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Abstract

We describe recent links between two topics: geometric structures on manifolds in
the sense of Ehresmann and Thurston, and dynamics “at infinity” for representations
of discrete groups into Lie groups.

1 Introduction

The goal of this survey is to report on recent results relating geometric structures on man-
ifolds to dynamical aspects of representations of discrete groups into Lie groups, thus
linking geometric topology to group theory and dynamics.

1.1 Geometric structures. The first topic of this survey is geometric structures onman-
ifolds. Here is a concrete example as illustration (see Figure 1).

Example 1.1. Consider a two-dimensional torus T .
(1) We can view T as the quotient of the Euclidean planeX = R2 by Γ = Z2, which is

a discrete subgroup of the isometry groupG=O(2)ËR2 ofX (acting by linear isometries
and translations). Viewing T this way provides it with a Riemannian metric and a notion
of parallel lines, length, angles, etc. We say T is endowed with a Euclidean (or flat)
structure, or a (G;X)-structure with (G;X) = (O(2) Ë R2;R2).

(2) Here is a slightly more involved way to view T : we can see it as the quotient of
the affine plane X = R2 by the group Γ generated by the translation of vector ( 10 ) and
the affine transformation with linear part ( 1 1

0 1 ) and translational part ( 01 ). This group Γ is
now a discrete subgroup of the affine groupG = GL(2;R)ËR2. Viewing T this way still
provides it with a notion of parallel lines and even of geodesic, but no longer with a notion
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of length or angle or speed of geodesic. We say T is endowed with an affine structure, or
a (G;X)-structure with (G;X) = (GL(2;R) Ë R2;R2).

(3) There are many ways to endow T with an affine structure. Here is a different one:
we can view T as the quotient of the open subset U = R2Xf0g ofX = R2 by the discrete
subgroup Γ ofG = GL(2;R)Ë R2 generated by the homothety ( 2 0

0 2 ). This still makes T
“locally look like” X = R2, but now the image in T of an affine geodesic of X pointing
towards the origin is incomplete (it circles around in T with shorter and shorter period and
disappears in a finite amount of time).

Figure 1: Tilings of X = R2 showing the three Γ-actions in Example 1.1

As in Example 1.1, a key idea underlying a large part of modern geometry is the ex-
istence of model geometries which various manifolds may locally carry. By definition,
a model geometry is a pair (G;X) where X is a manifold (model space) and G a Lie
group acting transitively on X (group of symmetries). In Example 1.1 we encountered
(G;X) = (O(n) Ë Rn;Rn) and (G;X) = (GL(n;R) Ë Rn;Rn), corresponding respec-
tively to Euclidean geometry and affine geometry. Another important example isX = Hn

(the n-dimensional real hyperbolic space) and G = PO(n; 1) = O(n; 1)/f˙I g (its group
of isometries), corresponding to hyperbolic geometry. (For n = 2 we can see X as the
upper half-plane andG, up to index two, as PSL(2;R) acting by homographies.) We refer
to Table 1 for more examples.

The idea that a manifold M locally carries the geometry (G;X) is formalized by the
notion of a (G;X)-structure on M : by definition, this is a maximal atlas of coordinate
charts on M with values in X such that the transition maps are given by elements of G
(see Figure 2). Note that this is quite similar to a manifold structure on M , but we now
require the charts to take values inX rather thanRn, and the transition maps to be given by
elements of G rather than diffeomorphisms of Rn. Although general (G;X)-structures
may display pathological behavior (see Goldman [2018b]), in this survey we will restrict
to the two “simple” types of (G;X)-structures appearing in Example 1.1, to which we
shall give names to facilitate the discussion:

• Type C (“complete”): (G;X)-structures that identifyM with a quotient of X by a
discrete subgroup Γ of G acting properly discontinuously;
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Figure 2: Charts defining a (G;X)-structure onM

• Type U (“incomplete but still uniformizable”): (G;X)-structures that identifyM
with a quotient of some proper open subset U of X by a discrete subgroup Γ of G
acting properly discontinuously.

SettingV = X orU as appropriate, we then have coveringsfM ' eV ! V ! ΓnV ' M

(where e denotes universal covers). The charts on M are obtained by taking preimages
in V � X of open subsets ofM . Moreover, the basic theory of covering groups gives a
natural group homomorphism hol : �1(M ) ! G with image Γ and kernel �1(V), called
the holonomy.

In this survey, we use the phrase geometric structures for (G;X)-structures. We shall
not detail the rich historical aspects of geometric structures here; instead, we refer to the
excellent surveys of Goldman [2010, 2018a,b]. Let us just mention that the notion of
model geometry has its origins in ideas of Lie and Klein, formulated in Klein’s 1872
Erlangen program. Influenced by these ideas and those of Poincaré, Cartan and others,
Ehresmann [1937] initiated a general study of geometric structures in the 1930s. Later,
geometric structures were greatly promoted by the revolutionary work of Thurston [1980].

1.2 Classifying geometric structures. The fundamental problem in the theory of geo-
metric structures is their classification, namely:

Problem A. Given a manifoldM ,
(1) Describe which model geometries (G;X) the manifoldM may locally carry;
(2) For a fixed model (G;X), describe all possible (G;X)-structures onM .

We refer to Goldman [2010] for a detailed survey of Problem A with a focus on dimen-
sions two and three, and to Kobayashi and Yoshino [2005] for a special case.

Problem A.(1) asks how the global topology of M determines the geometries that it
may locally carry. This has been the object of deep results, among which:

• the classical uniformization theorem: a closed Riemann surface may carry a Eu-
clidean, a spherical, or a hyperbolic structure, depending on its genus;

• Thurston’s hyperbolization theorem: a large class of 3-dimensional manifolds, de-
fined in purely topological terms, may carry a hyperbolic structure;
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• more generally, Thurston’s geometrization program (now Perelman’s theorem): any
closed orientable 3-dimensional manifold may be decomposed into pieces, each ad-
mitting one of eight model geometries (see Bonahon [2002]).

Problem A.(2) asks to describe the deformation space of (G;X)-structures onM . In
the simple setting of Example 1.1, this space is already quite rich (see Baues [2014]). For
hyperbolic structures on a closed Riemann surface of genus � 2 (Example 2.1), Prob-
lem A.(2) gives rise to the fundamental and wide-ranging Teichmüller theory.

1.3 Representations of discrete groups. The second topic of this survey is representa-
tions (i.e. group homomorphisms) of discrete groups (i.e. countable groups) to Lie groupsG,
and their dynamics “at infinity”. We again start with an example.

Example 1.2. Let Γ = �1(S) where S is a closed orientable Riemann surface of genus
� 2. By the uniformization theorem, S carries a complete (“type C”) hyperbolic structure,
which yields a holonomy representation Γ ! PSL(2;R) as in Section 1.1. Embedding
PSL(2;R) into G = PSL(2;C), we obtain a representation � : Γ ! G, called Fuchsian,
and an associated action of Γ on the hyperbolic space X = H3 and on its boundary
at infinity @1H3 = bC (the Riemann sphere). The limit set of �(Γ) in bC is the set of
accumulation points of �(Γ)-orbits of X ; it is a circle in the sphere bC. Deforming �
slightly yields a new representation �0 : Γ ! G, called quasi-Fuchsian, which is still
faithful, with discrete image, and whose limit set in bC is still a topological circle (now
“wiggly”, see Figure 3). The action of �0(Γ) is chaotic on the limit set (e.g. all orbits are
dense) and properly discontinuous on its complement.

Example 1.2 plays a central role in the theory of Kleinian groups and in Thurston’s
geometrization program; it was extensively studied by Ahlfors, Beardon, Bers, Marden,
Maskit, Minsky, Sullivan, Thurston, and many others.

In this survey we report on various generalizations of Example 1.2, for representations
of discrete groups Γ to semisimple Lie groups G which are faithful (or with finite ker-
nel) and whose images are discrete subgroups of G. While in Example 1.2 the group
G = PSL(2;C) has real rank one (meaning that its Riemannian symmetric space H3 has
no flat regions beyond geodesics), we also wish to consider the case thatG has higher real
rank, e.g. G = PGL(d;R) with d � 3. In general, semisimple groups G tend to have
very different behavior depending on whether their real rank is one or higher; for instance,
the lattices ofG (i.e. the discrete subgroups of finite covolume for the Haar measure) may
display some forms of flexibility in real rank one, but exhibit strong rigidity phenomena
in higher real rank. Beyond lattices, the landscape of discrete subgroups of G is some-
what understood in real rank one (at least several important classes of discrete subgroups
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Figure 3: The limit set of a quasi-Fuchsian group in @1H3 ' C [ f1g

have been identified for their good geometric, topological, and dynamical properties, see
Section 3.1), but it remains very mysterious in higher real rank. We shall explain some
recent attempts at understanding it better.

One interesting aspect is that, even when G has higher real rank, discrete subgroups
of G of infinite covolume may be nonrigid and in fact admit large deformation spaces.
In particular, as part of higher Teichmüller theory, there has recently been an active and
successful effort to find large deformation spaces of faithful and discrete representations
of surface groups �1(S) into higher-rank semisimple G which share some of the rich
features of the Teichmüller space of S (see Sections 4.3 and 5, Burger, Iozzi, andWienhard
[2014] and Wienhard [2018]). Such features also include dynamics “at infinity” as in
Example 1.2, which are encompassed by a notion of Anosov representation (Labourie
[2006]), see Section 4.

1.4 Flag varieties and boundary maps. Let us be a bit more precise. Given a repre-
sentation � : Γ ! G, by dynamics “at infinity” we mean the dynamics of the action of Γ
via � on some flag varietiesG/P (whereP is a parabolic subgroup), seen as “boundaries”
of G or of its Riemannian symmetric space G/K. In Example 1.2 we considered a rank-
one situation where G = PSL(2;C) and G/P = @1H3 = bC. A typical higher-rank
situation that we have in mind is G = PGL(d;R) with d � 3 and G/P = Gri (Rd ) (the
Grassmannian of i -planes in Rd ) for some 1 � i � d � 1.

In the work of Mostow, Margulis, Furstenberg, and others, rigidity results have of-
ten relied on the construction of Γ-equivariant measurable maps from or to G/P . More
recently, in the context of higher Teichmüller theory (see Burger, Iozzi, and Wienhard
[2010b], Fock and Goncharov [2006], Labourie [2006]), it has proved important to study
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continuous equivariant boundary maps which embed the boundary @1Γ of a Gromov hy-
perbolic group Γ (i.e. the visual boundary of the Cayley graph of Γ) into G/P . Such
boundary maps � : @1Γ ! G/P define a closed invariant subset �(@1Γ) of G/P , the
limit set, on which the dynamics of the action by Γ accurately reflect the intrinsic chaotic
dynamics of Γ on @1Γ. These boundary maps may be used to transfer the Anosov prop-
erty of the intrinsic geodesic flow ofΓ into some uniform contraction/expansion properties
for a flow on a natural flat bundle associated to � and G/P (see Section 4). They may
also define some open subsets U ofG/P on which the action of Γ is properly discontinu-
ous, by removing an “extended limit set” L�(Γ) � �(@1Γ) (see Sections 3, 5 and 6); this
generalizes the domains of discontinuity in the Riemann sphere of Example 1.2.

For finitely generated groups Γ that are not Gromov hyperbolic, one can still define a
boundary @1Γ in several natural settings, e.g. as the visual boundary of some geodesic
metric space on which Γ acts geometrically, and the approach considered in this survey
can then be summarized by the following general problem.

Problem B. Given a discrete group Γ with a boundary @1Γ, and a Lie group G with a
boundary G/P , identify large (e.g. open in Hom(Γ; G)) classes of faithful and discrete
representations � : Γ ! G for which there exist continuous �-equivariant boundary maps
� : @1Γ ! G/P . Describe the dynamics of Γ on G/P via �.

1.5 Goal of the paper. We survey recent results on (G;X)-structures (Problem A) and
on representations of discrete groups (Problem B), making links between the two top-
ics. In one direction, we observe that various types of (G;X)-structures have holonomy
representations that are interesting for Problem B. In the other direction, starting with rep-
resentations that are interesting for Problem B (Anosov representations), we survey recent
constructions of associated (G;X)-structures. These results tend to indicate some deep in-
teractions between the geometry of (G;X)-manifolds and the dynamics of their holonomy
representations, which largely remain to be explored. We hope that they will continue to
stimulate the development of rich theories in the future.

Organization of the paper. In Section 2 we briefly review the notion of a holonomy
representation. In Section 3 we describe three important families of (G;X)-structures for
which boundary maps into flag varieties naturally appear. In Section 4 we define Anosov
representations and give examples and characterizations. In Section 5 we summarize re-
cent constructions of geometric structures associated to Anosov representations. In Sec-
tion 6 we discuss a situation in which the links between geometric structures and Anosov
representations are particularly tight, in the context of convex projective geometry. In
Section 7 we examine an instance of (G;X)-structures for a nonreductive Lie group G,



GEOMETRIC STRUCTURES AND REPRESENTATIONS 1139

corresponding to affine manifolds and giving rise to affine Anosov representations. We
conclude with a few remarks.

Acknowledgments. I would like to heartily thank all the mathematicians who helped,
encouraged, and inspired me over the past years; the list is too long to include here. I am
very grateful to all my coauthors, in particular those involved in the work discussed below:
Jeffrey Danciger (Sections 5 to 7), François Guéritaud (Sections 4 to 7), Olivier Guichard
(Sections 4 and 5), Rafael Potrie (Section 4), and Anna Wienhard (Sections 4 and 5). I
warmly thank J.-P. Burelle, J. Danciger, O. Guichard, and S. Maloni for reading earlier
versions of this text and making many valuable comments and suggestions, and R. Canary
and W. Goldman for kindly answering my questions.

2 Holonomy representations

Let G be a real Lie group acting transitively, faithfully, analytically on a manifold X ,
as in Table 1. In Section 1.1 we defined holonomy representations for certain types of
(G;X)-structures. We now give a short review of the notion in general.

Type of geometry X G H

Real projective P n(R) PGL(n+ 1;R) stab. of line of Rn+1

Affine Rn Aff(Rn) = GL(n;R)ËRn GL(n;R)
Euclidean Rn Isom(Rn) = O(n) Ë Rn O(n)

Real hyperbolic Hn Isom(Hn) = PO(n; 1) O(n)
Spherical Sn Isom(Sn) = O(n+ 1) O(n)

Complex projective P n(C) PGL(n+ 1;C) stab. of line of Cn+1

Table 1: Some examples of model geometries (G;X), where X ' G/H

Let M be a (G;X)-manifold, i.e. a manifold endowed with a (G;X)-structure. Fix
a basepoint m 2 M and a chart ' : U ! X with m 2 U. We can lift any loop
onM starting at m to a path on X starting at '(m), using successive charts ofM which
coincide on their intersections; the last chart in this analytic continuation process coincides,
on an open set, with g � ' for some unique g 2 G; we set hol() := g where  2

�1(M;m) is the homotopy class of the loop (see Figure 4). This defines a representation
hol : �1(M ) ! G called the holonomy (see Goldman [2010, 2018b] for details); it
is unique modulo conjugation by G. This coincides with the notion from Section 1.1;
in particular, if M ' ΓnV with V open in X and Γ discrete in G, and if V is simply
connected, then hol : �1(M ) ! Γ is just the natural identification of �1(M ) with Γ.
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Figure 4: Construction of a holonomy representation

The deformation space Def(G;X)(M ) of (G;X)-structures onM is the quotient of the
set of (G;X)-structures by the group of diffeomorphisms of M homotopic to the iden-
tity, acting by precomposition of the charts. It has a natural topology, see Baues [2014,
§ 3]. The holonomy defines a map from Def(G;X)(M ) to the space Hom(Γ; G)/G of rep-
resentations of Γ to G modulo conjugation by G. This map may be injective in some
cases, as in Example 2.1 below, but in general it is not. However, when M is closed,
the so-called Ehresmann–Thurston principle (see Thurston [1980]) states that the map is
continuous, open, with discrete fibers; in particular, the set of holonomy representations
of (G;X)-structures onM is then stable under small deformations.

Example 2.1. Let (G;X) = (PO(2; 1);H2)where PO(2; 1) ' PGL(2;R) is the isometry
group of the real hyperbolic plane H2. Let M = S be a closed orientable connected
surface of genus g � 2. All (G;X)-structures on S are complete. The deformation
space Def(G;X)(S) is the Teichmüller space Teich(S) of S . The holonomy defines a
homeomorphism between Teich(S) ' R6g�6 and the space of Fuchsian (i.e. faithful and
discrete) representations from �1(S) to G modulo conjugation by G.

3 Examples of (G;X)-structures and their holonomy
representations

In this section we introduce three important families of (G;X)-structures, which have
been much studied in the past few decades. We observe some structural stability for their
holonomy representations, and the existence of continuous equivariant boundary maps
together with expansion/contraction properties “at infinity”. These phenomena will be
captured by the notion of an Anosov representation in Section 4.

3.1 Convex cocompact locally symmetric structures in rank one. Let G be a real
semisimple Lie group of real rank one with Riemannian symmetric space X = G/K

(i.e. K is a maximal compact subgroup of G), e.g. (G;X) = (PO(n; 1);Hn) for n � 2.
Convex cocompact groups are an important class of discrete subgroups Γ of G which
generalize the uniform lattices. They are special cases of geometrically finite groups, for
which no cusps appear; see Bowditch [1993, 1998] for a general theory.
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By definition, a discrete subgroup Γ of G is convex cocompact if it preserves and acts
with compact quotient on some nonempty convex subsetC ofX = G/K; equivalently, the
complete (G;X)-manifold (or orbifold) ΓnX has a compact convex subset (namely ΓnC)
containing all the topology. Such a group Γ is always finitely generated. A representation
� : Γ ! G is called convex cocompact if its kernel is finite and its image is a convex
cocompact subgroup of G.

For instance, in Example 1.2 the quasi-Fuchsian representations are exactly the convex
cocompact representations from �1(S) to G = PSL(2;C); modulo conjugation, they are
parametrized by Teich(S)�Teich(S) (Bers [1960]). Another classical example of convex
cocompact groups in rank-one G is Schottky groups, namely free groups defined by the
so-called ping pong dynamics of their generators in @1X .

Here @1X denotes the visual boundary of X , yielding the standard compactification
X = X t@1X ofX ; forX = Hn we can seeX in projective space as in Example 3.2.(1)
below. The G-action on X extends continuously to X , and @1X identifies with G/P

where P is a minimal parabolic subgroup of G.
For a convex cocompact representation � : Γ ! G, the existence of a cocompact

invariant convex set C implies (by the Švarc–Milnor lemma or “fundamental observation
of geometric group theory”) that � is a quasi-isometric embedding. This means that the
points of any �(Γ)-orbit in X = G/K go to infinity at linear speed for the word length
function j � j : Γ ! N: for any x0 2 X there exist C;C 0 > 0 such that dG/K(x0; �() �

x0) � C j j � C 0 for all  2 Γ. (This property does not depend on the choice of finite
generating subset of Γ defining j � j.) A consequence “at infinity” is that any �-orbital map
Γ ! X extends to a �-equivariant embedding � : @1Γ ! @1X ' G/P , where @1Γ is
the boundary of the Gromov hyperbolic group Γ. The image of � is the limit set Λ�(Γ) of
�(Γ) in @1X . The dynamics on @1X ' G/P are decomposed as in Example 1.2: the
action of �(Γ) is “chaotic” on Λ�(Γ) (e.g. all orbits are dense if Γ is nonelementary), and
properly discontinuous, with compact quotient, on the complementΩ�(Γ) = @1XXΛ�(Γ).

Further dynamical properties were described by Sullivan [1979, 1985]: for instance,
the action of �(Γ) on @1X ' G/P is expanding at each point z 2 Λ�(Γ), i.e. there exist
 2 Γ and C > 1 such that �() multiplies all distances by � C on a neighborhood of
z in @1X (for some fixed auxiliary metric on @1X ). This implies that the group �(Γ) is
structurally stable, i.e. there is a neighborhood of the natural inclusion in Hom(�(Γ); G)

consisting entirely of faithful representations. In fact, � admits a neighborhood consisting
entirely of convex cocompact representations, by a variant of the Ehresmann–Thurston
principle. For G = SL(2;C), a structurally stable subgroup of G is either locally rigid or
convex cocompact (Sullivan [1985]).
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3.2 Convex projective structures: divisible convex sets. Let G be the projective lin-
ear group PGL(d;R) and X the projective space P (Rd ), for d � 2. Recall that a subset
of X = P (Rd ) is said to be convex if it is contained and convex in some affine chart,
properly convex if its closure is convex, and strictly convex if it is properly convex and its
boundary in X does not contain any nontrivial segment.

Remark 3.1. Any properly convex open subset Ω of X = P (Rd ) admits a well-behaved
(complete, proper, Finsler) metric dΩ, the Hilbert metric, which is invariant under the
subgroup of G = PGL(d;R) preserving Ω (see e.g. Benoist [2008]). In particular, any
discrete subgroup of G preserving Ω acts properly discontinuously on Ω.

By definition, a convex projective structure on a manifold M is a (G;X)-structure
obtained by identifyingM with ΓnΩ for some properly convex open subset Ω of X and
some discrete subgroupΓ ofG. WhenM is closed, i.e. whenΓ acts with compact quotient,
we say that Γ divides Ω. Such divisible convex sets Ω are the objects of a rich theory, see
Benoist [ibid.]. The following classical examples are called symmetric.

Examples 3.2. (1) For d = n+1 � 3, let h�; �in;1 be a symmetric bilinear form of signature
(n; 1) on Rd , and let Ω = f[v] 2 P (Rd ) j hv; vin;1 < 0g be the projective model of the
real hyperbolic space Hn. It is a strictly convex open subset ofX = P (Rd ) (an ellipsoid),
and any uniform lattice Γ of PO(n; 1) � G = PGL(d;R) divides Ω.

(2) For d = n(n + 1)/2, let us see Rd as the space Sym(n;R) of symmetric n � n

real matrices, and let Ω � P (Rd ) be the image of the set of positive definite ones. The
set Ω is a properly convex open subset of X = P (Rd ); it is strictly convex if and only if
n = 2. The group GL(n;R) acts on Sym(n;R) by g � s := gsgt , which induces an action
of PGL(n;R) on Ω. This action is transitive and the stabilizer of a point is PO(n), hence
Ω identifies with the Riemannian symmetric space PGL(n;R)/PO(n). In particular, any
uniform latticeΓ of PGL(n;R) dividesΩ. (A similar construction works over the complex
numbers, the quaternions, or the octonions: see Benoist [ibid.].)

Many nonsymmetric strictly convex examples were also constructed since the 1960s
by various techniques; see Benoist [2008] and Choi, G.-S. Lee, and Marquis [2016b]
for references. Remarkably, there exist irreducible divisible convex sets Ω � P (Rd )

which are not symmetric and not strictly convex: the first examples were built by Benoist
[2006] for 4 � d � 7. Ballas, Danciger, and G.-S. Lee [2018] generalized Benoist’s
construction for d = 4 to show that large families of nonhyperbolic closed 3-manifolds
admit convex projective structures. Choi, G.-S. Lee, and Marquis [2016a] recently built
nonstrictly convex examples of a different flavor for 5 � d � 7.

For strictly convex Ω, dynamics “at infinity” are relatively well understood: if Γ di-
videsΩ, thenΓ is Gromov hyperbolic (Benoist [2004]) and, by cocompactness, any orbital
map Γ ! Ω extends continuously to an equivariant homeomorphism � from the boundary
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@1Γ of Γ to the boundary of Ω in X . This is similar to Section 3.1, except that now X

itself is a flag variety G/P (see Table 1). The image of the boundary map � is again a
limit set ΛΓ on which the action of Γ is “chaotic”, but ΛΓ is now part of a larger “extended
limit set” LΓ, namely the union of all projective hyperplanes tangent to Ω at points of ΛΓ.
The space X ' G/P is the disjoint union of LΓ and Ω. The dynamics of Γ on X are
further understood by considering the geodesic flow on Ω � X , defined using the Hilbert
metric of Remark 3.1; for Ω = Hn as in Example 3.2.(1), this is the usual geodesic flow.
Benoist [ibid.] proved that the induced flow on ΓnΩ is Anosov and topologically mixing;
see Crampon [2014] for further properties.

For nonstrictly convex Ω, the situation is less understood. Groups Γ dividing Ω are
never Gromov hyperbolic (Benoist [2004]); for d = 4 they are relatively hyperbolic
(Benoist [2006]), but in general theymight not be (e.g. ifΩ is symmetric), and it is not obvi-
ous what type of boundary @1Γ (defined independently of Ω) might be most useful in the
context of Problem B. The geodesic flow on ΓnΩ is not Anosov, but Bray [2017] proved
it is still topologically mixing for d = 4. Much of the dynamics remains to be explored.

ByKoszul [1968], discrete subgroups ofG dividingΩ are structurally stable; moreover,
for a closed manifold M with fundamental group Γ = �1(M ), the set Homconv

M (Γ; G)

of holonomy representations of convex (G;X)-structures on M is open in Hom(Γ; G).
This set is also closed in Hom(Γ; G) as soon as Γ does not contain an infinite normal
abelian subgroup, by Choi and Goldman [2005] (for d = 3) and Benoist [2005] (in
general). For d = 3, when M is a closed surface of genus g � 2, Goldman [1990]
showed that Homconv

M (Γ; G)/G is homeomorphic toR16g�16, via an explicit parametrization
generalizing classical (Fenchel–Nielsen) coordinates on Teichmüller space.

3.3 AdS quasi-Fuchsian representations. We now discuss the Lorentzian counter-
parts of Example 1.2, which have been studied by Witten [1988] and others as simple
models for (2 + 1)-dimensional gravity. Let M = S � (0; 1) be as in Example 1.2. In-
stead of taking (G;X) = (PO(3; 1);H3), we now take G = PO(2; 2) and

X = AdS3 =
˚
[v] 2 P (R4) j hv; vi2;2 < 0

	
:

In other words, we change the signature of the quadratic form definingX from (3; 1) (as in
Example 3.2.(1)) to (2; 2). This changes the natural G-invariant metric from Riemannian
to Lorentzian, and the topology of X from a ball to a solid torus. The space X = AdS3 is
called the anti-de Sitter 3-space.

The manifoldM = S �(0; 1) does not admit (G;X)-structures of type C (terminology
of Section 1.1), but it admits some of type U, called globally hyperbolic maximal Cauchy-
compact (GHMC). In general, a Lorentzian manifold is called globally hyperbolic if it
satisfies the intuitive property that “when moving towards the future one does not come
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back to the past”; more precisely, there is a spacelike hypersurface (Cauchy hypersurface)
meeting each inextendible causal curve exactly once. Here we also require that the Cauchy
surface be compact and thatM be maximal (i.e. not isometrically embeddable into a larger
globally hyperbolic Lorentzian 3-manifold).

To describe the GHMC (G;X)-structures onM , it is convenient to consider a different
model for AdS3, which leads to beautiful links with 2-dimensional hyperbolic geometry.
Namely, we view R4 as the space M2(R) of real 2 � 2 matrices, and the quadratic form
h�; �i2;2 as minus the determinant. This induces an identification of X = AdS3 with G =

PSL(2;R) sending [v] 2 X to
�

1
jhv;vij

( v1+v4 v2+v3
v2�v3 �v1+v4

)
�

2 G, and a corresponding group
isomorphism from the identity component G0 = PO(2; 2)0 of G acting on X = AdS3,
to G � G acting on G by right and left multiplication: (g1; g2) � g = g2gg

�1
1 . It also

induces an identification of the boundary @X � P (R4) with the projectivization of the set
of rank-one matrices, hence with P 1(R) � P 1(R) (by taking the kernel and the image);
the action of G0 on @X corresponds to the natural action of G �G on P 1(R) � P 1(R).

X = AdS3

Ω

Λ
C

Figure 5: The sets Λ, Ω, C for an AdS quasi-Fuchsian representation

With these identifications, Mess [2007] proved that all GHMC (G;X)-structures on
M = S�(0; 1) are obtained as follows. Let (�L; �R) be a pair of Fuchsian representations
from Γ = �1(M ) ' �1(S) to G = PSL(2;R). The group (�L; �R)(Γ) � G � G � G

preserves a topological circleΛ in @X , namely the graph of the homeomorphism of P 1(R)

conjugating the action of �L to that of �R. For any z 2 Λ, the orthogonal z? of z for
h�; �i2;2 is a projective hyperplane tangent to X at z. The complement Ω in P (R4) of
the union of all z? for z 2 Λ is a convex open subset of P (R4) contained in X (see
Figure 5) which admits a Γ-invariant Cauchy surface. The action of Γ on Ω via (�L; �R)

is properly discontinuous and the convex hull C of Λ in Ω (called the convex core) has
compact quotient by Γ. The quotient (�L; �R)(Γ)nΩ is diffeomorphic toM = S � (0; 1),
and this yields a GHMC (G;X)-structure onM .

Such (G;X)-structures, or their holonomy representations � = (�L; �R) : Γ !

G � G � G, are often called AdS quasi-Fuchsian, by analogy with Example 1.2. Their
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deformation space is parametrized by Teich(S) � Teich(S), via (�L; �R) (Mess [ibid.]).
Their geometry, especially the geometry of the convex core and the way it determines
(�L; �R), is the object of active current research (see Bonsante and Schlenker [2012]
and Barbot, Bonsante, Danciger, Goldman, Guéritaud, Kassel, Krasnov, Schlenker, and
Zeghib [2012]). Generalizations have recently been worked out in several directions (see
Bonsante, Krasnov, and Schlenker [2011], Barbot and Mérigot [2012], Barbot [2015] and
Section 6.2).

As in Section 3.1, the compactness of the convex core of an AdS quasi-Fuchsian mani-
fold implies that any orbital map Γ ! Ω extends “at infinity” to an equivariant embedding
� : @1Γ ! @X with image Λ. Here @X is still a flag variety G/P , where P is the sta-
bilizer in G = PO(2; 2) of an isotropic line of R4 for h�; �i2;2. Although G has higher
rank, the rank-one dynamics of Section 3.1 still appear through the product structure of
G0 ' G �G acting on @X ' P 1(R) � P 1(R) ' @1H2 � @1H2.

4 Anosov representations

In this section we define and discuss Anosov representations. These are representations
of Gromov hyperbolic groups to Lie groups G with strong dynamical properties, defined
using continuous equivariant boundary maps. They were introduced by Labourie [2006]
and further investigated by Guichard and Wienhard [2012]. They play an important role
in higher Teichmüller theory and in the study of Problem B. As we shall see in Section 4.5,
most representations that appeared in Section 3 were in fact Anosov.

4.1 The definition. Let Γ be a Gromov hyperbolic group with boundary @1Γ (e.g. Γ
a surface group and @1Γ a circle, or Γ a nonabelian free group and @1Γ a Cantor set).
The notion of an Anosov representation of Γ to a reductive Lie group G depends on the
choice of a parabolic subgroup P ofG up to conjugacy, i.e. on the choice of a flag variety
G/P (see Section 1.4). Here, for simplicity, we restrict to G = PGL(d;R). We choose
an integer i 2 [1; d � 1] and denote by Pi the stabilizer in G of an i -plane of Rd , so that
G/Pi identifies with the Grassmannian Gri (Rd ).

By definition, a representation � : Γ ! PGL(d;R) is Pi -Anosov if there exist two
continuous �-equivariant maps �i : @1Γ ! Gri (Rd ) and �d�i : @1Γ ! Grd�i (R

d )

which are transverse (i.e. �i (�) + �d�i (�
0) = Rd for all � ¤ �0 in @1Γ) and satisfy a

uniform contraction/expansion condition analogous to the one defining Anosov flows.
Let us state this condition in the original case considered by Labourie [2006], where

Γ = �1(M ) for some closed negatively curved manifoldM . We denote by fM the univer-
sal cover ofM , by T 1 the unit tangent bundle, and by ('t )t2R the geodesic flow on either
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T 1(M ) or T 1(fM ). Let
E� = Γn(T 1(fM ) � Rd )

be the natural flat vector bundle over T 1(M ) = ΓnT 1(fM ) associated to �, where Γ acts
on T 1(fM )�Rd by  �(x̃; v) = ( �x̃; �() �v). The geodesic flow ('t )t2R on T 1(M ) lifts
to a flow ( t )t2R on E�, given by  t � [(x̃; v)] = [('t � x̃; v)]. For each x̃ 2 T 1(fM ), the
transversality of the boundary maps induces a decomposition Rd = �i (x̃

+) ˚ �d�i (x̃
�),

where x̃˙ = limt!˙1 't � x̃ are the forward and backward endpoints of the geodesic
defined by x̃, and this defines a decomposition of the vector bundleE� into the direct sum
of two subbundles E�

i = f[(x̃; v)] j v 2 �i (x̃
+)g and E�

d�i
= f[(x̃; v)] j v 2 �d�i (x̃

�)g.
This decomposition is invariant under the flow ( t ). By definition, the representation �
is Pi -Anosov if the following condition is satisfied.

Condition 4.1. The flow ( t )t2R uniformly contracts E�
i with respect to E�

d�i
, i.e. there

exist C;C 0 > 0 such that for any t � 0, any x 2 T 1(M ), and any nonzero wi 2 E
�
i (x)

and wd�i 2 E
�

d�i
(x),

k t � wi k't �x

k t � wd�i k't �x

� e�C t+C 0 kwi kx

kwd�i kx

;

where (k � kx)x2T 1(M ) is any fixed continuous family of norms on the fibers E�(x).

See Bridgeman, Canary, Labourie, and Sambarino [2015] for an interpretation in terms
of metric Anosov flows (or Smale flows).

Condition 4.1 implies in particular that the boundary maps �i , �d�i are dynamics-
preserving, in the sense that the image of the attracting fixed point in @1Γ of any infinite-
order element  2 Γ is an attracting fixed point in Gri (Rd ) or Grd�i (R

d ) of �(). By
density of such fixed points in @1Γ and by continuity, it follows that �i and �d�i are
unique, compatible (i.e. �min(i;d�i)(�) � �max(i;d�i)(�) for all � 2 @1Γ), and injective
(using transversality). Since @1Γ is compact, they are homeomorphisms onto their im-
age.

We note that Pi -Anosov is equivalent to Pd�i -Anosov, as the integers i and d � i play
a similar role in the definition (up to reversing the flow, which switches contraction and
expansion). In particular, we may restrict to Pi -Anosov for 1 � i � d/2.

Guichard andWienhard [2012] observed that an analogue of Condition 4.1 can actually
be defined for anyGromov hyperbolic groupΓ. The idea is to replace T 1(fM ) by @1Γ(2)�

R where @1Γ(2) is the space of pairs of distinct points in the Gromov boundary @1Γ of Γ,
and the flow 't by translation by t along the R factor. The work of Gromov [1987] (see
alsoMathéus [1991], Champetier [1994], Mineyev [2005]) yields an appropriate extension
of the Γ-action on @1Γ(2) to @1Γ(2)�R, which is properly discontinuous and cocompact.
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This leads to a notion of an Anosov representation for any Gromov hyperbolic group Γ,
see Guichard and Wienhard [2012].

4.2 Important properties and examples. A fundamental observation motivating the
study of Anosov representations is the following: if G is a semisimple Lie group of real
rank one, then a representation � : Γ ! G is Anosov if and only if it is convex cocompact
in the sense of Section 3.1.

Moreover, many important properties of convex cocompact representations to rank-one
Lie groups generalize to Anosov representations. For instance, Anosov representations � :

Γ ! G are quasi-isometric embeddings, see Labourie [2006] and Guichard andWienhard
[2012]; in particular, they have finite kernel and discrete image. Also by Labourie [2006]
and Guichard and Wienhard [2012], any Anosov subgroup (i.e. the image of any Anosov
representation � : Γ ! G) is structurally stable; moreover, � admits a neighborhood
in Hom(Γ; G) consisting entirely of Anosov representations. This is due to the uniform
hyperbolicity nature of the Anosov condition.

Kapovich, Leeb, and Porti, in a series of papers (see Kapovich, Leeb, and Porti [2016,
2017], Kapovich and Leeb [2017] and Guichard [2017]), have developed a detailed anal-
ogy between Anosov representations to higher-rank semisimple Lie groups and convex
cocompact representations to rank-one simple groups, from the point of view of dynamics
(e.g. extending the expansion property at the limit set of Section 3.1 and other classical
characterizations) and topology (e.g. compactifications).

Here are some classical examples of Anosov representations in higher real rank.

Examples 4.2. Let Γ = �1(S) where S is a closed orientable surface of genus � 2.
(1) (Labourie [2006]) For d � 2, let �d : PSL(2;R) ! G = PGL(d;R) be the irre-

ducible representation (unique up to conjugation by G). For any Fuchsian representation
�0 : Γ ! PSL(2;R), the composition �d ı�0 : Γ ! G isPi -Anosov for all 1 � i � d�1.
Moreover, any representation in the connected component of �d ı�0 in Hom(Γ; G) is still
Pi -Anosov for all 1 � i � d � 1. These representations were first studied by Hitchin
[1992] and are now known as Hitchin representations.

(2) (Burger, Iozzi, Labourie, and Wienhard [2005] and Burger, Iozzi, and Wienhard
[2010a]) If a representation ofΓ toG = PSp(2n;R) � PGL(2n;R) (resp.G = PO(2; q) �

PGL(2 + q;R)) is maximal, then it is Pn-Anosov (resp. P1-Anosov).
(3) (Barbot [2010] for d = 3) Let d � 2. Any Fuchsian representation Γ ! SL(2;R),

composed with the standard embedding SL(2;R) ,! SL(d;R) (given by the direct sum
of the standard action on R2 and the trivial action on Rd�2), defines a P1-Anosov repre-
sentation Γ ! G = PSL(d;R).

In (2), we say that � : Γ ! G is maximal if it maximizes a topological invariant, the
Toledo number T (�), defined for any simple Lie groupG of Hermitian type. IfX = G/K
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is the Riemannian symmetric space of G, then the imaginary part of the G-invariant Her-
mitian form onX defines a real 2-form!X , and by definition T (�) = 1

2�

R
S
f �!X where

f : eS ! X is any �-equivariant smoothmap. ForG = PSL(2;R), this coincides with the
Euler number of �. In general, T (�) takes discrete values and jT (�)j � rankR(G) j�(S)j

where �(S) is the Euler characteristic of S (see Burger, Iozzi, and Wienhard [2014]).
While (1) and (3) provide Anosov representations in two of the three connected com-

ponents of Hom(Γ;PSL(3;R)) for Γ = �1(S), it is currently not known whether Anosov
representations appear in the third component.

See Benoist [1996], Guichard andWienhard [2012], Kapovich, Leeb, and Porti [2014a],
Canary, M. Lee, Sambarino, and Stover [2017], Burelle and Treib [2018] for higher-rank
Anosov generalizations of Schottky groups.

4.3 Higher Teichmüller spaces of Anosov representations. Anosov representations
play an important role in higher Teichmüller theory, a currently very active theory whose
goal is to find deformation spaces of faithful and discrete representations of discrete groups
Γ into higher-rank semisimple Lie groups G which share some of the remarkable proper-
ties of Teichmüller space. Although various groups Γ may be considered, the founda-
tional case is when Γ = �1(S) for some closed connected surface S of genus � 2 (see
Burger, Iozzi, and Wienhard [2014] and Wienhard [2018]); then one can use rich features
of Riemann surfaces, explicit topological considerations, and powerful techniques based
on Higgs bundles as in the pioneering work of Hitchin [1992].

Strikingly similar properties to Teich(S) have been found for two types of higher Te-
ichmüller spaces: the space of Hitchin representations of Γ into a real split simple Lie
group G such as PGL(d;R), modulo conjugation by G; and the space of maximal rep-
resentations of Γ into a simple Lie group G of Hermitian type such as PSp(2n;R) or
PO(2; q), modulo conjugation by G. Both these spaces are unions of connected compo-
nents of Hom(Γ; G)/G, consisting entirely of Anosov representations (see Examples 4.2).
Similarities of these spaces to Teich(S) include:

(1) the proper discontinuity of the action of themapping class groupMod(S) (Wienhard
[2006], Labourie [2008]);

(2) for Hitchin components: the topology of Rdim(G) j�(S)j (Hitchin [1992]);

(3) good systems of coordinates generalizing those on Teich(S) (Goldman [1990], Fock
and Goncharov [2006], Bonahon and Dreyer [2014], Strubel [2015], Zhang [2015]);

(4) an analytic Mod(S)-invariant Riemannian metric, the pressure metric (Bridgeman,
Canary, Labourie, and Sambarino [2015] and Pollicott and Sharp [2017]);
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(5) versions of the collar lemma for associated locally symmetric spaces (G.-S. Lee and
Zhang [2017], Burger and Pozzetti [2017]).

Other higher Teichmüller spaces of Anosov representations of �1(S) are also being ex-
plored, see Guichard and Wienhard [2016]. We refer to Section 5 for geometric structures
associated to such spaces.

4.4 Characterizations. Various characterizations of Anosov representations have been
developed in the past few years, by Labourie [2006], Guichard and Wienhard [2012],
Kapovich, Leeb, and Porti [2014a,b], Kapovich and Leeb [2017], Guéritaud, Guichard,
Kassel, and Wienhard [2017a], and others. Here are some characterizations that do not
involve any flow. They hold for any reductive Lie group G, but for simplicity we state
them for G = PGL(d;R). For 1 � i � d and g 2 GL(d;R), we denote by �i (g) (resp.
�i (g)) the logarithm of the i -th singular value (resp. eigenvalue) of g.

Theorem 4.3. For a Gromov hyperbolic group Γ, a representation � : Γ ! G =

PGL(d;R), and an integer 1 � i � d/2, the following are equivalent:

(1) � is Pi -Anosov (or equivalently Pd�i -Anosov, see Section 4.1);

(2) there exist continuous, �-equivariant, transverse, dynamics-preserving boundary
maps �i : @1Γ ! Gri (Rd ) and �d�i : @1Γ ! Grd�i (R

d ), and
(�i � �i+1)(�()) ! +1 as j j ! +1;

(3) there exist continuous, �-equivariant, transverse, dynamics-preserving boundary
maps �i : @1Γ ! Gri (Rd ) and �d�i : @1Γ ! Grd�i (R

d ), and
(�i � �i+1)(�()) ! +1 as `Γ() ! +1;

(4) there exist C;C 0 > 0 such that (�i � �i+1)(�()) � C j j � C 0 for all  2 Γ;

(5) there exist C;C 0 > 0 such that (�i � �i+1)(�()) � C `Γ() � C 0 for all  2 Γ.

Here we denote by j � j : Γ ! N the word length with respect to some fixed finite
generating subset of Γ, and by `Γ : Γ ! N the translation length in the Cayley graph
of Γ for that subset, i.e. `Γ() = minˇ2Γ jˇˇ�1j. In a Gromov hyperbolic group Γ the
translation length `Γ() is known to differ only by at most a uniform additive constant
from the stable length j j1 = limn!+1 jnj/n, and so we may replace `Γ() by j j1

in Conditions (3) and (5).
The equivalence (1) , (2) is proved in Guéritaud, Guichard, Kassel, and Wienhard

[ibid.] and Kapovich, Leeb, and Porti [2014b], the equivalence (2) , (3) in Guéritaud,
Guichard, Kassel, and Wienhard [2017a], the equivalence (1) , (4) in Kapovich, Leeb,
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and Porti [2014a] and Bochi, Potrie, and Sambarino [2018], and the equivalence (4) , (5)
in Kassel and Potrie [2018].

Condition (4) is a refinement of the condition of being a quasi-isometric embedding,
which forG = PGL(d;R) is equivalent to the existence ofC;C 0 > 0 such that

pP
k(�k � �k+1)2(�()) �

C j j �C 0 for all  2 Γ. We refer to Guéritaud, Guichard, Kassel, and Wienhard [2017a]
(CLI condition) and Kapovich, Leeb, and Porti [2014a] (Morse condition) for further re-
finements satisfied byAnosov representations.

By Kapovich, Leeb, and Porti [ibid.] and Bochi, Potrie, and Sambarino [2018], if Γ is
any finitely generated group, then the existence of a representation � : Γ ! PGL(d;R)

satisfying Condition (4) implies that Γ is Gromov hyperbolic. The analogue for (5) is
more subtle: e.g. the Baumslag–Solitar group BS(1; 2), which is not Gromov hyperbolic,
still admits a faithful representation into PSL(2;R) satisfying Condition (5) for the stable
length j � j1, see Kassel and Potrie [2018].

The original proof of (1), (4) byKapovich, Leeb, and Porti [2014a] uses the geometry
of higher-rank Riemannian symmetric spaces and asymptotic cones. The alternative proof
given by Bochi, Potrie, and Sambarino [2018] is based on an interpretation of (1) and (4) in
terms of partially hyperbolic dynamics, and more specifically of dominated splittings for
locally constant linear cocycles over certain subshifts. Pursuing this point of view further,
it is shown in Kassel and Potrie [2018] that the equivalence (4) , (5) of Theorem 4.3
implies the equivalence between nonuniform hyperbolicity (i.e. all invariant measures are
hyperbolic) and uniform hyperbolicity for a certain cocycle naturally associated with �
on the space of biinfinite geodesics of Γ. In general in smooth dynamics, nonuniform
hyperbolicity does not imply uniform hyperbolicity.

4.5 Revisiting the examples of Section 3. The boundary maps and dynamics “at in-
finity” that appeared in the examples of Section 3 are explained for the most part by the
notion of an Anosov representation:

• convex cocompact representations to rank-one simple Lie groups as in Section 3.1
are all Anosov (see Section 4.2);

• if S is a closed orientable connected surface of genus � 2, then by Goldman [1990]
and Choi and Goldman [2005] the holonomy representations of convex projective
structures on S as in Section 3.2 are exactly the Hitchin representations of �1(S)

into PSL(3;R); they are all P1-Anosov (Example 4.2.(1));

• for general d � 3, the work of Benoist [2004] shows that if Γ is a discrete subgroup
of PGL(d;R) dividing a strictly convex open subset Ω of P (Rd ), then Γ is Gromov
hyperbolic and the inclusion Γ ,! PGL(d;R) is P1-Anosov;
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• The work of Mess [2007] implies that a representation � : �1(S) ! PO(2; 2) �

PGL(4;R) is AdS quasi-Fuchsian if and only if it is P1-Anosov.

5 Geometric structures for Anosov representations

We just saw in Section 4.5 that various (G;X)-structures described in Section 3 give rise
(via the holonomy) to Anosov representations; these (G;X)-structures are of type C or
type U (terminology of Section 1.1). In this section, we study the converse direction.
Namely, given an Anosov representation � : Γ ! G, we wish to find:

• homogeneous spaces X = G/H on which Γ acts properly discontinuously via �;
this will yield (G;X)-manifolds (or orbifolds)M = �(Γ)nX of type C;

• proper open subsets U (domains of discontinuity) of homogeneous spaces X =

G/H onwhichΓ acts properly discontinuously via �; this will yield (G;X)-manifolds
(or orbifolds)M = �(Γ)nU of type U.

We discuss type U in Sections 5.1 and 5.2 and type C in Section 5.3. One motivation is to
give a geometric meaning to the higher Teichmüller spaces of Section 4.3.

5.1 Cocompact domains of discontinuity. Domains of discontinuity with compact
quotient have been constructed in several settings in the past ten years.

Barbot [2010] constructed such domains in the space X of flags of R3, for the Anosov
representations to G = PSL(3;R) of Example 4.2.(3) and their small deformations.

Guichard and Wienhard [2012] developed a more general construction of cocompact
domains of discontinuity in flag varietiesX for Anosov representations to semisimple Lie
groups G. Here is one of their main results. For p � q � i � 1, we denote by F p;q

i the
closed subspace of the Grassmannian Gri (Rp+q) consisting of i -planes that are totally
isotropic for the standard symmetric bilinear form h�; �ip;q of signature (p; q).

Theorem 5.1 (Guichard and Wienhard [ibid.]). Let G = PO(p; q) with p � q and X =

F p;q
q . For any P1-Anosov representation � : Γ ! G � PGL(Rp+q) with boundary

map �1 : @1Γ ! F p;q
1 � P (Rp+q), the group �(Γ) acts properly discontinuously with

compact quotient on U� := X X L�, where

L� :=
[

�2@1Γ

˚
W 2 X = F p;q

q j �1(�) 2 W
	
:

We have U� ¤ ¿ as soon as dim(@1Γ) < p� 1. The homeomorphism type of �(Γ)nU�

is constant as � varies continuously among P1-Anosov representations of Γ to G.
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For q = 1, we recover the familiar picture of Section 3.1: the set L� is the limit set
Λ�(Γ) � @1Hp , and U� is the domain of discontinuity Ω�(Γ) = @1Hp X Λ�(Γ).

For q = 2, Theorem 5.1 fits into the theory of Lorentzian Kleinian groups acting on
the Einstein universe X = Einp = F p;2

1 , as developed by Frances [2005].
Guichard and Wienhard [2012] used Theorem 5.1 to describe domains of discontinuity

for various families of Anosov representations to other semisimple Lie groups G. Indeed,
they proved that an Anosov representation � : Γ ! G can always be composed with a
representation of G to some PO(p; q) so as to become P1-Anosov in PO(p; q).

Kapovich, Leeb, and Porti [2018] developed a more systematic approach to the con-
struction of domains of discontinuity in flag varieties. They provided sufficient conditions
(expressed in terms of a notion of balanced ideal in the Weyl group for the Bruhat order)
on triples (G;P;Q) consisting of a semisimple Lie groupG and two parabolic subgroups
P and Q, so that P -Anosov representations to G admit cocompact domains of disconti-
nuity in G/Q. These domains are obtained by removing an explicit “extended limit set”
L� as in Theorem 5.1. The approach of Kapovich–Leeb–Porti is intrinsic: it does not rely
on an embedding of G into some PO(p; q).

5.2 Geometric structures for Hitchin and maximal representations. Let Γ = �1(S)

where S is a closed orientable surface of genus � 2. Recall (Examples 4.2) that Hitchin
representations from Γ toG = PSL(d;R) are Pi -Anosov for all 1 � i � d � 1; maximal
representations from Γ to G = PO(2; q) � PGL(2 + q;R) are P1-Anosov.

For G = PSL(2;R) ' PO(2; 1)0, Hitchin representations and maximal representa-
tions of Γ to G both coincide with the Fuchsian representations; they are the holonomy
representations of hyperbolic structures on S (Example 2.1). In the setting of higher Te-
ichmüller theory (see Section 4.3), one could hope that Hitchin or maximal representa-
tions of Γ to higher-rank Lie groups G might also parametrize certain geometric struc-
tures on a manifold related to S . We saw in Section 4.5 that this is indeed the case for
G = PSL(3;R): Hitchin representations of Γ to PSL(3;R) parametrize the convex pro-
jective structures on S (Goldman [1990], Choi and Goldman [2005]). In an attempt to gen-
eralize this picture, we now outline constructions of domains of discontinuity for Hitchin
representations to PSL(d;R) with d > 3, and maximal representations to PO(2; q) with
q > 1. By classical considerations of cohomological dimension, such domains cannot
be both cocompact and contractible; in Sections 5.2.2 and 5.2.3 below, we will prefer to
forgo compactness to favor the nice geometry of convex domains.

5.2.1 Hitchin representations for even d = 2n. Let (G;X) = (PSL(2n;R);

P (R2n)). Hitchin representations into G do not preserve any properly convex open set Ω
in X (see Danciger, Guéritaud, and Kassel [2017], Zimmer [2017]). However, Guichard
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and Wienhard [2008, 2012] associated to them nonconvex (G;X)-structures on a closed
manifold: if � : Γ ! G is Hitchin with boundary map �n : @1Γ ! Grn(R2n), then
U = X X

S
�2@1Γ �n(�) is a cocompact domain of discontinuity for �. For n = 2 the

quotient has two connected components which both fiber in circles over S ; considering
one of them, the Hitchin representations parametrize projective structures on T 1(S) with
a natural foliation by 2-dimensional convex sets (Guichard and Wienhard [2008]). For
3 � n � 63, Alessandrini and Li [2018] recently used Higgs bundle techniques to de-
scribe a fibration of �(Γ)nU over S with fiber O(n)/O(n � 2).

5.2.2 Hitchin representations for odd d = 2n+ 1. Hitchin representations into G =

PSL(2n+ 1;R) give rise to (G;X)-manifolds for at least two choices of X .
One choice for X is the space of partial flags (V1 � V2n) of R2n+1 with V1 a line and

V2n a hyperplane: Guichard and Wienhard [2012] again constructed explicit cocompact
domains of discontinuity in X in this setting.

Another choice is X = P (R2n+1): Hitchin representations in odd dimension are the
holonomies of convex projective manifolds, which are noncompact for n > 1.

Theorem 5.2 (Danciger, Guéritaud, and Kassel [2017], Zimmer [2017]). For any Hitchin
representation � : Γ ! PSL(2n+ 1;R), there is a �(Γ)-invariant properly convex open
subset Ω of P (R2n+1) and a nonempty closed convex subset C of Ω which has compact
quotient by �(Γ).

More precisely, if � has boundary maps �1 : @1Γ ! Gr1(R2n+1) = P (R2n+1) and
�2n : @1Γ ! Gr2n(R2n+1), we may take Ω = P (R2n+1) X

S
�2@1Γ �2n(�) and C to

be the convex hull of �1(@1Γ) in Ω. The group �(Γ) acts properly discontinuously on Ω

(Remark 3.1), and so �(Γ)nΩ is a convex projective manifold, with a compact convex
core �(Γ)nC. In other words, �(Γ) is convex cocompact in P (R2n+1), see Section 6.

5.2.3 Maximal representations. Maximal representations intoG = PO(2; q) give rise
to (G;X)-manifolds for at least two choices of X .

One choice is X = F 2;q
2 (also known as the space of photons in the Einstein universe

Einq): Theorem 5.1 provides cocompact domains of discontinuity for � in X . Collier,
Tholozan, and Toulisse [2017] recently studied the geometry of the associated quotient
(G;X)-manifolds, and showed that they fiber over S with fiber O(q)/O(q � 2).

Another choice is X = P (R2+q): by Danciger, Guéritaud, and Kassel [2018a], max-
imal representations � : Γ ! G are the holonomy representations of convex projective
manifolds �(Γ)nΩ, which are noncompact for q > 1 but still convex cocompact as in Sec-
tion 5.2.2. In fact Ω can be taken inside H2;q�1 = f[v] 2 P (R2+q) j hv; vi2;q < 0g (see
also Collier, Tholozan, and Toulisse [2017]), which is a pseudo-Riemannian analogue of
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the real hyperbolic space in signature (2; q � 1), and �(Γ) is H2;q�1-convex cocompact
in the sense of Section 6.2 below.

5.3 Proper actions on full homogeneous spaces. In Sections 5.1 and 5.2, we mainly
considered compact homogeneous spacesX = G/H (flag varieties); these spaces cannot
admit proper actions by infinite discrete groups, but we saw that sometimes they can con-
tain domains of discontinuity U ¨ X , yielding (G;X)-manifolds of type U (terminology
of Section 1.1).

We now consider noncompact homogeneous spaces X = G/H . Then Anosov repre-
sentations � : Γ ! G may give proper actions of Γ on the whole of X = G/H , yielding
(G;X)-manifolds �(Γ)nX of type C.WhenH is compact, this is not very interesting since
all faithful and discrete representations to G give proper actions on X . However, when
H is noncompact, it may be remarkably difficult in general to find such representations
giving proper actions on X , which led to a rich literature (see Kobayashi and Yoshino
[2005] and Kassel [2009, Intro]).

One construction for proper actions on X was initiated by Guichard and Wienhard
[2012] and developed further in Guéritaud, Guichard, Kassel, and Wienhard [2017b].
Starting from an Anosov representation � : Γ ! G, the idea is to embed G into some
larger semisimple Lie group G0 so that X = G/H identifies with a G-orbit in some flag
variety F 0 ofG0, and then to find a cocompact domain of discontinuity U � X for � in F 0

by using a variant of Theorem 5.1. The action of �(Γ) onX is then properly discontinuous,
and �(Γ)n(U \X) provides a compactification of �(Γ)nX , which in many cases can be
shown to be well-behaved. Here is one of the applications of this construction given in
Guéritaud, Guichard, Kassel, and Wienhard [ibid.].

Example 5.3. Let G = PO(p; q) and H = O(p; q � 1) where p > q � 1. For any
Pq-Anosov representation � : Γ ! G � PGL(p + q;R), the group �(Γ) acts properly
discontinuously on X = Hp;q�1 = f[v] 2 P (Rp+q) j hv; vip;q < 0g ' G/H , and for
torsion-free Γ the complete (G;X)-manifold �(Γ)nX is topologically tame.

By topologically tame we mean homeomorphic to the interior of a compact mani-
fold with boundary. For other compactifications of quotients of homogeneous spaces by
Anosov representations, yielding topological tameness, see Guichard, Kassel, and Wien-
hard [2015], Kapovich and Leeb [2015], and Kapovich, Leeb, and Porti [2018].

Another construction of complete (G;X)-manifolds for Anosov representations to re-
ductive Lie groups G was given in Guéritaud, Guichard, Kassel, and Wienhard [2017a],
based on a properness criterion of Benoist [1996] and Kobayashi [1996]. For simplic-
ity we discuss it for G = PGL(d;R). As in Section 4.4, let �i (g) be the logarithm of
the i -th singular value of a matrix g 2 GL(d;R); this defines a map � = (�1; : : : ; �d ) :

PGL(d;R) ! Rd/R(1; : : : ; 1) ' Rd�1. The properness criterion of Benoist andKobayashi
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states that for two closed subgroups H;Γ of G = PGL(d;R), the action of Γ on G/H

is properly discontinuous if and only if the set �(Γ) “drifts away at infinity from �(H )”,
in the sense that for any R > 0 we have dRd�1(�(); �(H )) � R for all but finitely
many  2 Γ. If Γ is the image of an Anosov representation, then we can apply the impli-
cation (1) ) (2) of Theorem 4.3 to see that the properness criterion is satisfied for many
examples ofH .

Example 5.4. For i = 1 (resp. n), the image of any Pi -Anosov representation to G =

PSL(2n;R) acts properly discontinuously onX = G/H forH = SL(n;C) (resp. SO(n+
1; n � 1)).

6 Convex cocompact projective structures

In Sections 3 and 4.5we started from (G;X)-structures to produceAnosov representations,
and in Section 5we started fromAnosov representations to produce (G;X)-structures. We
now discuss a situation, in the setting of convex projective geometry, in which the links
between (G;X)-structures and Anosov representations are particularly tight and go in
both directions, yielding a better understanding of both sides. In Section 6.4 we will also
encounter generalizations of Anosov representations, for finitely generated groups that are
not necessarily Gromov hyperbolic.

6.1 Convex cocompactness in higher real rank. The results presented here are part
of a quest to generalize the notion of rank-one convex cocompactness of Section 3.1 to
higher real rank.

The most natural generalization, in the setting of Riemannian symmetric spaces, turns
out to be rather restrictive: Kleiner and Leeb [2006] and Quint [2005] proved that ifG is a
real simple Lie group of real rank � 2 andK a maximal compact subgroup ofG, then any
Zariski-dense discrete subgroup of G acting with compact quotient on some nonempty
convex subset of G/K is a uniform lattice in G.

Meanwhile, we have seen in Section 4.2 that Anosov representations to higher-rank
semisimple Lie groupsG have strong dynamical properties which nicely generalize those
of rank-one convex cocompact representations (see Kapovich, Leeb, and Porti [2016,
2017], Kapovich and Leeb [2017] and Guichard [2017]). However, in general Anosov
representations to G do not act with compact quotient on any nonempty convex subset
of G/K, and it is not clear that Anosov representations should come with any geometric
notion of convexity at all (see e.g. Section 5.2.1).

In this section, we shall see that Anosov representations in fact do come with convex
structures. We shall introduce several generalizations of convex cocompactness to higher
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real rank (which we glimpsed in Sections 5.2.2 and 5.2.3) and relate them to Anosov
representations.

6.2 Convex cocompactness in pseudo-Riemannian hyperbolic spaces. We start with
a generalization of the hyperbolic quasi-Fuchsian manifolds of Example 1.2 or the AdS
quasi-Fuchsianmanifolds of Section 3.3, where we replace the real hyperbolic spaceH3 or
its Lorentzian analogue AdS3 by their general pseudo-Riemannian analogue in signature
(p; q � 1) for p; q � 1, namely

X = Hp;q�1 =
˚
[v] 2 P (Rp+q) j hv; vip;q < 0

	
:

The symmetric bilinear form h�; �ip;q of signature (p; q) induces a pseudo-Riemannian
structure of signature (p; q � 1) on X , with isometry group G = PO(p; q) and constant
negative sectional curvature (see e.g. Danciger, Guéritaud, andKassel [2018a, § 2.1]). The
following is not our original definition, but an equivalent one from Danciger, Guéritaud,
and Kassel [2017, Th. 1.25].

Definition 6.1. A discrete subgroup Γ of G = PO(p; q) is Hp;q�1-convex cocompact
if it preserves a properly convex open subset Ω of X = Hp;q�1 � P (Rp+q) and if it
acts with compact quotient on some closed convex subset C of Ω with nonempty interior,
whose ideal boundary @iC := C X C = C \ @X does not contain any nontrivial projective
segment. A representation � : Γ ! G is Hp;q�1-convex cocompact if its kernel is finite
and its image is an Hp;q�1-convex cocompact subgroup of G.

Here C is the closure of C in P (Rp+q) and @X the boundary of X = Hp;q�1 in
P (Rp+q). For Γ;Ω;C as in Definition 6.1, the quotient ΓnΩ is a (G;X)-manifold (or
orbifold) (see Remark 3.1), which we shall call convex cocompact; the subset ΓnC is
compact, convex, and contains all the topology, as in Sections 3.1 and 3.3.

There is a rich world of examples of convex cocompact (G;X)-manifolds, including
direct generalizations of the quasi-Fuchsian manifolds of Sections 3.1 and 3.3 (see Barbot
and Mérigot [2012] and Danciger, Guéritaud, and Kassel [2018a, 2017]) but also more
exotic examples where the fundamental group is not necessarily realizable as a discrete
subgroup of PO(p; 1) (see Danciger, Guéritaud, and Kassel [2018a] and G.-S. Lee and
Marquis [2018]).

The following result provides links with Anosov representations.

Theorem 6.2 (Danciger, Guéritaud, and Kassel [2018a, 2017]). For p; q � 1, let Γ be an
infinite discrete group and � : Γ ! G = PO(p; q) � PGL(p + q;R) a representation.

(1) If � is Hp;q�1-convex cocompact, then Γ is Gromov hyperbolic and � is P1-Anosov.
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(2) Conversely, if Γ is Gromov hyperbolic, if � is P1-Anosov, and if �(Γ) preserves a
properly convex open subset of P (Rp+q), then � is Hp;q�1-convex cocompact or
Hq;p�1-convex cocompact.

(3) If Γ is Gromov hyperbolic with connected boundary @1Γ and if � is P1-Anosov,
then � is Hp;q�1-convex cocompact or Hq;p�1-convex cocompact.

In (2)–(3), the phrase “Hq;p�1-convex cocompact” is understood after identifying PO(p; q)
with PO(q; p) and P (Rp;q)X Hp;q�1 with Hq;p�1 under multiplication of h�; �ip;q by �1.
The case that q = 2 and Γ is isomorphic to a uniform lattice of PO(p; 1) is due to Barbot
and Mérigot [2012].

The links between Hp;q�1-convex cocompactness and Anosov representations in The-
orem 6.2 have several applications.

Applications to (G;X)-structures, see Danciger, Guéritaud, and Kassel [2018a, 2017].
� Hp;q�1-convex cocompactness is stable under small deformations, because beingAnosov
is; thus the set of holonomy representations of convex cocompact (G;X)-structures on a
given manifoldM is open in Hom(�1(M ); G).
� Examples of convex cocompact (G;X)-manifolds can be obtained using classical fami-
lies of Anosov representations: e.g. Hitchin representations into PO(n+1; n) areHn+1;n�1-
convex cocompact for odd n and Hn;n-convex cocompact for even n, and Hitchin repre-
sentations into PO(n+1; n+1) are Hn+1;n-convex cocompact. Maximal representations
into PO(2; q) are H2;q�1-convex cocompact, see Section 5.2.3.

Applications to Anosov representations:
� New examples of Anosov representations can be constructed from convex cocompact
(G;X)-manifolds: e.g. this approach is used in Danciger, Guéritaud, and Kassel [2018a]
to prove that any Gromov hyperbolic right-angled Coxeter group in d generators admits
P1-Anosov representations to PGL(d;R). This provides a large new class of hyperbolic
groups admitting Anosov representations; these groups can have arbitrary large cohomo-
logical dimension, and exotic boundaries (see Dani [2017] for references). (Until now
most known examples of Anosov representations were for surface groups or free groups.)
� For q = 2 and Γ a uniform lattice of PO(p; 1)0, Barbot [2015] used convex cocompact
(G;X)-structures to prove that the connected component T of Hom(Γ;PO(p; 2)) con-
taining the natural inclusion Γ ,! PO(p; 1)0 ,! PO(p; 2) consists entirely of Anosov
representations. This is interesting in the framework of Section 4.3.

6.3 Strong projective convex cocompactness. We now consider a broader notion of
convex cocompactness, not involving any quadratic form. Let d � 2.

Definition 6.3. A discrete subgroup Γ of G = PGL(d;R) is strongly P (Rd )-convex co-
compact if it preserves a strictly convex open subset Ω of X = P (Rd ) with C 1 boundary
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and if it acts with compact quotient on some nonempty closed convex subset C of Ω. A
representation � : Γ ! G is strongly P (Rd )-convex cocompact if its kernel is finite and
its image is a strongly P (Rd )-convex cocompact subgroup of G.

The action of Γ onΩ in Definition 6.3 is a special case of a class of geometrically finite
actions introduced by Crampon and Marquis [2014]. We use the adverb “strongly” to
emphasize the strong regularity assumptions made on Ω. In Definition 6.3 we say that the
quotient ΓnΩ is a strongly convex cocompact projective manifold (or orbifold); the subset
ΓnC is again compact, convex, and contains all the topology.

Strongly P (Rd )-convex cocompact representations include Hp;q�1-convex cocom-
pact representations as in Section 6.2 (see Danciger, Guéritaud, and Kassel [2018a]), and
the natural inclusion of groups dividing strictly convex open subsets of P (Rd ) as in Sec-
tion 3.2. The following result generalizes Theorem 6.2, and improves on earlier results of
Benoist [2004] and Crampon and Marquis [2014].

Theorem6.4 (Danciger, Guéritaud, andKassel [2017]). LetΓ be an infinite discrete group
and � : Γ ! G = PGL(d;R) a representation such that �(Γ) preserves a nonempty
properly convex open subset ofX = P (Rd ). Then � is stronglyP (Rd )-convex cocompact
if and only if Γ is Gromov hyperbolic and � is P1-Anosov.

Another generalization of Theorem 6.2 was independently obtained by Zimmer [2017]:
it is similar to Theorem 6.4, but involves a slightly different notion of convex cocompact-
ness and assumes �(Γ) to act irreducibly on P (Rd ).

Applications of Theorem 6.4 include:
� Examples of strongly convex cocompact projective manifolds using classical Anosov
representations (e.g. Hitchin representations into PSL(2n+ 1;R) as in Section 5.2.2).
� In certain cases, a better understanding of the set of Anosov representations of a Gro-
mov hyperbolic group Γ inside a given connected component of Hom(Γ; G): e.g. for an
irreducible hyperbolic right-angled Coxeter group Γ on k generators, it is proved in Dan-
ciger, Guéritaud, and Kassel [2018c], using Theorem 6.4 and the work of Vinberg [1971],
that P1-Anosov representations form the full interior of the space of faithful and discrete
representations of Γ as a reflection group in G = PGL(d;R) when d � k.

For a Gromov hyperbolic group Γ and a P1-Anosov representation � : Γ ! G =

PGL(d;R), the group �(Γ) does not always preserve a properly convex open subset of
X = P (Rd ): see Section 5.2.1. However, as observed by Zimmer [2017], � can always
be composed with the embedding � : G ,! PGL(V ) described in Example 3.2.(2), for
V = Sym(d;R) ' Rd(d+1); then � ı �(Γ) preserves a properly convex open subset in
P (V ). The composition �ı� : Γ ! PGL(V ) is stillP1-Anosov byGuichard andWienhard
[2012], and it is strongly P (V )-convex cocompact by Theorem 6.4. More generally, using
Guichard and Wienhard [ibid.], any Anosov representation to any semisimple Lie group
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can always be composed with an embedding into some PGL(V ) so as to become strongly
P (V )-convex cocompact.

6.4 Projective convex cocompactness in general. We now introduce an even broader
notion of convex cocompactness, where we remove the strong regularity assumptions onΩ
in Definition 6.3. This yields a large class of convex projective manifolds, whose funda-
mental groups are not necessarily Gromov hyperbolic. Their holonomy representations
are generalizations of Anosov representations, sharing some of their desirable properties
(Theorem 6.7). This shows that Anosov representations are not the only way to success-
fully generalize rank-one convex cocompactness to higher real rank.

Definition 6.5 (Danciger, Guéritaud, and Kassel [2017]). A discrete subgroup Γ of G =

PGL(d;R) is P (Rd )-convex cocompact if it preserves a properly convex open subset Ω
ofX = P (Rd ) and if it acts with compact quotient on some “large enough” closed convex
subset C of Ω. A representation � : Γ ! G is P (Rd )-convex cocompact if its kernel is
finite and its image is a P (Rd )-convex cocompact subgroup of G.

In Definition 6.5, by “C large enough” we mean that all accumulation points of all
Γ-orbits of Ω are contained in the boundary of C in X = P (Rd ). If we did not impose
this (even if we asked C to have nonempty interior), then the notion of P (Rd )-convex
cocompactness would not be stable under small deformations: see Danciger, Guéritaud,
and Kassel [2017, 2018b]. In Definition 6.5 we call ΓnΩ a convex cocompact projective
manifold (or orbifold).

The class of P (Rd )-convex cocompact representations includes all strongly P (Rd )-
convex cocompact representations as in Section 6.3, hence all Hp;q�1-convex cocompact
representations as in Section 6.2. In fact, the following holds.

Proposition 6.6 (Danciger, Guéritaud, and Kassel [2017]). Let Γ be an infinite discrete
group. A representation � : Γ ! G = PGL(d;R) is strongly P (Rd )-convex cocompact
(Definition 6.3) if and only if it is P (Rd )-convex cocompact (Definition 6.5) and Γ is
Gromov hyperbolic.

This generalizes a result of Benoist [2004] on divisible convex sets. Together with
Theorem 6.4, Proposition 6.6 shows that P (Rd )-convex cocompact representations are
generalizations of Anosov representations, to a larger class of finitely generated groups
Γ which are not necessarily Gromov hyperbolic. These representations still enjoy the
following good properties.

Theorem6.7 (Danciger, Guéritaud, andKassel [2017]). LetΓ be an infinite discrete group
and � : Γ ! G = PGL(d;R) a P (Rd )-convex cocompact representation. Then

(1) � is a quasi-isometric embedding;
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(2) there is a neighborhood of � in Hom(Γ; G) consisting entirely of P (Rd )-convex
cocompact representations;

(3) � is P ((Rd )�)-convex cocompact;

(4) � induces a P (RD)-convex cocompact representation for any D � d (by lifting
� to a representation to SL˙(d;R) and composing it with the natural inclusion
SL˙(d;R) ,! SL˙(D;R)).

In order to prove (2), we show that the representations of Theorem 6.7 are exactly the
holonomy representations of compact convex projective manifolds with strictly convex
boundary; this allows to apply the deformation theory of Cooper, Long, and Tillmann
[2018].

Groups that are P (Rd )-convex cocompact but not strongly P (Rd )-convex cocompact
include all groups dividing a properly convex, but not strictly convex, open subset of
X = P (Rd ) as in Section 3.2, as well as their small deformations in PGL(D;R) for
D � d (Theorem 6.7.(2)–(4)). Such nontrivial deformations exist: e.g. for d = 4 we can
always bend along tori or Klein bottle subgroups, see Benoist [2006]. There seems to be
a rich world of examples beyond this, which is just starting to be unveiled, see Danciger,
Guéritaud, and Kassel [2017, 2018b,c]. It would be interesting to understand the precise
nature of the corresponding abstract groups Γ, and how the dynamics of P (Rd )-convex
cocompact representations generalize that of Anosov representations.

7 Complete affine structures

In Sections 3 to 6 we always considered semisimple, or more generally reductive, Lie
groupsG. We now discuss links between (G;X)-structures and representations of discrete
groups into G in an important case where G is not reductive: namely G is the group
Aff(Rd ) = GL(d;R)Ë Rd of invertible affine transformations of X = Rd . We shall see
in Section 7.3 that for d = 3 the holonomy representations of certain complete (i.e. type C
in Section 1.1) (G;X)-structures are characterized by a uniform contraction condition,
which is also an affine Anosov condition; we shall briefly mention partial extensions to
d > 3, which are currently being explored.

7.1 Brief overview: understanding complete affinemanifolds. Let (G;X) = (Aff(Rd );Rd ).
This section is centered around complete affine manifolds, i.e. (G;X)-manifolds of the
formM = �(Γ)nX where Γ ' �1(M ) is a discrete group and � : Γ ! G a faithful rep-
resentation through which Γ acts properly discontinuously and freely on X = Rd . The
study of such representations has a rich history through the interpretation of their images as
affine crystallographic groups, i.e. symmetry groups of affine tilings of Rd , possibly with
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noncompact tiles; see Abels [2001] for a detailed survey. The compact and noncompact
cases are quite different.

For a compact complete affine manifoldM , Auslander [1964] conjectured that �1(M )

must always be virtually (i.e. up to finite index) polycyclic. This extends a classical the-
orem of Bieberbach on affine Euclidean isometries. The conjecture is proved for d � 6

(Fried and Goldman [1983], Abels, Margulis, and Soifer [2012]), but remains wide open
for d � 7, despite partial results (see Abels [2001]).

In contrast, in answer to a question of Milnor [1977], there exist noncompact complete
affine manifoldsM for which �1(M ) is not virtually polycyclic. The first examples were
constructed by Margulis [1984] for d = 3, with �1(M ) a nonabelian free group. In these
examples the holonomy representation takes values in O(2; 1)ËR3 (this is always the case
for d = 3 when �1(M ) is not virtually polycyclic, see Fried and Goldman [1983]), hence
M inherits a flat Lorentzian structure. Such manifolds are called Margulis spacetimes.
They have a rich geometry and have been much studied since the 1990s, most prominently
by Charette, Drumm, Goldman, Labourie, and Margulis. In particular, the questions of
the topological tameness of Margulis spacetimes and of the existence of nice fundamental
domains in X = R3 (bounded by piecewise linear objects called crooked planes) have
received much attention: see e.g. Drumm [1992], Drumm and Goldman [1999], Charette,
Drumm, and Goldman [2016], Choi and Goldman [2017], Danciger, Guéritaud, and Kas-
sel [2016a,b]. See also Goldman, Labourie, and Margulis [2009], Abels, Margulis, and
Soifer [2012], and Smilga [2016] for higher-dimensional analoguesM with �1(M ) a free
group.

Following Danciger, Guéritaud, and Kassel [2016a,b] (see also Schlenker [2016]), a
convenient point of view for understanding Margulis spacetimes is to regard them as “in-
finitesimal analogues” of complete AdS manifolds. In order to describe this point of view,
we first briefly discuss the AdS case.

7.2 Complete AdS manifolds. As in Section 3.3, let (G;X) = (PO(2; 2);AdS3), and
view X as the group G = PSL(2;R) and the identity component G0 of G as G � G

acting on X ' G by right and left multiplication. We consider (G;X)-manifolds of the
formM = �(Γ)nX where Γ ' �1(M ) is an infinite discrete group and � = (�L; �R) :

Γ ! G � G � G a faithful representation through which Γ acts properly discontinu-
ously and freely on X . Not all faithful and discrete � = (�L; �R) yield properly dis-
continuous actions on X : e.g. if �L = �R, then � has a global fixed point, precluding
properness. However, the following properness criteria hold. We denote by �(g) :=

infx2H2 dH2(x; g � x) � 0 the translation length of g 2 G in H2.

Theorem 7.1 (Kassel [2009], Guéritaud, Guichard, Kassel, and Wienhard [2017a]). Let
G = PO(2; 2) and G = PSL(2;R). Consider a discrete group Γ and a representation
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� = (�L; �R) : Γ ! G�G � G with �L convex cocompact. The following are equivalent,
up to switching �L and �R in both (2) and (3):

(1) the action of Γ on X = AdS3 ' G via � is properly discontinuous;

(2) there exists C < 1 such that �(�R()) � C�(�L()) for all  2 Γ;

(3) there is a (�L; �R)-equivariant Lipschitz map f : H2 ! H2 with Lip(f ) < 1;

(4) Γ is Gromov hyperbolic and � : Γ ! G � PGL(4;R) is P2-Anosov.

The equivalences (1) , (2) , (3), proved in Kassel [2009], have been generalized
in Guéritaud and Kassel [2017] to G = PO(n; 1) for any n � 2, allowing �L to be
geometrically finite instead of convex cocompact. These equivalences state that � =

(�L; �R) acts properly discontinuously on X = AdS3 ' G if and only if, up to switching
the two factors, �L is faithful and discrete and �R is “uniformly contracting” with respect
to �L. The equivariant map f in (3) provides an explicit fibration in circles of �(Γ)nX
over the hyperbolic surface �L(Γ)nH2, see Guéritaud and Kassel [ibid.]. We refer to
Salein [2000], Guéritaud and Kassel [2017], Guéritaud, Kassel, and Wolff [2015], Deroin
and Tholozan [2016], Danciger, Guéritaud, and Kassel [2018d], Lakeland and Leininger
[2017] for many examples, to Tholozan [2017] for a classification in the compact AdS
case, and to Kassel [2009] and Guéritaud and Kassel [2017] for links with the asymmetric
metric on Teichmüller space introduced by Thurston [1986].

The equivalences (1) , (2) , (4), proved in Guéritaud, Guichard, Kassel, and Wien-
hard [2017a], generalize toG = PO(n; 1), PU(n; 1), or Sp(n; 1); the Anosov condition is
then expressed in PGL(2n+2;K)where K is R, C, or the quaternions. As an application,
the set of holonomy representations of complete (G�G; G)-structures on a compact mani-
foldM is open in the set of holonomy representations of all possible (G�G; G)-structures
onM . By Tholozan [2015], it is also closed, which gives evidence for an open conjecture
stating that all (G�G; G)-structures onM should be complete (i.e. obtained as quotients
of eG).
7.3 Complete affine manifolds. We now go back to (G;X) = (Aff(Rd );Rd ), loo-
king for characterizations of holonomy representations of complete affine manifolds, i.e.
representations to G yielding properly discontinuous actions on X .

We first note that any representation from a group Γ to the nonreductive Lie group
G = GL(d;R) Ë Rd is of the form � = (�L; u) where �L : Γ ! GL(d;R) (linear
part) is a representation to GL(d;R) and u : Γ ! Rd (translational part) a �L-cocycle,
meaning u(12) = u(1) + �L(1) � u(2) for all 1; 2 2 Γ.

We focus on the case d = 3 and �L with values in O(2; 1). Let us briefly indicate
how, following Danciger, Guéritaud, and Kassel [2016a,b], the Margulis spacetimes of
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Section 7.1 are “infinitesimal versions” of the complete AdS manifolds of Section 7.2.
Let G = O(2; 1)0 ' PSL(2;R) be the group of orientation-preserving isometries of H2.
Its Lie algebra g ' R3 is the set of “infinitesimal isometries” of H2, i.e. Killing vector
fields on H2. Here are some properness criteria.

Theorem 7.2 (Goldman, Labourie, and Margulis [2009], Danciger, Guéritaud, and Kassel
[2016a]). Let G = Aff(R3) and G = O(2; 1)0 ' PSL(2;R). Consider a discrete group
Γ and a representation � = (�L; u) : Γ ! G Ë g � G with �L convex cocompact. The
following are equivalent, up to replacing u by �u in both (2) and (3):

(1) the action of Γ on X = R3 ' g via � = (�L; u) is properly discontinuous;

(2) there exists c < 0 such that d
dt

jt=0 �(e
u()�L()) � c �(�L()) for all  2 Γ;

(3) there is a (�L; u)-equivariant vector field Y on H2 with “lipschitz” constant< 0.

The equivalence (1), (2) is a reinterpretation, based onGoldman andMargulis [2000],
of a celebrated result of Goldman, Labourie, andMargulis [2009]. The equivalence (1), (3)
is proved in Danciger, Guéritaud, and Kassel [2016a].

These equivalences are “infinitesimal versions” of the equivalences (1) , (2) , (3)
of Theorem 7.1. Indeed, as explained in Danciger, Guéritaud, and Kassel [ibid.], we can
see the �L-cocycle u : Γ ! g as an “infinitesimal deformation” of the holonomy repre-
sentation �L of the hyperbolic surface (or orbifold) S = �L(Γ)nH2; Condition (2) states
that closed geodesics on S get uniformly shorter under this infinitesimal deformation. We
can see a (�L; u)-equivariant vector field Y on H2 as an “infinitesimal deformation” of
the developing map of the hyperbolic surface S ; Condition (3), which involves an uncon-
ventional notion of “lipschitz” constant, states that any two points of H2 get uniformly
closer compared to their initial distance. Thus Theorem 7.2 states that � = (�L; u) acts
properly discontinuously on X = R3 ' g if and only if the infinitesimal deformation u,
up to replacing it by �u, is “uniformly contracting”.

The vector field Y in (3) provides an explicit fibration in lines of the Margulis space-
time �(Γ)nX over the hyperbolic surface S , and this can be used to define a geometric
transition from complete AdS manifolds to Margulis spacetimes, see Danciger, Guéritaud,
and Kassel [ibid.].

In Theorem 7.1, the “uniform contraction” characterizing properness was in fact an
Anosov condition, encoding strong dynamics on a certain flag variety. It is natural to
expect that something similar should hold in the setting of Theorem 7.2. For this, a notion
of affine Anosov representation to O(2; 1)Ë R3 was recently introduced by Ghosh [2017]
and extended to O(n+1; n)ËRd � Aff(Rd ) = G for any d = 2n+1 � 3 by Ghosh and
Treib [2017]; the definition is somewhat analogous to Section 4.1 but uses affine bundles
and their sections. By Ghosh [2017] and Ghosh and Treib [2017], given a Pn-Anosov
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representation �L : Γ ! O(n + 1; n) and a �L-cocycle u : Γ ! Rd , the action of Γ on
X = Rd via � = (�L; u) is properly discontinuous if and only if � is affine Anosov.

Theorem 7.2 was recently generalized in Danciger, Guéritaud, and Kassel [2018d] as
follows: for G = O(p; q) with p; q � 1, consider a discrete group Γ, a faithful and
discrete representation �L : Γ ! G, and a �L-cocycle u : Γ ! g; then the action of
Γ on g via � = (�L; u) : Γ ! Aff(g) is properly discontinuous as soon as u satisfies
a uniform contraction property in the pseudo-Riemannian hyperbolic space Hp;q�1 of
Section 6.2. This allowed for the construction of the first examples of irreducible complete
affine manifolds M such that �1(M ) is neither virtually polycyclic nor virtually free:
�1(M ) can in fact be any irreducible right-angled Coxeter group. It would be interesting
to understand the links with a notion of affine Anosov representation in this setting.

8 Concluding remarks

By investigating the links between the geometry of (G;X)-structures on manifolds and
the dynamics of their holonomy representations, we have discussed only a small part of a
very active area of research.

We have described partial answers to Problem A for several types of model geometries
(G;X). However, Problem A is still wide open in many contexts. As an illustration, let us
mention two major open conjectures on closed affine manifolds (in addition to the Auslan-
der conjecture of Section 7.1): the Chern conjecture states that if a closed d -manifoldM
admits an (Aff(Rd );Rd )-structure, then its Euler characteristic must be zero; the Markus
conjecture states that an (Aff(Rd );Rd )-structure onM is complete if and only if its holon-
omy representation takes values in SL(d;R) Ë Rd . See Klingler [2017] and references
therein for recent progress on this.

We have seen that Anosov representations from Gromov hyperbolic groups to semi-
simple Lie groups provide a large class of representations answering Problem B. However,
not much is known beyond them. One further class, generalizing Anosov representations
to finitely generated groups Γ which are not necessarily Gromov hyperbolic, is the class
of P (Rd )-convex cocompact representations to PGL(d;R) of Section 6.4; it would be
interesting to understand this class better in the framework of Problem B, see Section 6.4
and Danciger, Guéritaud, and Kassel [2017, Appendix]. As another generalization of
Anosov representations, it is natural to look for a class of representations of relatively
hyperbolic groups to higher-rank semisimple Lie groups which would bear similarities to
geometrically finite representations to rank-one groups, with cusps allowed: see Kapovich
and Leeb [2017, § 5] for a conjectural picture. Partial work in this direction has been done
in the convex projective setting, see Crampon and Marquis [2014].

To conclude, here are two open questions which we find particularly interesting.
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Structural stability. Sullivan [1985] proved that a structurally stable, nonrigid subgroup
of G = PSL(2;C) is always Gromov hyperbolic and convex cocompact in G. It is nat-
ural to ask if this may be extended to subgroups of higher-rank semisimple Lie groups
G such as PGL(d;R) for d � 3, for instance with “convex cocompact” replaced by
“Anosov”. In Section 6.4 we saw that there exist nonrigid, structurally stable subgroups
of G = PGL(d;R) which are not Gromov hyperbolic, namely groups that are P (Rd )-
convex cocompact but not strongly P (Rd )-convex cocompact (Definitions 6.3 and 6.5).
However, does a Gromov hyperbolic, nonrigid, structurally stable, discrete subgroup ofG
always satisfy some Anosov property?

Abstract groups admitting Anosov representations. Which linear hyperbolic groups
admit Anosov representations to some semisimple Lie group? Classical examples include
surface groups, free groups, and more generally rank-one convex cocompact groups, see
Section 4.2. By Danciger, Guéritaud, and Kassel [2018a], all Gromov hyperbolic right-
angled Coxeter groups (and all groups commensurable to them) admit Anosov representa-
tions, see Section 6.2. On the other hand, if a hyperbolic group admits an Anosov represen-
tation, then its Gromov flow (see Section 4.1) must satisfy strong dynamical properties,
which may provide an obstruction: see Bridgeman, Canary, Labourie, and Sambarino
[2015, end of § 1]. It would be interesting to have further concrete examples of groups
admitting or not admitting Anosov representations.
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