring -theory of the residue field Kv is decidable.

Here Lval = Lring [ fOg is the language of valued fields, that is, the language of
rings augmented by a unary predicate symbol O for the valuation ring. There are many
alternative possibilities for a first order language for valued fields (you could, for example,
have a three-sorted language distinguishing the field sort, the residue field sort and the
value group sort with additional function symbols for the valuation map and the canonical
restriction map to the residue field). But it turns out that all these languages are mutually
translatable into each other, so they all have the same expressive power.



68 JOCHEN KOENIGSMANN

Let us point out that, for the question of the decidability of the existential theory of
Fq((t)), it makes no difference whether you ask this question about the existential theory
in Lring or in Lval , because, by the main theorem of W. Anscombe and Koenigsmann
[2014], the valuation ring Fq [[t ]] of Fq((t)) is existentially first-order definable in the
language of rings. This leads immediately to the following

Corollary 2.2. The existential Lring -theory of Fq [[t ]] is dedicable.

So, in other words, Hilbert’s 10th Problem has a positive solution both for Fq((t)) and
for Fq [[t ]].

A more general result on almost existential definability of henselian valuation rings
in valued fields with finite or pseudo-finite residue fields can be found in Cluckers, Der-
akhshan, Leenknegt, and Macintyre [2013].

Whether or not the existential Lring [ ftg-theory of Fq((t)) is decidable (without as-
suming resolution of singularities) is still open.

2.2 Axiomatizing Fq((t)). The biggest open question in the model theory of valued
fields, however, is the question whether the full first-order theory of Fq((t)) is decid-
able. There have been a number of suggestions of how to axiomatize this field. The
most promising suggestion builds on the notion of extremal valued fields, originally intro-
duced (though with a ‘wrong’ definition) by Ershov [2004], then, following a suggestion
of Sergei Starchenko, the definition was amended and the ‘correct’ definition was put for-
ward in Ershov [2009] and in Azgin, Kuhlmann, and Pop [2012]. The suggested axioma-
tization for Fq((t)) given below first appeared in S. Anscombe and Kuhlmann [2016].

Definition 2.3. A valued field (K; v) is extremal if, for every polynomial f (X1; : : : ; Xn)

2 K[X1; : : : ; Xn], the set

fv(f (a1; : : : ; an)) j a1; : : : ; an 2 Ovg � vK [ f1g

has a maximal element.

It turns out that extremal valued fields are algebraically maximal, that is, for each finite
extension (L; w)/(K; v), the fundamental equality ‘n = e � f ’ holds, where n = [L : K],
e = [wL : vK] and f = [Lw : Kv], and so, in particular, extremal fields are henselian.
Moreover, their value group is either divisible or a Z-group (elementarily equivalent to
the ordered abelian groupZ of integers) and that in the first case the residue field has to be
large in the sense of having infinitely many rational points for each algebraic curve with
at least one rational point (cf. Pop [1996]).

The axiomatization for Fq((t)) using this notion of extremal valued fields is now very
simple:
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(1) (K; v) is an extremal valued field of charactersitic p,

(2) the value group vK is a Z-group,

(3) the residue field Kv is the field Fq .

It has long been known that the ‘naive’ axiomatization for Fq((t)), where axiom (1) is
replaced by just asking (K; v) to be henselian, is not complete.

3 Global fields

3.1 A universal definition forZ inQ. Hilbert’s 10th problem overQ, i.e., the question
whether the existential Lring -theory of Q is decidable, is still open.

If one had an existential (= diophantine) definition of Z in Q (i.e., a definition by an
existential 1st-orderLring -formula) then the existential theory ofZwould be interpretable
in that of Q, and the answer would, by (for short) Matiyasevich’s Theorem, again be no.
But it is still open whether Z is existentially definable in Q.

The earliest 1st-order definition forZ inQ, due to J. Robinson [1949], can be expressed
by an 898-formula of the shape

�(t) : 8x18x29y1 : : : 9y78z1 : : : 8z6 f (t ; x1; x2;y1; : : : ; y7; z1; : : : ; z6) = 0

for some f 2 Z[T ;X1; X2;Y1; : : : ; Y7;Z1; : : : ; Z6], i.e., for any t 2 Q,

t 2 Z iff �(t) holds in Q:

In 2009, Bjorn Poonen ([P09a]) managed to find an 89-definition with 2 universal and
7 existential quantifiers (earlier, in Cornelissen and Zahidi [2007], an 89-definition with
just one universal quantifier was proved modulo an open conjecture on elliptic curves).

In Koenigsmann [2016], the author then provided a 8-definition of Z in Q:

Theorem 3.1. There is a polynomial g 2 Z[T ;X1; : : : ; X418] such that, for all t 2 Q,

t 2 Z iff 8x 2 Q418 g(t ; x) ¤ 0:

If one measures logical complexity in terms of the number of changes of quantifiers
then this is the simplest definition of Z in Q, and, in fact, it is the simplest possible: there
is no quantifier-free definition of Z in Q.

Corollary 3.2. Q n Z is diophantine in Q.

Corollary 3.3. T h89(Q) is undecidable.
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Theorem 3.1 came somewhat unexpected because it does not give what you would like
to have, namely an existential definition of Z in Q. However, if you had the latter the
former would follow:

Observation 3.4. If there is an existential definition ofZ inQ then there is also a universal
one.

Proof: If Z is diophantine in Q then so is

Q n Z = fx 2 Q j 9m; n; a; b 2 Z with n ¤ 0; ˙1; am + bn = 1 and m = xng

The machinery for proving these three first-order definitions of Z in Q is not very
heavy: Julia Robinson made essentially use of the Hasse-Minkowski Local-Global Prin-
ciple for quadratic forms, Bjorn Poonen augmented that using the Hasse bound for the
number of rational points on genus-1 curves over finite fields (and he ingeniously rear-
ranged the use of quadratic form theory), while in Koenigsmann [2016] the Quadratic
Reciprocity Law came in as additional tool, and then some elementary tricks (inspired
by the model theory of valued fields) for transforming existential formulas into universal
ones were needed to complete the proof.

Using more serious number theory, (Park [2013])has generalised Theorem 3.1 to num-
ber fields:

Theorem 3.5. For any number field K, the ring of integers OK is universally definable
in K.

In the course of the proof of Koenigsmann [2016] many new diophantine subsets of
Q emerged, for example the set of non-squares turned out to be diophantine (this was
obtained earlier in Poonen [2009b] using much deeper techniques). If, however, Z was
also diophantine inQ then there would be many more important diophantine subsets ofQ,
for example the set of tuples of coefficients of irreducible polynomials (of fixed degree)
overQ. Later, Philip Dittmannmanaged to prove this unconditionally and in much greater
generality (Dittmann [2016]):

Theorem 3.6. Irreducibility of polynomials over global fields is diophantine.

3.2 Hilbert’s 10th Problem for number rings using elliptic curves. In this section
only one major achievement is being reported on. There is a multitude of surveys on the
subject, each with its own emphasis. For the interested reader, let us mention at least some
of them: R. M. Robinson [1951], Mazur [1994], Pheidas [1994], Y. Matiyasevich [2000],
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Pheidas and Zahidi [2000], Shlapentokh [2000], Poonen [2003], Shlapentokh [2007], Poo-
nen [2008], and Koenigsmann [2014].

For number rings and number fields, the question of decidability has been answered
in the negative by J. Robinson [1959]. The question whether Hilbert’s 10th Problem is
solvable is much harder. Given that we don’t know the answer over Q (though almost
everyone working in the field believes it to be no) there is even less hope that we find the
answer for arbitrary number fields in the near future. For number rings the situation is
much better.

Let K be a number field with ring of integers OK . Then Hilbert’s 10th Problem could
be shown to be unsolvable over OK in the following cases:

• if K is totally real or a quadratic extension of a totally real number field (Denef
[1975], Denef and Lipshitz [1978] and Denef [1980]),

• if [K : Q] � 3 and cK = 2 (Pheidas [1988])1,

• if K/Q is abelian (Shapiro and Shlapentokh [1989]).

In each of the proofs the authors managed to find an existential definition ofZ inOK using
Pell-equations, the Hasse-Minkowski Local-Global Principle (which holds in all number
fields) and ad hoc methods that are very specific to each of these special cases.

The hope for a uniform proof of the existential undecidability of all number rings only
emerged when elliptic curves were brought into the game:

Theorem 3.7 ([Poo02]). Let K be a number field. Assume2 there is an elliptic curve E

over Q with rk(E(Q)) = rk(E(K)) = 1. Then Z is existentially definable in OK and
so Hilbert’s 10th Problem over OK is unsolvable.

In his proof, Poonen uses divisibility relations for denominators of x-coordinates of n �

P , whereP 2 E(K)nEtor(K) and n �P 2 E(Q) (for a similar approach cf. Cornelissen,
Pheidas, and Zahidi [2005]).

The assumption made in the theorem turns out to hold modulo a generally believed
conjecture, the so called Tate-Shafarevich Conjecture. For an elliptic curve E over a num-
ber field K, it refers to the Tate-Shafarevich group (or Shafarevich-Tate group)ШE/K ,
an abelian group defined via cohomology groups. It measures the deviation from a local-
global principle for rational points on E.

1cK denotes the class number of K, that is, the size of the ideal class group of K. It measures how far OK

is from being a PID: cK = 1 iff OK is a PID, so cK = 2 is ‘the next best’. It is not known whether there are
infinitely many number fields with cK = 1.

2The set E(K) of K-rational points of E is a finitely generated abelian group isomorphic to the direct
product of its torsion subgroup Etor (K) and a free abelian group of rank ‘rk(E(K))’.
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Tate-Shafarevich ConjectureШE/K is finite.

Weak Tate-Shafarevich Conjecture dimF2
ШE/K/2 is even.

The latter follows from the former due to the Cassels pairing (Theorem 4.14 in Silverman
[1986] which is an excellent reference on elliptic curves).

Theorem 3.8 ([MR10]). LetK be a number field. Assume the weak Tate-Shafarevich Con-
jecture for all elliptic curves E/K. Then there is an elliptic curve E/Q with rk(E(Q)) =

rk(E(K)) = 1.

Taking those two theorems together you obtain immediately the following

Corollary 3.9. Let K be a number field. Assume the weak Tate-Shafarevich Conjecture
for all elliptic curves E/K. Then Hilbert’s 10th Problem is unsolvable over OK .

3.3 Global fields of positive characteristic. It is natural to ask decidability questions
not only over number fields, but also over global fields of positive characteristic, i.e.,
algebraic function fields in one variable over finite fields, and also, more generally, for
function fields.

Hilbert’s 10th Problem (with t resp. t1; t2 in the language) has been shown to be un-
solvable for the following function fields:

• R(t) (Denef [1978]),

• C(t1; t2) (Kim and Roush [1992]),

• Fq(t) (Pheidas [1991] and Videla [1994]),

• finite extensions of Fq(t) (Shlapentokh [1992] and Eisenträger [2003]).

The first two cases were achieved by existentially defining Z in the field, and then apply-
ing Matiyasevich’s Theorem. This is, clearly, not possible in the last two cases. Instead of
existentially defining Z the authors existentially interpret Z via elliptic curves: the mul-
tiplication by n-map on an elliptic curve E/K where E(K) contains non-torsion points
easily gives a diophantine interpretation of the additive group hZ; +i. The difficulty is to
find an elliptic curveE/K such that there is also an existential definition for multiplication
on that additive group.

For the ring of polynomials Fq [t ], Demeyer has even shown the analogue of the DPRM-
Theorem: listible subsets are diophantine (Demeyer [2007]).

Generalizing earlier results (Cherlin [1984], Duret [1986] and Pheidas [2004]), it is
shown in Eisenträger and Shlapentokh [2009], that the full first-order theory of any func-
tion field of characteristic > 2 is undecidable.

For analogues of Hilbert’s 10th Problem for fields of meromorphic or analytic functions
cf., e.g., Rubel [1995], Vidaux [2003] and Pasten [2013].
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4 Two infinite extensions of Qp

Let us recall that the field Qp is axiomatized as a valued field (K; v) satisfying the fol-
lowing four axioms:

(1) (K; v) is henselian of mixed characteristic (0; p),

(2)’ Kv = Fp ,

(3)’ vK � Z, so vK is a Z-group,

(4)’ v(p) is minimal positive.

It is an immediate consequence of themain result of Derakhshan andMacintyre [2016] that
the field Qur

p , the maximal unramified extension of Qp (obtained from Qp by adjoining
all prime to p roots of unity), is model complete, that is, every first order definable subset
is already existentially definable. Using this, you can easily give an axiomatization of
Qur

p , namely as valued field (K; v) satisfying these axioms:

(1) (K; v) is henselian of mixed characteristic (0; p),

(2) Kv = Kv, so the residue field is algebraically closed,

(3)’ vK � Z, so vK is a Z-group,

(4)’ v(p) is minimal positive.

The next natural challenge is to find an axiomatization for Qab
p , the maximal abelian ex-

tension of Qp , which, by the local Kronecker-Weber Theorem, is obtained from Qp by
adjoining all roots of unity. The axiomatization suggested (but not yet proved to be com-
plete) in Koenigsmann [2018] is the axiomatization as valued field (K; v) satisfying these
axioms:

(1) (K; v) is henselian of mixed characteristic (0; p),

(2) Kv = Kv,

(3) vK �
1

p1 Z,

(4) q 6 j v(1 � �p) for any prime q ¤ p,

(5) K \ Q = Qab
p \ Q,

(6) v = v
p
K ,

(7) the Frobenius map x 7! xp is surjective on Ov/pOv .
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Here 1
p1 Z is the ordered subgroup of the group of rational numbers having only p-th

powers as denominators, �p is a primitive p-th root of unity, and v
p
K is the canonical p-

henselian valuation on K, that is here the coarsest p-henselian valuation with p-closed
residue field, where p-henselian means that the valulation extends uniquely to every Ga-
lois extension of degree p. That these axioms can be expressed by (recursive sets of)
first-order formulas is not too hard to show, except for axiom (6), for which this is proved
in Jahnke and Koenigsmann [2015]. It is also not too difficult to check that all these ax-
ioms are true in Qab

p . However, it requires substantial work to prove that these axioms are
independent, that is, for each of the seven axioms one finds a valued field not satisfying this
particular axiom, but satisfying all the other axioms (this is done in Koenigsmann [2018].
The planned strategy for establishing that these axioms are complete is via showing quan-
tifier elimination in a variant of the Macintyre language for valued fields including n-th
power predicates.
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