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Abstract

Riemann surfaces are of fundamental importance in many areas of mathematics
and theoretical physics. The study of the moduli space of Riemann surfaces of a fixed
topological type is intimately related to the study of the Teichmüller space of that
surface, together with the action of the mapping class group. Classical Teichmüller
theory has many facets and involves the interplay of various methods from geometry,
analysis, dynamics and algebraic geometry. In recent years, higher Teichmüller theory
emerged as a new field in mathematics. It builds as well on a combination of methods
from different areas of mathematics. The goal of my talk is to invite the reader to get
to know and to get involved into higher Teichmüller theory by describing some of its
many facets.

1 Introduction

Riemann surfaces are of fundamental importance in many areas of mathematics and theo-
retical physics. The study of the moduli space of Riemann surfaces of a fixed topological
type is intimately related to the study of the Teichmüller space of that surface, together
with the action of the mapping class group. Classical Teichmüller theory has many facets
and involves the interplay of various methods from geometry, analysis, dynamics and al-
gebraic geometry. In recent years, higher Teichmüller theory emerged as a new field in
mathematics. It builds as well on a combination of methods from different areas of math-
ematics. The goal of this article is to invite the reader to get to know and to get involved
into higher Teichmüller theory by describing some of its many facets. Along the way we
point to open questions, and formulate some conjectures and task for the future. We will
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not be able to discuss every aspect of higher Teichmüller theory, and will be very brief
on most of them. In particular we will not touch upon universal or infinite higher Teich-
müller spaces Labourie [2007a] and N. Hitchin [2016], or algebraic structures developed
in Labourie [2017b] and Sun [2017a,b].

Higher Teichmüller theory is concerned with the study of representations of fundamen-
tal groups of oriented surface S of negative Euler characteristic into simple real Lie groups
G of higher rank. The diversity of the methods involved is due partly to the one-to-one
correspondence between representations, flat bundles, and Higgs bundles given by non-
abelian Hodge theory Simpson [1991], which was established in work of Donaldson [1987,
1985], N. J. Hitchin [1987], Corlette [1988], and Simpson [1992].

We will introduce higher Teichmüller spaces below as special subsets of the represen-
tation variety Hom(�1(S); G))/G, namely as connected components consisting entirely
of discrete and faithful representations. This is however a definition which only arose a
posteriori. The first family of higher Teichmüller spaces, the Hitchin components, has
been introduced by N. J. Hitchin [1992] using the theory of Higgs bundles. That they are
higher Teichmüller spaces in the sense of our definition was in general only proven ten
years later by Labourie [2006] and independently Fock and Goncharov [2006] through
the study of the space of positive decorated local systems or positive representations. The
second family of higher Teichmüller spaces, the spaces of maximal representations, was
defined completely independently as the level set of a characteristic number on the rep-
resentation variety, and its property of being a higher Teichmüller space in the sense of
our definition was shown by Burger, Iozzi, and Wienhard [2003], motivated by previous
work of W. M. Goldman [1988] in the context of classical Teichmüller space. The results
of N. J. Hitchin [1992], Labourie [2006], Fock and Goncharov [2006] and Burger, Iozzi,
and Wienhard [2003] arose completely independently, from different points of view and
using very different methods. Only when comparing them it become apparent that the
three spaces, Hitchin components, spaces of positive representations, and spaces of maxi-
mal representations, have many similarities and provide examples of a new phenomenon.
Now we consider them as two families of what we call higher Teichmüller spaces. As the
reader will see, we are still exploring the similarities and differences of these two families.
It is interesting to note that the interplay between geometric and dynamical methods for
representations of finitely generated groups and the more analytic and algebro-geometric
methods from the theory of Higgs bundles are at the heart of several recent advances in
our understanding of higher Teichmüller spaces.

Many questions in higher Teichmüller theory are motivated by the things we know
about classical Teichmüller space, its properties and interesting geometric and dynamical
structures it carries. However, there are also several new features that only arise for higher
Teichmüller spaces and are not present in classical Teichmüller theory, see for example
Section 4, Section 10 and Section 12. Higher Teichmüller theory is a very young and
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active field of mathematics. It is shaped by young mathematicians. There are still many
open questions and unchartered territory to explore. We therefore hope that many young
(and older) mathematicians will accept this invitation and contribute to the field in the
future.

2 Classical Teichmüller space

Let S be a closed connected oriented topological surface of negative Euler characteristic
�(S) = 2 � 2g < 0, where g is the genus of S . The Teichmüller space T (S) of S

is the space of marked conformal classes of Riemannian metrics on S . It has been well
studied using the theory of quasi-conformal maps as well as methods from hyperbolic
geometry. By the uniformization theorem, there is a unique hyperbolic, i.e. constant
curvature �1, metric in each conformal class. This identifies T (S) with the moduli space
of marked hyperbolic structures. A marked hyperbolic structure is a pair (X; fX ), where
X is a hyperbolic surface and fX : S ! X is an orientation preserving homeomorphism.
Two marked hyperbolic structures (X; fX ) and (Y; fY ) are equivalent if there exists an
isometry g : X ! Y such that g ı fX is isotopic to fY . The mapping class group of S

acts naturally on T (S) by changing the marking. This action is properly discontinuous,
and the quotient of T (S) by this action is the moduli space M(S) of Riemann surfaces
of topological type given by S . Teichmüller space is homeomorphic to R6g�6 and the
universal cover of M(S).

Higher Teichmüller theory builds on an algebraic realization of Teichmüller space. The
universal cover X̃ of the hyperbolic surface X naturally identifies with the hyperbolic
plane H2, and the fundamental group �1(X) acts as group of deck transformations by
isometries on X̃ Š H2. Thus, upon fixing a base point, the marking induces a group
homomorphism (fX )� : �1(S) ! �1(X) < Isom+(H2) Š PSL(2;R), which is called
the holonomy. Associating to a marked hyperbolic structure its holonomy gives a well
defined injective map

hol : T (S) ! Hom(�1(S);PSL(2;R))/PSL(2;R):

The representation variety Hom(�1(S);PSL(2;R))/PSL(2;R) is the space of all group
homomorphisms of �1(S) into PSL(2;R), up to conjugation by PSL(2;R). It carries a
natural topology (induced from the topology of PSL(2;R)). Teichmüller spce T (S) is a
connected component of the representation variety Hom(�1(S);PSL(2;R))/PSL(2;R).
It is one of the two connected components, which consist entirely of discrete and faithful
representations of �1(S) into PSL(2;R). The other such component is T (S), where S is
the surface with the opposite orientation.
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Remark 1. From this point of, as set of discrete and faithful representation, T (S)was first
studied by Fricke. Historically it would thus be more appropriate to call it Fricke space
and the generalizations higher Fricke spaces, but it seems hard to change a name that is
well established.

Classical Teichmüller space hasmany interesting properties and carries additional struc-
ture. It is a Kähler manifold which admits several Riemannian and non-Riemannian met-
rics, has nice explicit parametrizations, and carries interesting flows and dynamical sys-
tems. We will not be able to recall most of these interesting properties, but will come back
to a few of them in the sequel.

3 What is higher Teichmüller theory?

We might interpret what higher Teichmüller theory is in a narrow or a broader sense. In a
very broad sense it is the study of classes of representations of finitely generated groups
into Lie groups of higher rank with particularly nice geometric and dynamical behaviour.
In the narrow sense one could characterize it as the study of higher Teichmüller spaces
as we define them below. In this article we restrict most of our discussion to this narrow
interpretation. In the broad sense it is touched upon also in the contributions of Kassel
[n.d.] and Potrie [n.d.].

Teichmüller space is a connected component of the representation variety
Hom(�1(S);PSL(2;R))/PSL(2;R) - this is where higher Teichmüller theory takes it
starting point. Instead of focussing on group homomorphisms of �1(S) into PSL(2;R),
we replace PSL(2;R) by a simple Lie group G of higher rank (this is what the higher
refers to), such as PSL(n;R), n � 3 or Sp(2n;R), n � 2, and consider the representation
variety Hom(�1(S); G)/G. We make the following definition:

Definition 2. A higher Teichmüller space is a subset of Hom(�1(S); G)/G, which is a
union of connected components that consist entirely of discrete and faithful representa-
tions.

Note that as soon as G is not locally isomorphic to PSL(2;R), the group �1(S) is not
isomorphic to a lattice in G. Therefore the set of discrete and faithful representations is
only a closed subset of Hom(�1(S); G)/G. It is thus not clear that higher Teichmüller
spaces exist at all, and in fact they will only exist for special families of Lie groups G. In
particular, when G is a simply connected complex Lie group, the representation variety
Hom(�1(S); G)/G is irreducible as an algebraic variety, and hence connected, and there
cannot be any connected component consisting entirely of discrete and faithful represen-
tations. There are two known families of higher Teichmüller spaces, Hitchin components
and spaces of maximal representations. They have been discovered from very different
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points of view and by very different methods. It then became clear that they share many
properties, in particular the property requested in Definition 2. We describe a common
underlying characterization, which also suggests the existence of two further families of
higher Teichmüller spaces in Section 7.

Hitchin components TH (S; G) are defined when G is a split real simple Lie group, the
space of maximal representations Tmax(S; G) is defined when G is a non-compact simple
Lie group of Hermitian type. In the case when G = PSL(2;R), the Hitchin component
and the space ofmaximal representations agree and coincide with Teichmüller space T (S).
For other groups G not locally isomorphic to PSL(2;R), which are at the same time split
and of Hermitian type, i.e. Sp(2n;R) or SO(2; 3), there is a proper inclusion TH (S; G) �

Tmax(S; G).
Remark 3. We assume that S is a closed surface.There is a related theory for surfaces
with punctures or boundary components. However, in this case the corresponding subset
of the representation variety is not a union of connected components. We comment on the
situation for surfaces with punctures in Section 7.

We shortly review the definitions of Hitchin components and maximal representations.
For more details and further properties we refer the reader to the survey Burger, Iozzi, and
Wienhard [2014].

3.1 Hitchin components. Hitchin components are defined when G is a split real sim-
ple Lie group. Any split real simple Lie group G contains a three-dimensional principal
subgroup, i.e. an embedding �p : SL(2;R) ! G, which is unique up to conjugation. For
the classical Lie groups SL(n;R), Sp(2n;R), and SO(n; n+1) this is just the irreducible
representation of SL(2;R) in the appropriate dimension. Precomposing �p with a discrete
embedding of �1(S) into SL(2;R) we obtain a representation �p : �1(S) ! G, which
we call a principal Fuchsian representation.

Definition 4. The Hitchin component TH (S; G) is the connected component of
Hom(�1(S); G)/G containing a principal Fuchsian representation �p : �1(S) ! G.

Remark 5. Note that we are a bit sloppy in our terminology, e.g. when G = PSL(3;R)
there are 2 connected components in Hom(�1(S);PSL(3;R))/PSL(3;R) which consists
of discrete and faithful representation which preserve the orientation. We refer to each of
them as the Hitchin component.

Hitchin showed, using methods from the theory of Higgs bundle that the Hitchin com-
ponent is homeomorphic to a vector space of dimension dim(G)(2g �2). He conjectured
that these components are geometrically significant and parametrize geometric structures.
This was supported by one example. W. M. Goldman [1990] had investigated the spaces
of convex real projective structures on S and shown that it is isomorphic to R16g�16
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and that the holonomy of a convex real projective structure is in the Hitchin component.
Soon afterwards Choi and W. M. Goldman [1993] proved that in fact TH (S;PSL(3;R))
parametrizes the space of convex real projective structures on S . It took another ten years
before further progress wasmade, when Labourie [2006] introducedmethods from dynam-
ical systems to the study of representations in the Hitchin component and showed that for
G = PSL(n;R);PSp(2n;R), and PO(n; n+1) representations in the Hitchin component
are discrete and faithful. That representations in any Hitchin component are discrete and
faithful follows from work of Fock and Goncharov [2006]. They investigated the space
of positive representations in Hom(�1(S); G)/G, when G is a split real simple Lie group,
and showed that it coincides with the Hitchin component (see Section 7).

3.2 Maximal representations. Maximal representations are defined when the simple
Lie group G is of Hermitian type. They are singled out by a characteristic number, the
Toledo number, which for G = PSL(2;R) is just the Euler number. W. M. Gold-
man [1988] showed that the Euler number distinguishes the connected components of
Hom(�1(S);PSL(2;R))/PSL(2;R), and that Teichmüller space corresponds to the con-
nected component formed by representation of Euler number 2g � 2, which is the max-
imal value it can attain. In general, the Toledo number is bounded in terms of the Eu-
ler characteristic of S and the real rank of G, and constant on connected components
of Hom(�1(S); G)/G. The space of maximal representations Tmax(S; G) is the set of
all representations for which the Toledo number assumes it maximal possible value. It
is a union of connected components. Using methods from bounded cohomology, it was
proven in Burger, Iozzi, and Wienhard [2003] that any maximal representation is faithful
with discrete image.

Remark 6. There are two types of Hermitian Lie groups, those of tube type and those not
of tube-type. Maximal representations into Lie groups that are not of tube type satisfy a
rigidity theorem Toledo [1989], Hernàndez [1991], Burger, Iozzi, and Wienhard [2003],
S. B. Bradlow, Garcı́a-Prada, and Gothen [2003], and S. B. Bradlow, Garcı́a-Prada, and
Gothen [2006]: The image of a maximal representation is always contained in the sta-
bilizer in G of a maximal subsymmetric space of tube type. This reduces the study of
maximal representation essentially to the case when G is of tube type.

3.3 Anosov representations. Anosov representation are homomorphisms of finitely
generated hyperbolic groups Γ into arbitrary reductive Lie groups G with special dynam-
ical properties. They have been introduced by Labourie [2006] to investigate represen-
tations in the Hitchin component, and extended to hyperbolic groups in Guichard and
Wienhard [2012]. The set of Anosov representations is an open subset of Hom(Γ; G)/G,
but in general not a union of connected components of Hom(Γ; G)/G. Representations
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in the Hitchin component and maximal representations were the first examples of Anosov
representations Labourie [2006], Burger, Iozzi, Labourie, andWienhard [2005], Guichard
and Wienhard [2012], and Burger, Iozzi, and Wienhard [n.d.]. We refer to Kassel’s con-
tribution Kassel [n.d.] for the definition, more details and more references on Anosov
representations.

The following key properties of Hitchin representations and maximal representations
follow from them being Anosov representations (with respect to certain parabolic sub-
groups).

1. Every representation in the Hitchin component and every maximal representation
is discrete and faithful.

2. Let � : �1(S) ! G be a Hitchin representation, then there exists a �-equivariant
continuous boundary map � : S1 ! G/B into the generalized flag variety G/B ,
where B is the Borel subgroup of G. The map sends distinct points in S1 to trans-
verse points in G/B .

3. Let � : �1(S) ! G be a maximal representation, then there exists a �-equivariant
continuous boundary map � : S1 ! G/S into the generalized flag variety G/S ,
where S is a maximal parabolic subgroup of G which fixes a point in the Shilov
boundary of the symmetric space X = G/K. The map sends distinct points in S1

to transverse points in G/S .

4 Topology of the representation variety

For a connected Lie group G the obstruction to lifting a representation �1(S) ! G to the
universal cover of G defines a characteristic invariant in H2(S; �1(G)) Š �1(G). For
compact simple Lie groups Atiyah and Bott [1983] and complex simple Lie groups W. M.
Goldman [1988] and J. Li [1993] the connected components of Hom(�1(S); G)/G are
in one to one correspondence with elements in �1(G). This does not hold anymore for
real simple Lie groups in general. Of course, characteristic invariants in H2(S; �1(G))

still distinguish some of the connected components, but they are not sufficient to distin-
guish all of them. N. J. Hitchin [1992] determined the number of connected components
of Hom(�1(S);PSL(n;R))/PSL(n;R), and showed that Hitchin components have the
same characteristic invariants as other components. The space of maximal representations,
which is defined using characteristic invariants, in fact decomposes itself into several con-
nected components, which hence cannot be distinguished by any characteristic invariant
Gothen [2001] and S. B. Bradlow, Garcı́a-Prada, and Gothen [2006].

A precise count of the number of connected components for several classical groups,
and in particular for the connected components of the space of maximal representations
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has been given using the Morse theoretic methods on the moduli space of Higgs bundles
Hitchin introduced A. G. Oliveira [2011], Garcı́a-Prada and A. G. Oliveira [2014], S. B.
Bradlow, Garcı́a-Prada, and Gothen [2015], Gothen [2001], S. B. Bradlow, Garcı́a-Prada,
and Gothen [2006], Garcı́a-Prada and Mundet i Riera [2004], and Garcı́a-Prada, Gothen,
and Mundet i Riera [2013]. The situation is particularly interesting for G = Sp(4;R)
(and similarly for the locally isomorphic group SOı(2; 3)) as there are 2g � 4 connected
components in which all representations are Zariski dense Guichard and Wienhard [2010]
and S. B. Bradlow, Garcı́a-Prada, and Gothen [2012]. Maximal representations in these
components cannot be obtained by deforming an appropriate Fuchsian representation � :

�1(S) ! SL(2;R) ! Sp(4;R). An explicit construction of representations in these ex-
ceptional components is given in Guichard and Wienhard [2010]. Any maximal represen-
tations into Sp(2n;R) with n � 3 on the other hand can be deformed either to a principal
Fuchsian representation (if it is in a Hitchin component) or to a (twisted) diagonal Fuch-
sian representation � : �1(S) ! SL(2;R) � O(n) < Sp(2n;R). In order to distinguish
the connected components in the space of maximal representations, additional invariants
are necessary. Such additional invariants have been defined on the one hand using meth-
ods from the theory of Higgs bundles Gothen [2001], S. B. Bradlow, Garcı́a-Prada, and
Gothen [2006], Collier [2017], Baraglia and Schaposnik [2017], and Aparicio-Arroyo, S.
Bradlow, Collier, Garcı́a-Prada, Gothen, and A. Oliveira [2018] and on the other hand
using the Anosov property of representations Guichard and Wienhard [2010].

We shortly describe the additional invariants arising from the Anosov property. If a
representations is Anosov with respect to a parabolic subgroup P < G, then the pull-
back of the associated flat G-bundle to T 1S admits a reduction of the structure group
to L, where L is the Levi subgroup of P . The characteristic invariants of this L-bundle
provide additional invariants of the representation. These additional invariants can be used
in particular to further distinguish connected components consisting entirely of Anosov
representation. Note that representations can be Anosov with respect to different parabolic
subgroups - each such parabolic subgroup gives rise to additional invariants. For the case
of maximal representations into Sp(2n;R) it is shown in Guichard and Wienhard [ibid.]
that these additional invariants in fact distinguish all connected components.

Conjecture 7. Let G be a simple Lie group of higher rank. The connected components of
Hom(�1(S); G)/G can be distinguished by characteristic invariants and by additional
invariants associated to unions of connected components consisting entirely of Anosov
representations.

Note that, since Anosov representations are discrete and injective, any connected com-
ponent consisting entirely of Anosov representations also provides an example of a higher
Teichmüller space. Thus Conjecture 7 implies in particular the following
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Conjecture 8. There are connected components of Hom(�1(S); G)/G which are not dis-
tinguished by characteristic invariants, if and only if there exist higher Teichmüller spaces
in Hom(�1(S); G)/G

Combining Conjecture 8 with Conjecture 19 gives a precise list of groups (see Theo-
rem 17) for which we expect additional connected components to exist. A particularly
interesting case is SO(p; q), p ¤ q. Here additional components and additional invari-
ants have recently been found via Higgs bundle methods Collier [2017], Baraglia and
Schaposnik [2017], and Aparicio-Arroyo, S. Bradlow, Collier, Garcı́a-Prada, Gothen, and
A. Oliveira [2018].

5 Geometric Structures

Classical Teichmüller space T (S) is not just a space of representations, but in fact a space
of geometric structures: every representation is the holonomy of a hyperbolic structure on
S . For higher Teichmüller spaces, such a geometric interpretation is less obvious. The
quotient of the symmetric space Y associated to G by �(�1(S)) is of infinite volume. In
order to find geometric structures on compact manifolds associated, other constructions
are needed.

For any representation � : �1(S) ! G in the Hitchin component or in the space of
maximal representation, there is t a domain of discontinuity in a generalized flag variety
X = G/Q, on which � acts cocompactly. The quotient is a compact manifold M with
a locally homogeneous (G; X)-structure. This relies on the the construction of domains
of discontinuity for Anosov representations given by Guichard and Wienhard [2012] and
generalized by Kapovich, Leeb, and Porti [2018]. We do not describe this construction
here in detail, but refer the reader to Kassel [n.d.], where locally homogeneous (G; X)-
structures, Anosov representations and the construction of domains of discontinuity are
discussed in more detail.

The construction of the domains of discontinuity, together with some topological con-
siderations, allows one to deduce the general statement

Theorem 9. Guichard and Wienhard [2012] For every split real simple Lie group G

there exists a generalized flag variety X and a compact manifold M such that TH (S; G)

parametrizes a connected component of the deformation space of (G; X)-structures on
M . For every Lie group of Hermitian type G there exists a generalized flag variety X

and a compact manifold M such that for every connected component C of Tmax(S; G)

the following holds: A Galois cover of C parametrizes a connected component of the
deformation space of (G; X)-structures on M .
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In particular, any Hitchin representation or maximal representation is essentially the
holonomy of a (G; X)-structures on a compact manifold. It is however quite hard to get
an explicit description of the deformation space of (G; X)-structures they parametrize.
First it is nontrivial to determine the topology of the quotient manifold, and second it is
rather difficult to give a synthetic description of the geometric properties which ensure
that the holonomy representation of a (G; X) structure lies in the Hitchin component or in
the space of maximal representations. In three cases we such a synthetic description: the
Hitchin component for TH (S;PSL(3;R)), the Hitchin component TH (S; PSL(4;R)) and
TH (S;PSp(4;R)), the space of maximal representations Tmax(S; SOı(2; n)).

Theorem 10. Choi and W. M. Goldman [1993] A representation � : �1(S) ! PSL(3;R)
is in Hitchin component TH (S; PSL(3;R)) if and only if it is the holonomy representation
of a convex real projective structures on S

A convex real projective structure on S is a realization of S as the quotient of a convex
domain Ω � RP2 by a group Γ < PSL(3;R) of projective linear transformation preserv-
ing Ω. One aspect which makes this case very special is that the group PSL(3;R) acts
as transformation group on the two-dimensional homogeneous space RP2. The subgroup
�(�1(S)) preserves a convex domain Ω and acts cocompactly on it. The quotient is a sur-
face homeomorphic to S . For more general simple Lie groups of higher rank, there is no
two-dimensional generalized flag variety on which they act, and so the quotient manifold
M is higher dimensional.

Theorem 11. Guichard and Wienhard [2008] The Hitchin component TH (S;PSL(4;R))
parametrizes the space of properly convex foliated projective structures on the unit tangent
bundle ofS . TheHitchin component TH (S;PSp(4;R)) parametrizes the space of properly
convex foliated projective contact structures on the unit tangent bundle of S .

Theorem 12. Collier, Tholozan, and Toulisse [2017] The space of maximal representa-
tions Tmax(S;SOı(2; n)) parametrizes the space of fibered photon structures onO(n)/O(n�

2) bundles over S .

Conjecture 13 (Guichard-Wienhard). Let � : �1(S) ! G be a representation in a higher
Teichmüller space, then there exists a generalized flag varietyX and compact fiber bundle
M ! S , such that � : �1(M ) ! �1(S) ! G, where �1(M ) ! �1(S) is induced by
the bundle map and �1(S) ! G is given by �, is the holonomy of a locally homogeneous
(G; X)-structure on M .

In fact, we expect, that for any cocompact domain of discontintuity which is constructed
through a balanced thickening in the sense of Kapovich, Leeb, and Porti [2018], the quo-
tient manifold is homeomorphic to a compact fiber bundle M over S . A related conjec-
ture has been made by Dumas and Sanders [2017b, Conjecture 1.1] for deformations of
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Hitchin representations in the complexification of G. They proved the conjecture in the
case of PSL(3;C). Guichard and Wienhard [2011a] determine the topology of the quo-
tient manifold for maximal representations and Hitchin representations into the symplec-
tic group, Alessandrini and Q. Li [2018] prove the conjecture for Hitchin representations
into PSL(n;R), and their deformations into PSL(n;C), and Alessandrini, Maloni, and
Wienhard [n.d.] analyze the topology of quotient manifold for complex deformations of
symplectic Hitchin representations.

It is very interesting to note that the recent advantages Alessandrini and Q. Li [2018]
and Collier, Tholozan, and Toulisse [2017] on understanding the topology of the quotient
manifolds rely on a finer analysis and description of the Higgs bundle associated to special
representations in the Hitchin component or in the space of maximal representations. That
the explicit description of the Higgs bundles can be used to endow the domain of disconti-
nuity naturally with the structure of a fiber bundle was first described by Baraglia [2010]
for TH (S; PSL(4;R)), where he recovered the projective structures on the unit tangent
bundle from Theorem 11.

6 Relation to the moduli space of Riemann surfaces

The outer automorphism group fo �1(S) is isomorphic to the mapping class group of S .
It acts naturally on Hom(�1(S); G)/G. This action is properly discontinuous on higher
Teichmüller spaces - in fact more generally on the set of Anosov representations Labourie
[2008], Wienhard [2006], and Guichard and Wienhard [2012]. It is natural to ask about
the relation between the quotient of higher Teichmüller spaces by this action and the mod-
uli space of Riemann surfaces M(S). For Hitchin components Labourie made a very
precise conjecture, based on Hitchin’s parametrization of the Hitchin component. We
state the parametrization and Labourie’s conjecture for G = PSL(n;R) to simplify no-
tation. Hitchin introduced the Hitchin component in N. J. Hitchin [1992] using methods
from the theory of Higgs bundles. This requires the choice of a conformal structure on
S . N. J. Hitchin [ibid.] showed, using methods from the theory of Higgs bundles, that the
Hitchin component is homeomorphic to a vector space. Namely, it is homeomorphic to
the space of holomorphic differentials on S with respect to a chosen conformal structure,
i.e. TH (S; PSL(n;R)) Š

Pn
i=2 H 0(S; Ki ) This parametrization depends on the choice

of a conformal structure and is not invariant under the mapping class group.

Conjecture 14. Labourie [2008] The quotient of TH (S; PSL(n;R)) by the mapping class
group is a holomorphic vector bundle over M(S), with fiber equal toPn

i=3 H 0(S; Ki ).
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This conjecture has been proven by Labourie [2007b] and Loftin [2001] for G =

PSL(3;R) and by Labourie [2017a], using Higgs bundle methods, for all split real Lie
groups of rank 2. It is open in all other cases.

For maximal representations we expect similarly to get a mapping class group invariant
projection from Tmax(S; G) to T (S), see Alessandrini and Collier [2017, Conjecture 10].
For G = SO(2; n) such a projection is constructed in Collier, Tholozan, and Toulisse
[2017]. For G of rank 2 Alessandrini and Collier [2017] construct a mapping class group
invariant complex structure on Tmax(S; G). ForG = Sp(4;R) they show that the quotient
of Tmax(S; G) by the mapping class group is a holomorphic vector bundle over M(S),
and describe in detail the fiber over a point, which is rather complicated since the space
of maximal representations has nontrivial topology and singular points.

7 Positivity

Hitchin components and maximal representation were introduced and studied by very dif-
ferent methods. It turns out that they do not only share many properties, but also admit
a common characterization in terms of positive structures on flag varieties. Only the flag
varieties and notions of positivity in question are different for Hitchin components and
maximal representations.

For Hitchin components we consider full flag varieties and Lusztig’s total positivity
Lusztig [1994]. For maximal representations the flag variety in question is the Shilov
boundary of the symmetric space of G and positivity is given by the Maslov cocycle. In
order to keep the description simple, we illustrate both notions in examples. We consider
G = SL(n;R) for Hitchin components, and G = Sp(2n;R) for maximal representations.

The relevant flag variety for TH (S; SL(n;R)) is the full flag variety

F (Rn) := fF = (F1; F2; � � � ; Fn�1) j Fi � Rn; dim(Fi ) = i; Fi � Fi+1g:

Two flags F; F 0 are said to be transverse if Fi \ F 0
n�i = f0g. We fix the standard basis

(e1; � � � ; en) of Rn. Let F 2 F be the flag with Fi = span(e1; � � � ; ei ), and E 2 F the
flag with Ei = span(en; � � � ; en�i+1).

Any flag T transverse to F , is the image of E under a unique unipotent matrix uT .
The triple of flags (E; T; F ) is said to be positive if and only if uT is a totally positive
unipotent matrix. Note that a unipotent (here lower triangular) matrix is totally positive if
and only of every minor is positive, except those that have to be zero by the condition that
the matrix is unipotent. Any two transverse flags (F1; F2) can be mapped to (E; F ) by an
element of SL(n;R) and we can extend the notion of positivity to any triple of pairwise
transverse flags.
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Theorem 15. Fock and Goncharov [2006], Labourie [2006], and Guichard [2008] Let
� : �1(S) ! SL(n;R) be a representation. Then � 2 TH (S;SL(n;R)) if and only if
there exists a continuous �-equivariant map � : S1 ! F (Rn) which sends positive triples
in S1 to positive triples in F (Rn).

To describe the analogous characterization of maximal representations into Sp(2n;R)
we consider R2n with the standard symplectic form ! and let fe1; � � � ; en; f1; � � � fng be a
symplectic basis. Then

L(R2n) := fL � R2n
j dimL = n; !jL�L = 0g

is the space of Lagrangian subspaces, and two Lagrangians L and L0 are transverse if
L \ L0 = f0g.

Fix LE = span(e1; � � � ; en) and LF = span(f1; � � � ; fn). Any Lagrangian LT 2 L

transverse to LF is the image of LE under an element vT =

�
Idn 0

MT Idn

�
2 V , where

MT is a symmetric matrix.
The triple of Lagrangians (LE ; LT ; LF ) is said to be positive if and only if MT 2

Pos(n;R) � Sym(n;R) is positive definite. This is equivalent to the Maslov cocycle of
(LE ; LT ; LF ) being n, which is the maximal value it can attain. The symplectic group
Sp(2n;R) acts transitively on the space of pairs of transverse Lagrangians and we can
extend the notion of positivity to any triple of pairwise transverse Lagrangian.

Theorem 16. Burger, Iozzi, and Wienhard [2003] Let � : �1(S) ! Sp(2n;R be a rep-
resentation. Then � 2 Tmax(S; Sp(2n;R)) if and only if there exists a continuous �-
equivariant map � : S1 ! L(R2n) which sends positive triples in S1 to positive triples
in L(R2n.

In Guichard and Wienhard [2011c,b] we introduce the notion of Θ-positivity. It gener-
alizes Lusztig’s total positivity, which is only defined for split real Lie groups, to arbitrary
simple Lie groups. There are four families of Lie groups admitting aΘ-positive structure:

Theorem 17. Guichard andWienhard [2011c, Theorem 4.3.] A simple Lie groupG admits
a Θ-positive structure if and only if:

1. G is a split real form.

2. G is of Hermitian type of tube type.

3. G is locally isomorphic to SO(p; q), p ¤ q,.

4. G is a real form of F4; E6; E7; E8, whose restricted root system is of type F4.
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Θ refers to a subset of the simple roots. If G admits a Θ-positive structure, then there
is positive semigroup U >

Θ � UΘ < PΘ with which we can define the notion of positivity
for a triple of pairwise transverse points in the generalized flag variety G/PΘ as above.
Here PΘ is the parabolic group associated to the subset of simple roots Θ, and UΘ is its
unipotent radical.

Definition 18. A representation � : �1(S) ! G is said to be Θ-positive if there exists
a continuous �-equivariant map � : S1 ! G/PΘ which sends positive triples in S1 to
positive triples in G/PΘ.

Conjecture 19 (Guichard-Labourie-Wienhard). The set of Θ-positive representations � :

�1(Σg) ! G is open and closed in Hom(�1(S); G)/G. In particular, Θ-positive repre-
sentations form higher Teichmüller spaces.

For more details on Θ-positivity and Θ-positive representations we refer the reader to
Guichard andWienhard [2011c] and the upcoming papers Guichard andWienhard [2011b]
and Guichard, Labourie, and Wienhard [2011], in which Conjecture 13 will be partly ad-
dressed. In particular we prove that Θ-positive representations are PΘ-Anosov and form
an open subset of Hom(�1(S); G)/G, and a closed set, at least in the subset of irreducible
representations.

The existence of a Θ-positive structure provides a satisfying answer on when and why
higher Teichmüller spaces exist, and we expect that the families of Lie groups listed
in Theorem 17 are the only simple Lie groups for which higher Teichmüller spaces in
Hom(�1(S); G)/G exist. A particular interesting case is the family of Θ-positive repre-
sentations for G = SO(p; q). Here the connected components have recently been deter-
mined with Higgs bundle methods, and several of them containΘ-positive representations
Collier [2017] and Aparicio-Arroyo, S. Bradlow, Collier, Garcı́a-Prada, Gothen, and A.
Oliveira [2018].

8 Coordinates and Cluster structures

Teichmüller space carries several nice sets of coordinates. The best known are Fenchel-
Nielsen coordinates, which encode a hyperbolic structure by the length of and the twist
around a set of 3g�3 disjoint simple closed non-homotopic curves which give a decompo-
sition of S into a union of 2g�2 pair of pants. W.M. Goldman [1990] introduced Fenchel-
Nielsen type coordinates on the Hitchin component TH (S; PSL(3;R). Here, there are two
length and two twist coordinates associated to the curves of a pants decomposition, and in
addition two coordinates which associated to each of the pairs of pants. This a new feature
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arises because a convex real projective structure on a pair of pants is not uniquely deter-
mined by the holonomies around the boundary. For maximal representations, Fenchel-
Nielsen type coordinates were constructed in Strubel [2015].

It is often easier to describe coordinates in the situation when the surface is not closed,
but has at least one puncture. In this case one can consider decorated flat bundles (or dec-
orated representations), which is a flat bundle or a representation together with additional
information around the puncture. Fixing an ideal triangulation, i.e. a triangulation where
all the vertices are punctures, this additional information can be used to define coordinates.
Examples of this are Thurston shear coordinates or Penner coordinates for decorated Teich-
müller space. In the context of higher Teichmüller spaces, for decorated representations
into split real Lie groups Fock and Goncharov [2006] introduced two sets of coordinates,
so calledX- coordinates, which generalize Thurston shear coordinates, andA-coordinates,
which generalize Penner coordinates. They show that when performing a flip of the tri-
angulation (changing the diagonal in a quadrilateral formed by two adjacent triangles),
the change of coordinates is given by a positive rational function. As a consequence, the
set of decorated representations where all coordinates are positive, is independent of the
triangulation. In fact, Fock and Goncharov prove that this set of positive representations
is precisely the set of positive representations in the sense of Section 7, where the notion
of positivity stems from Lusztig’s positivity. In the case when G = PSL(n;R), the Fock-
Goncharov coordinates admit a particularly nice geometric description based on triple
ratios and cross ratios. In particular there is a close relation between the coordinates and
cluster structures, which received a lot of attention. The change of coordinates associated
to a flip of the triangulations is given by a sequence of cluster mutations. This has since
been generalized to other classical groups in Le [n.d.(b)], see also Le [n.d.(a)] and Gon-
charov and Shen [2018] for general split real Lie groups. Related coordinates have been
defined by Gaiotto, Moore and Neitzke, using the theory of spectral networks Gaiotto,
Moore, and Neitzke [2013, 2014]. For an interpretation of the Weil-Petersson form in
terms of cluster algebras see Gekhtman, Shapiro, and Vainshtein [2005].

Inspired by Fock-Goncharov coordinates for surfaces with punctures, Bonahon and
Dreyer defined coordinates on the Hitchin component TH (S;PSL(n;R)) and showed that
TH (S;PSL(n;R)) is real analytically homeomorphic to the interior of a convex polygon
of dimension (n2 � 1)(2g � 2) Bonahon and Dreyer [2014, 2017]. These coordinates
are associated to a maximal lamination of the surface S and generalize Thurston’s shear
coordinates of closed surfaces. A special case for such a maximal lamination is an ideal tri-
angulation of S which is subordinate to a pair of pants decomposition, i.e. the lamination
consists of 3g �3 disjoint simple closed non-homotopic curves which give a pair of pants
decomposition, and three curves in each pair of pants, that cut the pair of pants into two
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ideal triangles. In this case, Zhang [2015a] provided a reparametrization of the Bonahon-
Dreyer coordinates, which give a genuine generalization of Fenchel-Nielsen type coordi-
nates for the Hitchin component TH (S; PSL(n;R)), see also Bonahon and Kim [2016]
for a direct comparision with Goldman coordinates when n = 3.

In forthcoming work Alessandrini, Guichard, Rogozinnikov, and Wienhard [2017] we
introduce X-type and A-type coordinates for decorated maximal representations of the
fundamental group of a punctured surface into the symplectic group Sp(2n;R). These
coordinates have the feature of behaving like the coordinates for G = PSL(2;R) but
with values in the space of positive definite symmetric matrices Pos(n;R). In particular,
even though they are noncommutative, they exhibit a cluster structure. This structure
is similar to the noncommutative cluster structure considered by Berenstein and Retakh
[2015], except for a difference in some signs.

It would be interesting to develop similar coordinates for Θ-positive representations,
in particular for those into SO(p; q), and to investigate their properties. The properties of
theΘ-positive structure suggests that in this case the cluster-like structure would combine
noncommutative and commutative aspects.

Task 20. Develop X-type and A-type coordinates for decorated Θ-positive representa-
tions into SO(p; q). Analyze their cluster-like structures.

9 Symplectic geometry and dynamics

For any reductive Lie group, the representation variety of a closed surface
Hom(�1(S); G)/G is a symplectic manifold W. M. Goldman [1984]. On Teichmüller
space this symplectic structure interacts nicely with Fenchel-Nielsen coordinates. The
length and twist coordinates give global Darboux coordinates: the length coordinate as-
sociated to a simple closed curve in a pair of pants decomposition is symplectically dual
to the twist coordinate associated to this curve, and the symplectic form can be expressed
by Wolpert’s formula as ! =

P3g�3
i=1 dli ^ d�i , where li is the length coordinate and

�i is the twist coordinate Wolpert [1983]. The twist flows associated to a simple closed
curve c on S is the flow given by cutting S along c and continuously twisting around this
curve before gluing the surface back together. It is the Hamiltonian flow associated to the
length coordinate defined by c. The twist flows associated to the 3g � 3 simple closed
curves in a pants decomposition on S commute. This gives Teichmüller space the struc-
ture of a complete integrable system. For more general reductive groups, the Hamilitonian
flows associated to length functions on Hom(�1(S); G)/G have been studied by W. M.
Goldman [1986].

In Sun and Zhang [2017] provide a new approach to compute the Goldman symplec-
tic form on TH (S;PSL(n;R)). This, in conjunction with a companion article by Sun,



AN INVITATION TO HIGHER TEICHMÜLLER THEORY 1047

Wienhard, and Zhang [2017], gives rise to several nice statements. Given maximal lam-
ination with finitely many leaves (and some additional topological data) we construct in
Sun, Wienhard, and Zhang [ibid.] new families of flows on TH (S; PSL(n;R)). These
flows give a trivialization of the Hitchin component, which is shown to be symplectic in
Sun and Zhang [2017]. Consequently the flows are all Hamiltonian flows and provide
TH (S;PSL(n;R) the structure of a completely integrable system.

Task 21. Themapping class groupMod(S) acts naturally on the space of maximal lamina-
tions and the additional topological data, so that the symplectic trivializations of TH (S; PSL(n;R))
induce representations �n : Mod(S) ! Sp(R(n2�1)(2g�2)). Analyze these representa-
tions.

A special situation arises when the maximal lamination is an ideal triangulation subor-
dinate to a pants decomposition. In this situation we slightly modify the Bonahon-Dreyer
coordinates, to get global Darboux coordinates on TH (S;PSL(n;R)) which consist of
(3g � 3)(n � 1) length coordinates, (3g � 3)(n � 1) twist coordinates associated to the
simple closed curves in the pants decomposition, and 2�

(n�1)(n�2)
2

coordinates for each
pair of pants. The twist flows are the Hamiltonian flows associated to the length functions,
and for each pair of pants we introduce (n�1)(n�2)

2
new flows, whichwe call eruption flows.

Their Hamiltonian functions are rather complicated. Nevertheless, the twist flows and the
eruption flows pairwise commute, providing a half dimensional subspace of commuting
flows. In the case of PSL(3;R) the eruption flow has been defined inWienhard and Zhang
[2018], where it admits a very geometric description.

Classical Teichmüller space does not only admit twist flows, but carries several natu-
ral flows, for example earthquake flows, which extend twist flows, geodesic flows with
respect to the Weil-Petersson metric or the Teichmüller metric or, and even an SL(2;R)-
action. None of this has yet been explored for higher Teichmüller spaces. A new approach
for lifting Teichmüller dynamics to representation varieties for general Lie group G has
recently been described by Forni and W. Goldman [2017].

10 Geodesic flows and entropy

Representations in higher Teichmüller space, and more generally Anosov representations,
are strongly linked to dynamics on the surface S . Any such representation gives rise to a
Hölder reparametrization of the geodesic flow on S and the representation can essentially
be reconstructed from the periods of this reparametrized geodesic flow. This dynami-
cal point of view has been first observed by Labourie [2006] and applied by Sambarino
[2014a] and has been key in several interesting developments.

Using the thermodynamical formalism Bridgeman, Canary, Labourie, and Sambarino
[2015] define the pressure metric on the Hitchin component TH (S;PSL(n;R)) and more
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generally spaces of Anosov representations. The pressure metric restricts to a multiple
of the Weil-Petersson metric on the subset of principal Fuchsian representations. In the
case of PSL(3;R)metrics on the space of convex real projective structures have also been
constructed in Darvishzadeh and W. M. Goldman [1996] and Q. Li [2016].

Other important quantities that have been investigated using this dynamical viewpoint
are the critical exponent and the topological entropy of Hitchin representations, which
are related to counting orbit points on the symmetric space Sambarino [2015, 2014b] and
Pollicott and Sharp [2014]. Here completely new features arise that are not present in clas-
sical Teichmüller space. On Teichmüller space both quantities are constant, but on Hitchin
components these functions vary and provide information about the geometry of the rep-
resentations. There are sequences of representations along which the entropy goes to zero
Zhang [2015b,a]. The entropy is in fact bounded above. Tholozan for n = 3 Tholozan
[2017], and Potrie and Sambarino in general, establish an entropy rigidity theorem: A
representation saturates the upper bound for the entropy if and only if it is a principal
Fuchsian representation Sambarino [2016] and Potrie and Sambarino [2017]. This has
consequences for the volume of the minimal surface in the symmetric space associated
to the representation. A key aspect in the work of Potrie and Sambarino has been the
regularity of the map � : S1 ! G/B of a Hitchin representation.

For maximal representations which are not in the Hitchin component much less is
known. One obstacle is the missing regularity of the boundary map � : S1 ! G/S ,
which has rectifiable image, but is in general not smooth. Glorieux and Monclair [n.d.]
study the entropy of Anti-de-Sitter Quasi-Fuchsian representations �1(S) ! SO(2; n),
some of their methods methods might also be useful to investigate maximal representa-
tion �1(S) ! SO(2; n).

Task 22. Investigate the topological entropy of maximal representations. Find and char-
acterize sequences along which the entropy goes to zero. Find bounds for the topological
entropy and geometrically characterize the representations that saturate these bounds.

A lot of the geometry of Teichmüller space can be recovered from geodesic currents
associated to the representations and from their intersection Bonahon [1988]. Recently
Martone and Zhang [n.d.] have associated geodesic currents to positively ratioed repre-
sentations, a class that includes Hitchin representations and maximal representations but
should include also Θ-positive representations. Bridgeman, Canary, Labourie, and Sam-
barino [2018] define the Liouville current for a Hitchin representation which they use to
construct the Liouville pressure metric. From the intersection of the geodesic currents
one can recover the periods of the reparametrization of the geodesic flow and the periods
of crossratios associated to the representation Labourie [2008] and Hartnick and Strubel
[2012]. These geodesic currents and the corresponding crossratio functions also play an
important role for the next topic we discuss.
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11 Compactifications

Classical Teichmüller space admits various non-homeomorphic compactifications. One
such compactification is themarked length spectrum compactification. Themarked length
spectrum of a representation � : �1(S) ! PSL(2;R) associates to any conjugacy class
in [ ] in �1(S) the translation length of the element �() in H2. It is a basic result that
for Teichmüller space the map Φ : T (S) ! P(RC) provides an embedding. The closure
of Φ(T (S)) is the marked length spectrum compactification. It is homeomorphic to the
Thurston compactification of T (S) by the space of projectivized measured laminations.
This compactification has been reconstructed using geodesic currents by Bonahon [1988].

The marked length spectrum compactification has been generalized to compactifica-
tions of spaces of representations of finitely generated groups into reductive Lie groups
by Parreau [2012], where the translation length in H2 is replaced by the vector valued
translation length in the symmetric space associated to G. This can be applied to Hitchin
components and spaces of maximal representations to provide marked length spectrum
compactifications. The investigation of the fine structure of these compactifications has
just begun. A key ingredient are generalizations of the Collar Lemma from hyperbolic ge-
ometry to Hitchin representations Lee and Zhang [2017] and to maximal representations
Burger and M. B. Pozzetti [2017]. See also Labourie and McShane [2009], Vlamis and
Yarmola [2017], and Fanoni and B. Pozzetti [n.d.] for generalizations of cross-ratio iden-
tities in the context of higher Teichmüller spaces. Burger, Iozzi, Parreau, and B. Pozzetti
[2017] establish a new decomposition theorem for geodesic currents, which will play a
crucial role in their program to understand the marked length spectrum compactification
of maximal representations.

Compactifications of the space of positive representations (when S has punctures) have
been constructed using explicit parametrizations and the theory of tropicalizations Fock
and Goncharov [2006], Alessandrini [2008], and Le [2016].

In all these constructions it is a challenge to give a geometric interpretation of points
in the boundary of the compactification. The most natural is in terms of actions on R-
buildings Parreau [2012], Le [2016], and Burger and M. B. Pozzetti [2017]. This nat-
urally generalizes the description of boundary points of Teichmüller space by actions on
R-trees. However, Thurston’s compactification gives an interpretation of boundary points
by measured laminations on S . It would be interesting to get a description of boundary
points of Hitchin components or spaces of maximal representations in terms of geometric
objects on S that generalize measured laminations, and to relate the compactifications to
degenerations of the geometric structures associated to Hitchin components and maximal
representations in low dimensions (see Section 5). For convex real projective structures
such an interpretation of boundary points in terms of a mixed structure consisting of a
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measured lamination and a HEX-metric has been announced by Cooper, Delp, D. Long,
and Thistlethwaite [n.d.].

12 Arithmetics

Discrete Zariski dense subgroups of semisimple Lie groups have been studied for a long
time. In recent years there has been a revived interest from number theory in discrete
Zariski dense subgroups, which are contained in arithmetic lattices without being lattices
themselves. Such groups have been coined thin groups Sarnak [2014]. Hitchin represen-
tations and maximal representations, and more generally Anosov representations, provide
many examples of discrete Zariski dense subgroups of higher rank Lie groups which are
not lattices. They are not necessarily contained in (arithmetic) lattices. However, there are
many Hitchin representations and maximal representations that are even integral, i.e. up
to conjugation contained in the integral points of the group G. This is a new feature that
arises for higher Teichmüller spaces and is not present in classical Teichmüller space. The
group PSL(2;Z) is a non-uniform lattice in PSL(2;R), consequently there is no discrete
embedding of the fundamental group �1(S) of a closed oriented surface into PSL(2;R)
which takes values in the integer points PSL(2;Z).

For n = 3 the first examples of integral Hitchin representations were given by Vinberg
and Kac [1967], infinite families were constructed by Long, Reid, and Thistlethwaite with
an explicit description using triangle groups.

Theorem 23. D. D. Long, Reid, and Thistlethwaite [2011] Let Γ = ha; b j a3 = b3 =

(ab)4 = 1i be the (3,3,4) triangle group. There is an explicit polynomial map � : R !

Hom(Γ;PSL(3;R)) whose image lies in the Hitchin component. For all t 2 Z, the image
of �(t) give a Zariski-dense subgroup of PSL(3;Z). The representations �(t), t 2 Z are
pairwise not conjugate in PGL(3;R).

Since Γ contains subgroups of finite index which are isomorphic to the fundamental
group �1(S) of a closed oriented surface S , Theorem 23 gives rise to infinitely many, non
conjugate integral representations in TH (�1(S);PSL(n;R)). The representations lie on
different mapping class group orbits.

In unpublished work with Burger and Labourie we use bending to show the following

Theorem 24. For n � 5 and odd there are infinitely many pairwise non conjugate integral
representations in the Hitchin component TH (�1(S);PSL(n;R)). These representations
lie on different mapping class group orbits.

Task 25. Develop tools to count integral representations in TH (�1(S);PSL(n;R)) mod-
ulo the action of the mapping class group. Investigate the counting functions and their
asymptotics.
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A first step to start counting is to find appropriate height functions on
TH (�1(S);PSL(n;R)) such that there are only finitely many integral representations of
finite height. A height function, inspired by Thurston’s asymmetric metric on Teichmüller
space has been proposed by Burger and Labourie.

For more general constructions of surface subgroups in lattices of Lie groups, following
the construction of Kahn and Markovic surface subgroups in three-manifold groups Kahn
and Markovic [2012] we refer to work of Hamenstädt and Kahn [2017], and forthcoming
work of Labourie, Kahn, andMozes [2017]. Examples of integral maximal representations
are constructed in Toledo [1987].

13 Complex Analytic Theory

In classical Teichmüller theory complex analytic methods and the theory of quasi-confor-
mal mappings play a crucial role. These aspects are so far largely absent from higher
Teichmüller theory. Dumas and Sanders started exploring the complex analytic aspects of
discrete subgroups of complex Lie groups of higher rank in Dumas and Sanders [2017b].
They investigate in particular deformations of Hitchin representations and maximal repre-
sentations in the complexifications ofG, and establish important properties of the complex
compact manifoldsM that arise as quotients of domains of discontinuity of these represen-
tations (see Section 5). In a forthcoming paper Dumas and Sanders [2017a] the complex
deformation theory of these representations will be investigated further.

14 Higher dimensional higher Teichmüller spaces

Fundamental groups of surfaces are not the only finitely generated groups for which there
are special connected components in the representation variety Hom(�1(S); G)/G, which
consist entirely of discrete and faithful representations. This phenomenon also arises for
fundamental groups of higher dimensional manifolds, and even for more general finitely
generated hyperbolic groups. The main examples are convex divisible representations,
which have been introduced and studied by Benoist in a series of papers, starting with
Benoist [2004]. They are generalizations of convex real projective structures on surfaces,
and exist in any dimension.

Let N be a compact hyperbolic manifold of dimension n and �1(N ) its fundamental
group. A representation � : �1(N ) ! PGL(n + 1;R) is convex divisible if there exists
a strictly �(�1(N ))- invariant convex domain in RPn, on which �(�1(N )) acts cocom-
pactly.
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Theorem 26. Benoist [2005] The set of convex divisible representations is a union of
connected components ofHom(�1(N );PGL(n+1;R))/PGL(n+1;R) consisting entirely
of discrete and faithful representations.

Barbot [2015] showed that a similar phenomenon arise for representations
� : �1(N ) ! SO(2; n) that are Anti-de-Sitter Quasi-Fuchsian representation. In fact
these are precisely Anosov representations of �1(N ) into SO(2; n) with respect to the
parabolic subgroup that stabilizes an isotropic line Barbot and Mérigot [2012].

Theorem 27 (Barbot [2015]). The set of Quasi Fuchsian AdS representations in
Hom(�1(N );SO(2; n))/SO(2; n) is a connected component consisting entirely of discrete
and faithful representations.

In view of Definition 2 we might call these connected components of the representation
variety Hom(�1(N ); G)/G containing only discrete and faithful representations higher
dimensional higher Teichmüller spaces.

When N is of dimension two, the notion ofΘ-positivity gives us a conjectural criterion
why and when higher Teichmüller spaces exist. It would be interesting to find a unifying
principle behind the existence of such special connected components inHom(�1(N ); G)/G.

Task 28. Find the underlying principle for the existence of connected components of the
representation variety Hom(�1(N ); G)/G which consist entirely of discrete and faithful
representations.

A first test case could be to analyze deformations of the representation �0 : �1(N ) !

SO(1; n) ! SO(k; n), or more generally deformations of representations �0 : �1(N ) !

SO(1; n) ! G, where the centralizer of SO(1; n) in G is compact and contained in the
maximal compact subgroup of the Levi group of a parabolic subgroup containing the
parabolic subgroup defined by SO(1; n). We expect all such deformations to be discrete
and faithful.
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